1
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
2
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
3
|
Asgher M, Qamar SA, Iqbal HMN. Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors. Biologia (Bratisl) 2021; 76:673-685. [DOI: 10.2478/s11756-020-00588-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
|
4
|
Zhang N, Chin JS, Chew SY. Localised non-viral delivery of nucleic acids for nerve regeneration in injured nervous systems. Exp Neurol 2018; 319:112820. [PMID: 30195695 DOI: 10.1016/j.expneurol.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
Axons damaged by traumatic injuries are often unable to spontaneously regenerate in the adult central nervous system (CNS). Although the peripheral nervous system (PNS) has some regenerative capacity, its ability to regrow remains limited across large lesion gaps due to scar tissue formation. Nucleic acid therapy holds the potential of improving regeneration by enhancing the intrinsic growth ability of neurons and overcoming the inhibitory environment that prevents neurite outgrowth. Nucleic acids modulate gene expression by over-expression of neuronal growth factor or silencing growth-inhibitory molecules. Although in vitro outcomes appear promising, the lack of efficient non-viral nucleic acid delivery methods to the nervous system has limited the application of nucleic acid therapeutics to patients. Here, we review the recent development of efficient non-viral nucleic acid delivery platforms, as applied to the nervous system, including the transfection vectors and carriers used, as well as matrices and scaffolds that are currently used. Additionally, we will discuss possible improvements for localised nucleic acid delivery.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore.
| |
Collapse
|
5
|
|
6
|
|
7
|
Pires LR, Pêgo AP. Bridging the lesion-engineering a permissive substrate for nerve regeneration. Regen Biomater 2015; 2:203-14. [PMID: 26816642 PMCID: PMC4669012 DOI: 10.1093/rb/rbv012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/21/2015] [Accepted: 06/30/2015] [Indexed: 01/30/2023] Open
Abstract
Biomaterial-based strategies to restore connectivity after lesion at the spinal cord are focused on bridging the lesion and providing an favourable substrate and a path for axonal re-growth. Following spinal cord injury (SCI) a hostile environment for neuronal cell growth is established by the activation of multiple inhibitory mechanisms that hamper regeneration to occur. Implantable scaffolds can provide mechanical support and physical guidance for axon re-growth and, at the same time, contribute to alleviate the hostile environment by the in situ delivery of therapeutic molecules and/or relevant cells. Basic research on SCI has been contributing with the description of inhibitory mechanisms for regeneration as well as identifying drugs/molecules that can target inhibition. This knowledge is the background for the development of combined strategies with biomaterials. Additionally, scaffold design is significantly evolving. From the early simple hollow conduits, scaffolds with complex architectures that can modulate cell fate are currently being tested. A number of promising pre-clinical studies combining scaffolds, cells, drugs and/or nucleic acids are reported in the open literature. Overall, it is considered that to address the multi-factorial inhibitory environment of a SCI, a multifaceted therapeutic approach is imperative. The progress in the identification of molecules that target inhibition after SCI and its combination with scaffolds and/or cells are described and discussed in this review.
Collapse
Affiliation(s)
- Liliana R. Pires
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
| | - Ana P. Pêgo
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
9
|
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2445-61. [PMID: 24865980 PMCID: PMC4169585 DOI: 10.1007/s10856-014-5240-2] [Citation(s) in RCA: 645] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/09/2014] [Indexed: 05/04/2023]
Abstract
Bone substitutes are being increasingly used in surgery as over two millions bone grafting procedures are performed worldwide per year. Autografts still represent the gold standard for bone substitution, though the morbidity and the inherent limited availability are the main limitations. Allografts, i.e. banked bone, are osteoconductive and weakly osteoinductive, though there are still concerns about the residual infective risks, costs and donor availability issues. As an alternative, xenograft substitutes are cheap, but their use provided contrasting results, so far. Ceramic-based synthetic bone substitutes are alternatively based on hydroxyapatite (HA) and tricalcium phosphates, and are widely used in the clinical practice. Indeed, despite being completely resorbable and weaker than cortical bone, they have exhaustively proved to be effective. Biomimetic HAs are the evolution of traditional HA and contains ions (carbonates, Si, Sr, Fl, Mg) that mimic natural HA (biomimetic HA). Injectable cements represent another evolution, enabling mininvasive techniques. Bone morphogenetic proteins (namely BMP2 and 7) are the only bone inducing growth factors approved for human use in spine surgery and for the treatment of tibial nonunion. Demineralized bone matrix and platelet rich plasma did not prove to be effective and their use as bone substitutes remains controversial. Experimental cell-based approaches are considered the best suitable emerging strategies in several regenerative medicine application, including bone regeneration. In some cases, cells have been used as bioactive vehicles delivering osteoinductive genes locally to achieve bone regeneration. In particular, mesenchymal stem cells have been widely exploited for this purpose, being multipotent cells capable of efficient osteogenic potential. Here we intend to review and update the alternative available techniques used for bone fusion, along with some hints on the advancements achieved through the experimental research in this field.
