1
|
Nekvinda J, Bavol D, Litecká M, Tüzün EZ, Dušek M, Grüner B. Synthetic routes to carbon substituted cobalt bis(dicarbollide) alkyl halides and aromatic amines along with closely related irregular pathways. Dalton Trans 2024; 53:5816-5826. [PMID: 38465373 DOI: 10.1039/d4dt00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Carbon substituted cobalt bis(dicarbollide) alkyl halides [(1-X-(CH2)n-1,2-C2B9H10)(1,2-C2B9H11)-3,3'-Co]Me4N (X = Br, I; n = 1-3) are prepared in high yields (>90%) from their corresponding alcohols without side skeletal substitutions. These species offer access to the synthesis of aromatic cobalt bis(dicarbollide) amines, however only for particular terminal halogen substitution, the propylene pendant arm, and under appropriately controlled reaction conditions. Thus, the compounds substituted at cage carbon atoms with a propylene linker and terminal aromatic amine groups could be prepared. In other cases, numerous irregular reaction pathways occur, undoubtedly as a consequence of the bulky anionic boron cage in close proximity to the reaction site. Among them, an unusual intramolecular hydroboration forming rigidified carbon-to-boron bridged isomeric anions with an asymmetric structure that correspond to formulae [(1,8'-μ-C2H4)-(1,2-C2B9H10)(1',2'-C2B9H10)-3,3'-Co]- and [(1,7'-μ-C2H4)-(1,2-C2B9H10)(1',2'-C2B9H10)-3,3'-Co]- is described herein and the former isomer is structurally characterized. This product with a restrained geometry is widely accessible through nucleophile and/or thermally induced decomposition of (pseudo)halides attached to the cage via an ethylene linker. Surprisingly enough, also doubly bridged isomeric species [(1,8-μ-C2H4-1,2-C2B9H9)2-3,3'-Co]- and [(1,7-μ-C2H4-1,2-C2B9H9)2-3,3'-Co]- are available in good yield using these methods. Furthermore, other more typical side reactions are discussed, i.e. nucleophilic reactions of propyl halides with Me3N formed apparently by disproportionation of Me4N+ at higher temperatures or with pyridine used as a base.
Collapse
Affiliation(s)
- Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| | - Michal Dušek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| |
Collapse
|
2
|
Charge-Compensated Derivatives of Nido-Carborane. INORGANICS 2023. [DOI: 10.3390/inorganics11020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review summarizes data on the main types of charge-compensated nido-carborane derivatives. Compared with organic analogs, onium derivatives of nido-carborane have increased stability due to the stabilizing electron-donor action of the boron cage. Charge-compensated derivatives are considered according to the type of heteroatom bonded to a boron atom.
Collapse
|
3
|
Kugler M, Nekvinda J, Holub J, El Anwar S, Das V, Šícha V, Pospíšilová K, Fábry M, Král V, Brynda J, Kašička V, Hajdúch M, Řezáčová P, Grüner B. Inhibitors of CA IX Enzyme Based on Polyhedral Boron Compounds. Chembiochem 2021; 22:2741-2761. [PMID: 33939874 DOI: 10.1002/cbic.202100121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Indexed: 11/12/2022]
Abstract
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Suzan El Anwar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068, Řež, Czech Republic
| |
Collapse
|
4
|
Kellert M, Friedrichs JSJ, Ullrich NA, Feinhals A, Tepper J, Lönnecke P, Hey-Hawkins E. Modular Synthetic Approach to Carboranyl‒Biomolecules Conjugates. Molecules 2021; 26:2057. [PMID: 33916755 PMCID: PMC8038343 DOI: 10.3390/molecules26072057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (J.-S.J.F.); (N.A.U.); (A.F.); (J.T.); (P.L.)