Collapse
Affiliation(s)
- V. Campana
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - G. Milano
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - E. Pagano
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - M. Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C. Cicione
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G. Salonna
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - W. Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
- Latium Musculoskeletal Tissue Bank, Rome, Italy
| | - G. Logroscino
- Department of Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
10
|
Zhang J, Sen A, Cho E, Lee JS, Webb K. Poloxamine/fibrin hybrid hydrogels for non-viral gene delivery. J Tissue Eng Regen Med 2014; 11:246-255. [PMID: 24889259 DOI: 10.1002/term.1906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/06/2014] [Accepted: 04/20/2014] [Indexed: 11/10/2022]
Abstract
Hydrogels have been widely investigated for localized, sustained gene delivery because of the similarity of their physical properties to native extracellular matrix and their ability to be formed under mild conditions amenable to the incorporation of bioactive molecules. The objective of this study was to develop bioactive hydrogels composed of macromolecules capable of enhancing the efficiency of non-viral vectors. Hybrid hydrogels were prepared by simultaneous enzymatic and Michael-type addition crosslinking of reduced fibrinogen and an acrylated amphiphilic block copolymer, Tetronic T904, in the presence of dithiothreitol (DTT) and thrombin. T904/fibrin hydrogels degraded by surface erosion in the presence of plasmin and provided sustained release of polyplex vectors up to an order of magnitude longer than pure fibrin gel control. In addition, the rate of gel degradation and time-course of polyplex vector release were readily controlled by varying the T904/fibrinogen ratio in the gel composition. When added to transfected neuroblastoma (N2A) cells, both native T904 itself and hydrogel degradation products significantly increased polyplex transfection efficiency with minimal effect on cell viability. To evaluate gel-based transfection, N2A cells encapsulated in small fibrin clusters were covered by or suspended within polyplex-loaded hydrogels. Cells progressively degraded and invaded the hybrid hydrogels, exhibiting increasing gene expression over 2 weeks and then diminishing but persistent gene expression for over 1 month. In conclusion, these results demonstrate that T904/fibrin hybrid hydrogels can be promising tissue engineering scaffolds that provide local, controlled release of non-viral vectors in combination with the generation of bioactive gel degradation products that actively enhance vector efficiency. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeremy Zhang
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Atanu Sen
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Eunhee Cho
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA.,St Jude Medical, St Paul, MN, USA
| | - Jeoung Soo Lee
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ken Webb
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
11
|
Hughes A, Rojas-Canales D, Drogemuller C, Voelcker NH, Grey ST, Coates PTH. IGF2: an endocrine hormone to improve islet transplant survival. J Endocrinol 2014; 221:R41-8. [PMID: 24883437 DOI: 10.1530/joe-13-0557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the week following pancreatic islet transplantation, up to 50% of transplanted islets are lost due to apoptotic cell death triggered by hypoxic and pro-inflammatory cytokine-mediated cell stress. Thus, therapeutic approaches designed to protect islet cells from apoptosis could significantly improve islet transplant success. IGF2 is an anti-apoptotic endocrine protein that inhibits apoptotic cell death through the mitochondrial (intrinsic pathway) or via antagonising activation of pro-inflammatory cytokine signalling (extrinsic pathway), in doing so IGF2 has emerged as a promising therapeutic molecule to improve islet survival in the immediate post-transplant period. The development of novel biomaterials coated with IGF2 is a promising strategy to achieve this. This review examines the mechanisms mediating islet cell apoptosis in the peri- and post-transplant period and aims to identify the utility of IGF2 to promote islet survival and enhance long-term insulin independence rates within the setting of clinical islet transplantation.
Collapse
|
12
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:308-26. [PMID: 23268651 PMCID: PMC3690094 DOI: 10.1089/ten.teb.2012.0138] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.
Collapse
Affiliation(s)
- Vítor E. Santo
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
13
|
Mouriño V, Cattalini JP, Roether JA, Dubey P, Roy I, Boccaccini AR. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv 2013; 10:1353-65. [PMID: 23777443 DOI: 10.1517/17425247.2013.808183] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Next-generation scaffolds for bone tissue engineering (BTE) should exhibit the appropriate combination of mechanical support and morphological guidance for cell proliferation and attachment while at the same time serving as matrices for sustained delivery of therapeutic drugs and/or biomolecular signals, such as growth factors. Drug delivery from BTE scaffolds to induce the formation of functional tissues, which may need to vary temporally and spatially, represents a versatile approach to manipulating the local environment for directing cell function and/or to treat common bone diseases or local infection. In addition, drug delivery from BTE is proposed to either increase the expression of tissue inductive factors or to block the expression of others factors that could inhibit bone tissue formation. Composite scaffolds which combine biopolymers and bioactive ceramics in mechanically competent 3D structures, including also organic-inorganic hybrids, are being widely developed for BTE, where the affinity and interaction between biomaterials and therapeutic drugs or biomolecular signals play a decisive role in controlling the release rate. AREAS COVERED This review covers current developments and applications of 3D composite scaffolds for BTE which exhibit the added capability of controlled delivery of therapeutic drugs or growth factors. A summary of drugs and biomolecules incorporated in composite scaffolds and approaches developed to combine biopolymers and bioceramics in composites for drug delivery systems for BTE is presented. Special attention is given to identify the main challenges and unmet needs of current designs and technologies for developing such multifunctional 3D composite scaffolds for BTE. EXPERT OPINION One of the major challenges for developing composite scaffolds for BTE is the incorporation of a drug delivery function of sufficient complexity to be able to induce the release patterns that may be necessary for effective osseointegration, vascularization and bone regeneration. Loading 3D scaffolds with different biomolecular agents should produce a codelivery system with different, predetermined release profiles. It is also envisaged that the number of relevant bioactive agents that can be loaded onto scaffolds will be increased, whilst the composite scaffold design should exploit synergistically the different degradation profiles of the organic and inorganic components.
Collapse
Affiliation(s)
- Viviana Mouriño
- University of Buenos Aires, Faculty of Pharmacy, Department of Pharmaceutical Technology , Buenos Aires 956 Junín St, 6th Floor, Buenos Aires CP1113 , Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Castellucci N, Sartor G, Calonghi N, Parolin C, Falini G, Tomasini C. A peptidic hydrogel that may behave as a "Trojan Horse". Beilstein J Org Chem 2013; 9:417-24. [PMID: 23503149 PMCID: PMC3596052 DOI: 10.3762/bjoc.9.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/30/2013] [Indexed: 01/27/2023] Open
Abstract
A physical hydrogel prepared with the low-molecular-weight hydrogelator (LMWHG) CH2(C3H6CO-L-Phe-D-Oxd-OH)2 and water/ethanol mixture was applied as a potential “Trojan Horse” carrier into cells. By SEM and XRD analysis we could demonstrate that a fibrous structure is present in the xerogel, making a complex network. The gelator is derived from α-amino acids (Thr, Phe) and a fatty acid (azelaic acid) and is biocompatible: it was dosed to IGROV-1 cells, which internalized it, without significantly affecting the cell proliferation. To check the internalization process by confocal microscopy, fluorescent hydrogels were prepared, introducing the fluorescent dansyl moiety into the mixture.
Collapse
Affiliation(s)
- Nicola Castellucci
- Dipartimento di Chimica "Ciamician", Università di Bologna, Via Selmi 2, I-40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Parsons XH. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine. ACTA ACUST UNITED AC 2013. [PMID: 24926434 PMCID: PMC4051304 DOI: 10.9734/bbj/2013/4309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting nuclear translocation of the neuronal specific transcription factor Nurr-1. Similarly, nicotinamide was rendered sufficient to induce the specification of cardiomesoderm direct from the pluripotent state of hESCs by promoting the expression of the earliest cardiac-specific transcription factor Csx/Nkx2.5 and triggering progression to cardiac precursors and beating cardiomyocytes with high efficiency. This technology breakthrough enables direct conversion of pluripotent hESCs into a large supply of high purity neuronal cells or heart muscle cells with adequate capacity to regenerate CNS neurons and contractile heart muscles for developing safe and effective stem cell therapies. Transforming pluripotent hESCs into fate-restricted therapy derivatives dramatically increases the clinical efficacy of graft-dependent repair and safety of hESC-derived cellular products. Such milestone advances and medical innovations in hESC research allow generation of a large supply of clinical-grade hESC therapy derivatives targeting for major health problems, bringing cell-based regenerative medicine to a turning point.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA. ; Xcelthera, San Diego, CA 92109, USA
| |
Collapse
|
16
|
Parsons XH. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine. ACTA ACUST UNITED AC 2013; 3:424-457. [PMID: 24926434 DOI: 10.9734/bbj/2013/4309#sthash.6d8rulbv.dpuf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting nuclear translocation of the neuronal specific transcription factor Nurr-1. Similarly, nicotinamide was rendered sufficient to induce the specification of cardiomesoderm direct from the pluripotent state of hESCs by promoting the expression of the earliest cardiac-specific transcription factor Csx/Nkx2.5 and triggering progression to cardiac precursors and beating cardiomyocytes with high efficiency. This technology breakthrough enables direct conversion of pluripotent hESCs into a large supply of high purity neuronal cells or heart muscle cells with adequate capacity to regenerate CNS neurons and contractile heart muscles for developing safe and effective stem cell therapies. Transforming pluripotent hESCs into fate-restricted therapy derivatives dramatically increases the clinical efficacy of graft-dependent repair and safety of hESC-derived cellular products. Such milestone advances and medical innovations in hESC research allow generation of a large supply of clinical-grade hESC therapy derivatives targeting for major health problems, bringing cell-based regenerative medicine to a turning point.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA. ; Xcelthera, San Diego, CA 92109, USA
| |
Collapse
|
17
|
Liu X, Ma L, Liang J, Zhang B, Teng J, Gao C. RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring. Biomaterials 2012; 34:2038-48. [PMID: 23261213 DOI: 10.1016/j.biomaterials.2012.11.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/29/2012] [Indexed: 12/24/2022]
Abstract
Scar inhibition of dermal equivalent is one of the key issues for treatment of full thickness skin defects. To yield a bioactive RNAi functionalized matrix for skin regeneration with inhibited scarring, collagen-chitosan/silicone membrane bilayer dermal equivalent (BDE) was combined with trimetylchitosan (TMC)/siRNA complexes which could induce suppression of transforming growth factor-β1 (TGF-β1) pathway. The RNAi-BDE functioned as a reservoir for the incorporated TMC/siRNA complexes, enabling a prolonged siRNA release. The seeded fibroblasts in the RNAi-BDE showed good viability, internalized the TMC/siRNA complexes effectively and suppressed TGF-β1 expression constantly until 14 d. Application of the RNAi-BDE on the full-thickness skin defects of pig backs confirmed the in vivo inhibition of TGF-β1 expression by immunohistochemistry, real-time quantitative PCR and western blotting during 30 d post surgery. The levels of other scar-related factors such as collagen type I, collagen type III and α-smooth muscle actin (α-SMA) were also down-regulated. In combination with the ultra-thin skin graft transplantation for 73 d, the regenerated skin by RNAi-BDE had an extremely similar structure to that of the normal one. Our study reflects the latest paradigm of tissue engineering by incorporating the emerging biomolecule siRNA. The 3-D scaffolding materials for siRNA delivery may have general implications in generation of bioactive matrix as well.