| |
Collapse
|
5
|
Synthesis, structural diversity, and applications of mesoionic 1,2,3-triazol-5-ylidene metal complexes, an update (2017–2020). Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Nekvinda J, Kugler M, Holub J, El Anwar S, Brynda J, Pospíšilová K, Růžičková Z, Řezáčová P, Grüner B. Direct Introduction of an Alkylsulfonamido Group on C‐sites of Isomeric Dicarba‐
closo
‐dodecaboranes: The Influence of Stereochemistry on Inhibitory Activity against the Cancer‐Associated Carbonic Anhydrase IX Isoenzyme. Chemistry 2020; 26:16541-16553. [DOI: 10.1002/chem.202002809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Jan Nekvinda
- Department of Synthesis Institute of Inorganic Chemistry of, the Czech Academy of Sciences 25068 Řež Czech Republic
| | - Michael Kugler
- Institute of Molecular Genetics Czech Academy of Sciences Vídeňská 1083 14220 Prague 4 Czech Republic
- Institute of Organic Chemistry and Biochemistry Czech Academy of, Sciences Flemingovo nám. 2 16610 Prague Czech Republic
| | - Josef Holub
- Department of Synthesis Institute of Inorganic Chemistry of, the Czech Academy of Sciences 25068 Řež Czech Republic
| | - Suzan El Anwar
- Department of Synthesis Institute of Inorganic Chemistry of, the Czech Academy of Sciences 25068 Řež Czech Republic
| | - Jiří Brynda
- Institute of Molecular Genetics Czech Academy of Sciences Vídeňská 1083 14220 Prague 4 Czech Republic
- Institute of Organic Chemistry and Biochemistry Czech Academy of, Sciences Flemingovo nám. 2 16610 Prague Czech Republic
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry Czech Academy of, Sciences Flemingovo nám. 2 16610 Prague Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry Faculty of Chemical Technology University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Pavlína Řezáčová
- Institute of Molecular Genetics Czech Academy of Sciences Vídeňská 1083 14220 Prague 4 Czech Republic
- Institute of Organic Chemistry and Biochemistry Czech Academy of, Sciences Flemingovo nám. 2 16610 Prague Czech Republic
| | - Bohumír Grüner
- Department of Synthesis Institute of Inorganic Chemistry of, the Czech Academy of Sciences 25068 Řež Czech Republic
| |
Collapse
|
7
|
Ol'shevskaya VA, Tyutyunov AA, Ibragimova LF, Kononova EG, Rys EG. Facile synthetic route to fluoroalkylated carboranes by copper-catalyzed reaction of fluoroalkane sulfonyl bromides with allyl carboranes. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Erb W, Levanen G, Roisnel T, Dorcet V. Application of the Curtius rearrangement to the synthesis of 1′-aminoferrocene-1-carboxylic acid derivatives. NEW J CHEM 2018. [DOI: 10.1039/c7nj05020h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The shortest synthesis of N-protected 1′-aminoferrocene-1-carboxylic acid from readily available ferrocene-1,1′-dicarboxylic acid is reported.
Collapse
Affiliation(s)
- William Erb
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Gael Levanen
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Thierry Roisnel
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Vincent Dorcet
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
9
|
Zhang X, Zheng H, Li J, Xu F, Zhao J, Yan H. Selective Catalytic B–H Arylation of o-Carboranyl Aldehydes by a Transient Directing Strategy. J Am Chem Soc 2017; 139:14511-14517. [DOI: 10.1021/jacs.7b07160] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaolei Zhang
- School
of Pharmaceutical Sciences, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hongning Zheng
- School
of Pharmaceutical Sciences, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Li
- School
of Pharmaceutical Sciences, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Fei Xu
- School
of Pharmaceutical Sciences, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Zhao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Hong Yan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
10
|
Addition reaction of o -carboranyllithium with nitrile: Formation of a stable zwitterionic iminium salt with a carborane tether. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Neumann W, Frank R, Hey-Hawkins E. One-pot synthesis of an indole-substituted 7,8-dicarba-nido-dodecahydroundecaborate(-1). Dalton Trans 2015; 44:1748-53. [PMID: 25465230 DOI: 10.1039/c4dt03218g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Carbaboranes are increasingly used as pharmacophores to replace phenyl substituents in established drug molecules. In contrast to traditional organic chemistry, elaborate procedures to introduce functionality frequently fail in the case of carbaboranes and their chemistry is often hampered by degradation of the cluster. Herein, the development of a one-pot synthesis of a water-soluble N-nido-dicarbaborato indole is presented, including a proposed mechanism for the reaction sequence. These studies provide useful synthetic tools for the conjugation of two important pharmacophores, indoles and carbaboranes.
Collapse
Affiliation(s)
- W Neumann
- Universität Leipzig, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
12
|
Berkeley ER, Ewing WC, Carroll PJ, Sneddon LG. Synthesis, Structural Characterization, and Reactivity Studies of 5-CF3SO3-B10H13. Inorg Chem 2014; 53:5348-58. [DOI: 10.1021/ic500684b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emily R. Berkeley