Collapse
Affiliation(s)
- Xing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
18
|
Guedidi S, Portugal CA, Innocent C, Janot JM, Deratani A, Crespo JG. Fluorescence monitoring of trypsin adsorption in layer-by-layer membrane systems. Enzyme Microb Technol 2012; 51:325-33. [DOI: 10.1016/j.enzmictec.2012.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/21/2012] [Accepted: 07/27/2012] [Indexed: 01/06/2023]
|
19
|
Underhill GH, Peter G, Chen CS, Bhatia SN. Bioengineering Methods for Analysis of Cells In Vitro. Annu Rev Cell Dev Biol 2012; 28:385-410. [DOI: 10.1146/annurev-cellbio-101011-155709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Galie Peter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sangeeta N. Bhatia
- Division of Health Sciences and Technology,
- Department of Electrical Engineering and Computer Science,
- The Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Bonani W, Motta A, Migliaresi C, Tan W. Biomolecule gradient in micropatterned nanofibrous scaffold for spatiotemporal release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13675-13687. [PMID: 22950580 PMCID: PMC3648342 DOI: 10.1021/la302386u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Controlled molecule release from scaffolds can dramatically increase the scaffold ability of directing tissue regeneration in vitro and in vivo. Crucial to the regeneration is precise regulation over release direction and kinetics of multiple molecules (small genes, peptides, or larger proteins). To this end, we developed gradient micropatterns of electrospun nanofibers along the scaffold thickness through programming the deposition of heterogeneous nanofibers of poly(ε-caprolactone) (PCL) and poly(D,L-lactide-co-glycolide) acid (PLGA). Confocal images of the scaffolds containing fluorophore-impregnated nanofibers demonstrated close matching of actual and designed gradient fiber patterns; thermal analyses further showed their matching in the composition. Using acid-terminated PLGA (PLGAac) and ester-terminated PLGA (PLGAes) to impregnate molecules in the PCL-PLGA scaffolds, we demonstrated for the first time their differences in nanofiber degeneration and molecular weight change during degradation. PLGAac nanofibers were more stable with gradual and steady increase in the fiber diameter during degradation, resulting in more spatially confined molecule delivery from PCL-PLGA scaffolds. Thus, patterns of PCL-PLGAac nanofibers were used to design versatile controlled delivery scaffolds. To test the hypothesis that molecule-impregnated PLGAac in the gradient-patterned PCL-PLGAac scaffolds can program various modalities of molecule release, model molecules, including small fluorophores and larger proteins, were respectively used for time-lapse release studies. Gradient-patterns were used as building blocks in the scaffolds to program simultaneous release of one or multiple proteins to one side or, respectively, to the opposite sides of scaffolds for up to 50 days. Results showed that the separation efficiency of molecule delivery from all the scaffolds with a thickness of 200 μm achieved >88% for proteins and >82% for small molecules. In addition to versatile spatially controlled delivery, micropatterns were designed to program sequential release of proteins. The hierarchically structured materials presented here may enable development of novel multifunctional scaffolds with defined 3D dynamic microenvironments for tissue regeneration.
Collapse
Affiliation(s)
- Walter Bonani
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department of Materials Engineering and Industrial Technologies, BioTech Research Center and INSTM Research Unit, University of Trento, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, 38100, Italy
| | - Antonella Motta
- Department of Materials Engineering and Industrial Technologies, BioTech Research Center and INSTM Research Unit, University of Trento, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, 38100, Italy
| | - Claudio Migliaresi
- Department of Materials Engineering and Industrial Technologies, BioTech Research Center and INSTM Research Unit, University of Trento, and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, 38100, Italy
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Departments of Pediatrics and Bioengineering, University of Colorado at Denver, Aurora, Colorado 80045, United States
| |
Collapse
|
21
|
Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (Lond) 2012; 7:1045-66. [DOI: 10.2217/nnm.12.78] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.
Collapse
Affiliation(s)
- Vítor E Santo
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Manuela E Gomes
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - João F Mano
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group - Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| |
Collapse
|
22
|
Santo VE, Gomes ME, Mano JF, Reis RL. Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. J Tissue Eng Regen Med 2012; 6 Suppl 3:s47-59. [PMID: 22684916 DOI: 10.1002/term.1519] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/06/2012] [Indexed: 12/12/2022]
Abstract
In this study, a new formulation of nanoparticles (NPs) based on the electrostatic interaction between chitosan and chondroitin sulphate (CH-CS NPs) is proposed for the controlled release of proteins and growth factors (GFs), specifically platelet lysates (PLs). These nanoparticulate carriers are particularly promising for protein entrapment because the interactions between the polysaccharides and the entrapped proteins mimic the interactions between chondroitin sulphate and proteins in the native extracellular matrix (ECM). Spherical non-cytotoxic NPs were successfully produced, exhibiting high encapsulation efficiency for physiological levels of GFs and a controlled protein release profile for > 1 month. Moreover, it was also observed that these NPs can be uptaken by human adipose-derived stem cells (hASCs), depending on the concentration of NPs in the culture medium and incubation time. This shows the versatility of the developed NPs, which, besides acting as a protein delivery system, can also be used in the future as intracellular carriers for bioactive agents, such as nucleotides. When the PL-loaded NPs were used as a replacement of bovine serum for in vitro hASCs culture, the viability and proliferation of hASCs was not compromised. The release of PLs from CH-CS NPs also proved to be effective for the enhancement of in vitro osteogenic differentiation of hASCs, as shown by the increased levels of mineralization, suggesting not only the effective role of the delivery system but also the role of PLs as an osteogenic supplement for bone tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Vítor E Santo
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Ave Park, Guimarães, Portugal
| | | | | | | |
Collapse
|
23
|
Demirbag B, Huri PY, Kose GT, Buyuksungur A, Hasirci V. Advanced cell therapies with and without scaffolds. Biotechnol J 2012; 6:1437-53. [PMID: 22162495 DOI: 10.1002/biot.201100261] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue engineering and regenerative medicine aim to produce tissue substitutes to restore lost functions of tissues and organs. This includes cell therapies, induction of tissue/organ regeneration by biologically active molecules, or transplantation of in vitro grown tissues. This review article discusses advanced cell therapies that make use of scaffolds and scaffold-free approaches. The first part of this article covers the basic characteristics of scaffolds, including characteristics of scaffold material, fabrication and surface functionalization, and their applications in the construction of hard (bone and cartilage) and soft (nerve, skin, blood vessel, heart muscle) tissue substitutes. In addition, cell sources as well as bioreactive agents, such as growth factors, that guide cell functions are presented. The second part in turn, examines scaffold-free applications, with a focus on the recently discovered cell sheet engineering. This article serves as a good reference for all applications of advanced cell therapies and as well as advantages and limitations of scaffold-based and scaffold-free strategies.
Collapse
Affiliation(s)
- Birsen Demirbag
- METU, Department of Biotechnology, Biotechnology Research Unit, Ankara, Turkey
| | | | | | | | | |
Collapse
|
24
|
Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U. Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 2012; 1:149-158. [PMID: 23184717 PMCID: PMC3774531 DOI: 10.1002/adhm.201200011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/08/2012] [Indexed: 01/30/2023]
Abstract
Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications.
Collapse
Affiliation(s)
- Umut Atakan Gurkan
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Savas Tasoglu
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Doga Kavaz
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| | - Melik C Demirel
- Materials Research Institute Pennsylvania State University University Park, PA 16802, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory Center for Bioengineering Brigham and Women's Hospital Harvard Medical School Boston, MA 02115, USA
| |
Collapse
|
25
|
Pires LR, Oliveira H, Barrias CC, Sampaio P, Pereira AJ, Maiato H, Simões S, Pêgo AP. Imidazole-grafted chitosan-mediated gene delivery: in vitro study on transfection, intracellular trafficking and degradation. Nanomedicine (Lond) 2011; 6:1499-512. [PMID: 22011312 DOI: 10.2217/nnm.11.51] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To study the mechanism of transfection mediated by imidazole-grafted chitosan (CHimi) nanoparticles, to propose new strategies to control and improve the expression of a delivered gene in the context of regenerative medicine. METHODS Biochemical and microscopy methods were used to establish transfection efficiency and nanoparticle intracellular trafficking. The role of CHimi and degree of N-acetylation (DA) on transfection was explored. RESULTS CHimi was found to promote the expression of a delivered gene during a minimum 7-day period. Additionally, the production of a protein of interest could be upheld by consecutive transfections, without compromising cell viability. Transfection was found to be a time-dependent process, requiring CHimi-DNA complex disassembling. The DA was found to have an impact on transfection kinetics in line with the observation that the rate of lysozyme-mediated nanoparticle degradation increases with the polymer DA. CONCLUSION The adjustment of the CH degradation rate can be used as a tool for tuning the expression of a gene delivered by CH-based nanoparticle systems.
Collapse
Affiliation(s)
- Liliana R Pires
- Instituto de Engenharia Biomédica, Divisão de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pulavendran S, Thiyagarajan G. Three-dimensional scaffold containing EGF incorporated biodegradable polymeric nanoparticles for stem cell based tissue engineering applications. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-009-3155-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 2011; 32:4793-805. [PMID: 21489619 DOI: 10.1016/j.biomaterials.2011.03.041] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 03/10/2011] [Indexed: 01/03/2023]
Abstract
Engineering complex tissues is important but difficult to achieve in tissue regeneration. Osteochondral tissue engineering for the repair of osteochondral defect, involving simultaneous regeneration of bone and cartilage, has attracted considerable attention and also serves as an optimal model system for developing effective strategies aimed at regenerating complex tissues. In the present study, we formulated a bilayered gene-activated osteochondral scaffold consisting of plasmid TGF-β1-activated chitosan-gelatin scaffold for chondrogenic layer and plasmid BMP-2-activated hydroxyapatite/chitosan-gelatin scaffold for osteogenic layer. Mesenchymal stem cells seeded in each layer of the bilayered gene- activated osteochondral scaffold showed significant cell proliferation, high expression of TGF-β1 protein and BMP-2 protein respectively. The results showed that spatially controlled and localized gene delivery system in the bilayered integrated scaffolds could induce the mesenchymal stem cells in different layers to differentiate into chondrocytes and osteoblasts in vitro, respectively, and simultaneously support the articular cartilage and subchondral bone regeneration in the rabbit knee ostochondral defect model. This study gives the evidence that multi-tissue regeneration through the combination of biomimetic and multi-phasic scaffold design, spatially controlled and localized gene delivery system and multi-lineage differentiation of a single stem cell population represents a promising strategy for facilitating the development of complex tissue or organ systems.