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - William C. Ewing
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Larry G. Sneddon
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
13
|
Stogniy MY, Sivaev IB, Godovikov IA, Starikova ZA, Bregadze VI, Qi S. Synthesis of new ω-amino- and ω-azidoalkyl carboranes. NEW J CHEM 2013. [DOI: 10.1039/c3nj00677h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Ol’shevskaya VA, Makarenkov AV, Kononova EG, Petrovskii PV, Verbitskiy EV, Rusinov GL, Charushin VN, Hey-Hawkins E, Kalinin VN. Novel bis[(1,2,3-triazolyl)methyl]carborane derivatives via regiospecific copper-catalyzed 1,3-dipolar cycloaddition. Polyhedron 2012. [DOI: 10.1016/j.poly.2012.05.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Lyubimov SE, Ol’shevskaya VA, Petrovskii PV, Rastorguev EA, Verbitskaya TA, Kalinin VN, Davankov VA. Asymmetric hydrogenation with the use of chiral carborane amidophosphite derivatives in supercritical carbon dioxide and CH2Cl2. Russ Chem Bull 2011. [DOI: 10.1007/s11172-010-0321-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Ol’shevskaya VA, Makarenkov AV, Kononova EG, Petrovskii PV, Verbitskii EV, Rusinov GL, Kalinin VN, Charushin VN. 1,3-Dipolar cycloaddition of [(o-carboran-1-yl)methyl]azide to alkynes. DOKLADY CHEMISTRY 2010. [DOI: 10.1134/s0012500810090090] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Morrison DE, Issa F, Bhadbhade M, Groebler L, Witting PK, Kassiou M, Rutledge PJ, Rendina LM. Boronated phosphonium salts containing arylboronic acid, closo-carborane, or nido-carborane: synthesis, X-ray diffraction, in vitro cytotoxicity, and cellular uptake. J Biol Inorg Chem 2010; 15:1305-18. [DOI: 10.1007/s00775-010-0690-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
|
18
|
Stogniy MY, Sivaev IB, Petrovskii PV, Bregadze VI. Synthesis of monosubstituted functional derivatives of carboranes from 1-mercapto-ortho-carborane: 1-HOOC(CH2)nS-1,2-C2B10H11and [7-HOOC(CH2)nS-7,8-C2B9H11]−(n = 1–4). Dalton Trans 2010; 39:1817-22. [DOI: 10.1039/b916022a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
General Access to Aminobenzyl-o-carboranes as a New Class of Carborane Derivatives: Entry to Enantiopure Carborane-Amine Combinations. Chemistry 2009; 15:12030-42. [DOI: 10.1002/chem.200901332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Ioppolo JA, Kassiou M, Rendina LM. Water-soluble phosphonium salts containing 1,12-dicarba-closo-dodecaborane(12). Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.08.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Kalinin VN, Ol’shevskaya VA. Some aspects of the chemical behavior of icosahedral carboranes. Russ Chem Bull 2009. [DOI: 10.1007/s11172-008-0120-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Ol’shevskaya VA, Nikitina RG, Savchenko AN, Malshakova MV, Vinogradov AM, Golovina GV, Belykh DV, Kutchin AV, Kaplan MA, Kalinin VN, Kuzmin VA, Shtil AA. Novel boronated chlorin e6-based photosensitizers: Synthesis, binding to albumin and antitumour efficacy. Bioorg Med Chem 2009; 17:1297-306. [DOI: 10.1016/j.bmc.2008.12.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/02/2008] [Accepted: 12/08/2008] [Indexed: 11/29/2022]
|
23
|
Lyubimov SE, Kalinin VN, Tyutyunov AA, Olshevskaya VA, Dutikova YV, Cheong CS, Petrovskii PV, Safronov AS, Davankov VA. Chiral phosphites derived from carboranes: Electronic effect in catalytic asymmetric hydrogenation. Chirality 2009; 21:2-5. [DOI: 10.1002/chir.20565] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Cheung MS, Chan HS, Xie Z. Synthesis and structural characterization of mono- and bisfunctional o-carboranes. Dalton Trans 2005:2375-81. [PMID: 15995745 DOI: 10.1039/b504076k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalized o-carboranes are interesting ligands for transition metals. Reaction of LiC2B10H11 with Me2NCH2CH2Cl in toluene afforded 1-Me2NCH2CH2-1,2-C2B10H11 (1). Treatment of 1 with 1 equiv. of n-BuLi gave [(Me2NCH2CH2)C2B10H10]Li ([1]Li), which was a very useful synthon for the production of bisfunctional o-carboranes. Reaction of [1]Li with RCH2CH2Cl afforded 1-Me2NCH2CH2-2-RCH2CH2-1,2-C2B10H10 (R = Me2N (2), MeO (3)). 1 and 2 were also prepared from the reaction of Li2C2B10H10 with excess Me2NCH2CH2Cl. Treatment of [1]Li with excess MeI or allyl bromide gave the ionic salts, [1-Me3NCH2CH2-2-Me-1,2-C2B10H10][I] (4) and [1-Me2N(CH2=CHCH2)CH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10][Br] (6), respectively. Interaction of [1]Li with 1 equiv. of allyl bromide afforded 1-Me2NCH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10 (5). Treatment of [1]Li with excess dimethylfulvene afforded 1-Me2NCH2CH2-2-C5H5CMe2-1,2-C2B10H10 (7). Interaction of [1]Li with excess ethylene oxide afforded an unexpected product 1-HOCH2CH2-2-(CH2=CH)-1,2-C2B10H10 (8). 1 and 3 were conveniently converted into the corresponding deborated compounds, 7-Me2NHCH2CH2-7,8-C2B9H11 (9) and 7-Me2NHCH2CH2-8-MeOCH2CH2-7,8-C2B9H10 (10), respectively, in MeOH-MeOK solution. All of these compounds were characterized by various spectroscopic techniques and elemental analyses. The solid-state structures of 4 and 6-10 were confirmed by single-crystal X-ray analyses.
Collapse
Affiliation(s)
- Mak-Shuen Cheung
- Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|