Collapse
Affiliation(s)
- Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sreejalekshmi KG, Nair PD. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response. J Biomed Mater Res A 2010; 96:477-91. [PMID: 21171167 DOI: 10.1002/jbm.a.32980] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/09/2010] [Indexed: 12/16/2022]
Abstract
Biomimetic and bioactive biomaterials are desirable as tissue engineering scaffolds by virtue of their capability to mimic natural environments of the extracellular matrix. Biomimeticity has been achieved by the incorporation of synthetic short peptide sequences into suitable materials either by surface modification or by bulk incorporation. Research in this area has identified several novel synthetic peptide segments, some of them with cell-specific interactions, which may serve as potential candidates for use in explicit tissue applications. This review focuses on the developments and prospective directions of incorporating short synthetic peptide sequences onto scaffolds for tissue engineering, with emphasis on the chemistry of peptide immobilization and subsequent cell responses toward modified scaffolds. The article provides a decision-tree-type flow chart indicating the most probable cellular events on a given peptide-modified scaffold along with the consolidated list of synthetic peptide sequences, supports as well as cell types used in various tissue engineering studies, and aims to serve as a quick reference guide to peptide chemists and material scientists interested in the field.
Collapse
Affiliation(s)
- Kumaran G Sreejalekshmi
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace, Poojapura, Thiruvananthapuram 695 012, Kerala, India, India.
| | | |
Collapse
|
29
|
Santo VE, Duarte ARC, Gomes ME, Mano JF, Reis RL. Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. J Supercrit Fluids 2010. [DOI: 10.1016/j.supflu.2010.05.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 2010; 5:469-84. [PMID: 20394538 DOI: 10.2217/nnm.10.12] [Citation(s) in RCA: 624] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell-cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine.
Collapse
Affiliation(s)
- Hikmet Geckil
- Health Sciences and Technology, Harvard-MIT Health Sciences and Technology, Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, 65 Landsdowne St., #267, 02139 Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
31
|
Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2010; 25:1539-60. [PMID: 19824042 DOI: 10.1002/btpr.246] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included.
Collapse
Affiliation(s)
- Joshua R Porter
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
32
|
Lentivirus immobilization to nanoparticles for enhanced and localized delivery from hydrogels. Mol Ther 2010; 18:700-6. [PMID: 20051940 DOI: 10.1038/mt.2009.300] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hydrogels can provide a controllable cell microenvironment for numerous applications in regenerative medicine, and delivery of gene therapy vectors can be employed to enhance their bioactivity. We investigated the delivery of lentiviral vectors from hydrogels, and employed the immobilization of lentivirus to hydroxylapatite (HA) nanoparticles as a means to retain and stabilize vectors within hydrogels, and thereby increase delivery efficiency. Entrapment of the vector alone within the hydrogel maintained the activity of the virus more effectively compared to the absence of a hydrogel, and release was slowed with an increasing solid content of the hydrogel. Association of the lentivirus with HA increased the activity of the complexes, with HA increasing the virus activity for 72 hours. Cells seeded onto lentivirus-HA-loaded hydrogels had a decreased number of infected cells outside of the hydrogel relative to the absence of HA. In vivo studies with collagen hydrogels loaded with lentivirus and HA-lentivirus demonstrated sustained and localized transgene expression for at least 4 weeks, with increased expression using the lentivirus-HA complex. This strategy of nanoparticle immobilization to stabilize and retain vectors is broadly applicable to hydrogels, and may provide a versatile tool to combine gene therapy and biomaterials for applications in regenerative medicine.
Collapse
|
33
|
Yoon SJ, Fang YH, Lim CH, Kim BS, Son HS, Park Y, Sun K. Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J Biomed Mater Res B Appl Biomater 2009; 91:163-71. [PMID: 19399850 DOI: 10.1002/jbm.b.31386] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An injectable hydrogel was applied to regenerate a myocardial infarction and functional recovery of the heart. A myocardial infarction was induced in rat by circumflex artery ligation. A hyaluronic acid-based hydrogel was injected into the epicardium of the infarcted area. Then, cardiac functions and regeneration of the myocardium in sham-operated (SHAM), myocardial infarction (MI), and gel-injected group (GEL) (n = 6) were evaluated 4 weeks after the injection. Measurements of the thickness of the wall showed that the thickness in the GEL group increased by up to 200% compared with that in the MI group (p < 0.001). The infarcted area of the left ventricular in the GEL group decreased by 53% compared with the MI group (p < 0.001). The number of arterioles and capillaries in the border zone of the GEL group increased by 152% and 148%, whereas the apoptotic index decreased by 42% (p < 0.05). Measurement of the heart functions, such as ejection fraction, arterial elastance (Ea), dP/dt max, and dP/dt min, indicated that the injection of a hydrogel significantly facilitated the functional recovery compared with the MI group. Because of its simplicity, easy applicability, and a great regenerating potential, this injectable hydrogel promises as a treatment for myocardial infarction.
Collapse
Affiliation(s)
- So Jeong Yoon
- Department of Biomedical Engineering, Biomedical Science of Brain Korea 21, Medical College, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Polysaccharide/polyaminoacid composite scaffolds for modified DNA release. Int J Pharm 2009; 382:7-14. [DOI: 10.1016/j.ijpharm.2009.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 11/23/2022]
|
35
|
Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci 2009; 16:108. [PMID: 19939265 PMCID: PMC2790452 DOI: 10.1186/1423-0127-16-108] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 11/25/2009] [Indexed: 01/27/2023] Open
Abstract
Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.
Collapse
Affiliation(s)
- Anuradha Subramanian
- Center for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India.
| | | | | |
Collapse
|
36
|
Naskar J, Palui G, Banerjee A. Tetrapeptide-Based Hydrogels: for Encapsulation and Slow Release of an Anticancer Drug at Physiological pH. J Phys Chem B 2009; 113:11787-92. [DOI: 10.1021/jp904251j] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jishu Naskar
- Indian Association for the Cultivation of Science, Biological Chemistry Department, Jadavpur, Kolkata-700032, India
| | - Goutam Palui
- Indian Association for the Cultivation of Science, Biological Chemistry Department, Jadavpur, Kolkata-700032, India
| | - Arindam Banerjee
- Indian Association for the Cultivation of Science, Biological Chemistry Department, Jadavpur, Kolkata-700032, India
| |
Collapse
|
37
|
Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 2009; 6:851-64. [DOI: 10.1517/17425240903044935] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Giordano C, Causa F, Bianco F, Perale G, Netti PA, Ambrosio L, Cigada A. Gene delivery systems for gene therapy in tissue engineering and central nervous system applications. Int J Artif Organs 2009; 31:1017-26. [PMID: 19115193 DOI: 10.1177/039139880803101205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present review aims to describe the potential applications of gene delivery systems to tissue engineering and central nervous system diseases. Some key experimental work has been done with interesting results, but the subject is far from being fully explored. The combined approach of gene therapy and material science has a huge potential to improve the therapeutic approaches now available for a wide range of medical applications. Focus is given to this multidisciplinary strategy in neurodegenerative pathologies, where the use of polymeric matrices as gene carriers might make a crucial difference.
Collapse
Affiliation(s)
- C Giordano
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Joung YK, Bae JW, Park KD. Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opin Drug Deliv 2009; 5:1173-84. [PMID: 18976129 DOI: 10.1517/17425240802431811] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The strategy of growth factor delivery to specific sites for therapeutic applications has been considered an essential process in biomedical fields despite some obstacles, such as a non-controlled release with initial burst. This article focuses on particulate systems using heparin for the controlled delivery of heparin-binding growth factors (HBGFs), an emerging area in the tissue engineering field. Since heparin has been widely utilized for growth factor delivery due to its electrostatic nature and specific affinity with HBGFs, heparin-containing polymeric particulates can be utilized as functional carriers to deliver growth factors in a controlled manner. In particular, examples of the HBGF delivery systems containing heparin, perspectives and potential applications are described and discussed.
Collapse
Affiliation(s)
- Yoon Ki Joung
- Ajou University, Department of Molecular Science and Technology, 5 Wonchon, Yeoungtong, Suwon 443-749, Republic of Korea
| | | | | |
Collapse
|
40
|
Quaglia F. Bioinspired tissue engineering: The great promise of protein delivery technologies. Int J Pharm 2008; 364:281-97. [DOI: 10.1016/j.ijpharm.2008.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
|
41
|
Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:61-86. [PMID: 18454635 DOI: 10.1089/teb.2007.0150] [Citation(s) in RCA: 703] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traditional methods of cell growth and manipulation on 2-dimensional (2D) surfaces have been shown to be insufficient for new challenges of cell biology and biochemistry, as well as in pharmaceutical assays. Advances in materials chemistry, materials fabrication and processing technologies, and developmental biology have led to the design of 3D cell culture matrices that better represent the geometry, chemistry, and signaling environment of natural extracellular matrix. In this review, we present the status of state-of-the-art 3D cell-growth techniques and scaffolds and analyze them from the perspective of materials properties, manufacturing, and functionality. Particular emphasis was placed on tissue engineering and in vitro modeling of human organs, where we see exceptionally strong potential for 3D scaffolds and cell-growth methods. We also outline key challenges in this field and most likely directions for future development of 3D cell culture over the period of 5-10 years.
Collapse
Affiliation(s)
- Jungwoo Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
42
|
Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008; 60:229-42. [PMID: 18031864 DOI: 10.1016/j.addr.2007.08.038] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 08/09/2007] [Indexed: 11/15/2022]
Abstract
The concept of tissue and cell guidance is rapidly evolving as more information regarding the effect of the microenvironment on cellular function and tissue morphogenesis become available. These disclosures have lead to a tremendous advancement in the design of a new generation of multifunctional biomaterials able to mimic the molecular regulatory characteristics and the three-dimensional architecture of the native extracellular matrix. Micro- and nano-structured scaffolds able to sequester and deliver in a highly specific manner biomolecular moieties have already been proved to be effective in bone repairing, in guiding functional angiogenesis and in controlling stem cell differentiation. Although these platforms represent a first attempt to mimic the complex temporal and spatial microenvironment presented in vivo, an increased symbiosis of material engineering, drug delivery technology and cell and molecular biology may ultimately lead to biomaterials that encode the necessary signals to guide and control developmental process in tissue- and organ-specific differentiation and morphogenesis.
Collapse
Affiliation(s)
- Marco Biondi
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | | | | | | |
Collapse
|
43
|
De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59:292-307. [PMID: 17512630 PMCID: PMC1949490 DOI: 10.1016/j.addr.2007.03.017] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 03/28/2007] [Indexed: 12/13/2022]
Abstract
Regenerative medicine aims to create functional tissue replacements, typically through creating a controlled environment that promotes and directs the differentiation of stem or progenitor cells, either endogenous or transplanted. Scaffolds serve a central role in many strategies by providing the means to control the local environment. Gene delivery from the scaffold represents a versatile approach to manipulating the local environment for directing cell function. Research at the interface of biomaterials, gene therapy, and drug delivery has identified several design parameters for the vector and the biomaterial scaffold that must be satisfied. Progress has been made towards achieving gene delivery within a tissue engineering scaffold, though the design principles for the materials and vectors that produce efficient delivery require further development. Nevertheless, these advances in obtaining transgene expression with the scaffold have created opportunities to develop greater control of either delivery or expression and to identify the best practices for promoting tissue formation. Strategies to achieve controlled, localized expression within the tissue engineering scaffold will have broad application to the regeneration of many tissues, with great promise for clinical therapies.
Collapse
Affiliation(s)
- Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University Chicago, IL 60611
| |
Collapse
|
44
|
Chung HJ, Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 2007; 59:249-62. [PMID: 17482310 DOI: 10.1016/j.addr.2007.03.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 03/28/2007] [Indexed: 01/08/2023]
Abstract
A wide range of polymeric scaffolds have been intensively studied for use as implantable and temporal devices in tissue engineering. Biodegradable and biocompatible scaffolds having a highly open porous structure and good mechanical strength are needed to provide an optimal microenvironment for cell proliferation, migration, and differentiation, and guidance for cellular in-growth from host tissue. A variety of natural and synthetic polymeric scaffolds can be fabricated in the form of a solid foam, nanofibrous matrix, microsphere, or hydrogel. Biodegradable porous scaffolds can be surface engineered to provide an extracellular matrix mimicking environment for better cell adhesion and tissue in-growth. Furthermore, scaffolds can be designed to release bioactive molecules, such as growth factors, DNA, or drugs, in a sustained manner to facilitate tissue regeneration. This paper reviews the current status of surface engineered and drug releasing scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | |
Collapse
|
45
|
Wieland JA, Houchin-Ray TL, Shea LD. Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J Control Release 2007; 120:233-41. [PMID: 17582640 PMCID: PMC2648399 DOI: 10.1016/j.jconrel.2007.04.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/16/2007] [Accepted: 04/23/2007] [Indexed: 11/17/2022]
Abstract
Hydrogels have been widely used in tissue engineering as a support for tissue formation or to deliver non-viral gene therapy vectors locally. Hydrogels that combine these functionalities can provide a fundamental tool to promote specific cellular processes leading to tissue formation. This report investigates controlled release of gene therapy vectors from hydrogels as a function of the physical properties for both the hydrogel and the vector. Hydrogels were formed by photocrosslinking acryl-modified hyaluronic acid (HA) with a 4-arm poly(ethylene glycol) (PEG) acryl. The polymer content, and relative composition of HA and PEG modulated the swelling ratio, water content, and degradation, which can influence transport of the vector through the hydrogel. All hydrogels had a water content of 94% or higher, though the water content and swelling ratio increased with a decrease in the PEG:HA ratio. Plasmids were stably incorporated into the hydrogel, with a majority of the release occurring during the initial 2 days. For incubation in buffer, the cumulative release increased with a decreasing PEG or increasing HA content, with approximately 20% to 80% released during the first week depending on the hydrogel composition. Hydrogels incubated in hyaluronidase, an enzyme that degrades HA, significantly increased plasmid release for hydrogels containing 4% PEG and 4% HA-Acryl. The encapsulation of plasmid complexed with polyethylenimine had less than 14% of the complexes released from the hydrogel both in the presence and absence of hyaluronidase. The limited release of the complexes likely results from the complex size and interactions between the vector and hydrogel. These studies demonstrate the dependence of non-viral vector release on the physical properties of the hydrogel and the vector, suggesting vector and hydrogel designs for maximizing localized delivery of non-viral vectors.
Collapse
Affiliation(s)
- Julie A. Wieland
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Tiffany L. Houchin-Ray
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University Chicago, IL 60611, United States
- Corresponding author. Northwestern University Department of Chemical and Biological Engineering 2145 Sheridan Rd./E156 Evanston, IL 60208-3120, United States. Tel.: +1 847 491 7043; fax: +1 847 491 3728. E-mail address: (L.D. Shea)
| |
Collapse
|