1
|
Sharma S, Rahman S, Becker MZ, Pelah MG, Berkovich R, Popa I. The Influence of DNA Handles on the Mechanical Response of Single Protein Molecules. Biomacromolecules 2025. [PMID: 40359487 DOI: 10.1021/acs.biomac.5c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The mechanical response of proteins to force is governed by their chain stiffness, molecular length, and domain segmentation and can be influenced by unstructured tethers in series with the molecule. Here, we investigate the effect of DNA linkers on the mechanical unfolding of proteins. These tethers are extensively used in single-molecule techniques as spacing handles or calibration standards. We designed two DNA-protein constructs made from covalently cross-linked DNA molecules having 604 bp and 3 kbp in series with eight repeats of bacterial protein L, and compared them with the protein L construct lacking any DNA linker. Using magnetic tweezers, we measured the unfolding dynamics and folding likelihood of protein L connected in series with these DNA linkers. Our findings indicate that stiff DNA linkers do not significantly alter the unfolding kinetics of the tethered protein, while a longer handle slightly increases the force required for refolding. We rationalize our measurements using an energy profile model projected on the pulling end-to-end reaction coordinate. Furthermore, we analyze how the tension is being transmitted along the protein-DNA construct as a function of its size. We conclude that the small differences induced by the presence of DNA linkers in single-molecule measurements are insignificant, given the current instrumental capabilities.
Collapse
Affiliation(s)
- Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Sadia Rahman
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Mattan Ze'ev Becker
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 1 Beer Sheva Blvd, Beer Sheva 8410501, Israel
| | - Maya Georgia Pelah
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 1 Beer Sheva Blvd, Beer Sheva 8410501, Israel
| | - Ronen Berkovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 1 Beer Sheva Blvd, Beer Sheva 8410501, Israel
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
2
|
Szoszkiewicz R. Viscoelasticity of a single poly-protein probed step-by-step during its mechanical unfolding and refolding under the force-clamp conditions. RSC Adv 2025; 15:2717-2726. [PMID: 39871968 PMCID: PMC11770416 DOI: 10.1039/d4ra08047e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
One of still outstanding issues in protein folding is to be able to directly observe structural changes occurring along the folding pathway. Herein, we report on changes of the viscoelastic properties for a single protein molecule measured along its mechanically-induced unfolding and refolding trajectories. We use a model system, the I27 poly-protein, and investigate its conformational changes via force-clamp AFM (FC-AFM) spectroscopy. Typically only protein's length and force have been measured using this approach. By applying Euler-Bernoulli model of the AFM cantilever with properly accounted hydrodynamic damping we show how to access - from the same measurements - related changes of two additional observables such as molecular stiffness and molecular friction coefficient. Our results are compared to recent analytical models and experimental results. These findings are expected to lead to proper identification of the intermediate folding states from the knowledge of their mechanical properties.
Collapse
Affiliation(s)
- Robert Szoszkiewicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
3
|
Das D, Mukhopadhyay S. Molecular Origin of Internal Friction in Intrinsically Disordered Proteins. Acc Chem Res 2022; 55:3470-3480. [PMID: 36346711 DOI: 10.1021/acs.accounts.2c00528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein folding and dynamics are controlled by an interplay of thermal and viscosity effects. The effect of viscous drag through the solvent molecules is described by the classic Kramers theory in the high friction limit, which considers the dampening of the reactant molecules in the solution and quantifies the dependence of the reaction rate on the frictional drag. In addition to the external energy dissipation originating from the surrounding solvent molecules, there is an additional mode of internal energy dissipative force operative within the polypeptide chain reflecting the internal resistance of the chain to its conformational alterations. This dry, solvent-independent intrinsic frictional drag is termed internal friction. In the case of natively folded proteins, the physical origin of internal friction is primarily attributed to the intrachain interactions or other nonnative interactions in their compact states. However, the molecular origin of internal friction in intrinsically disordered proteins (IDPs) remains elusive.In this Account, we address this fundamental issue: what are the principal drivers of viscosity-independent (dry) friction in highly solvated, expanded, conformationally flexible, rapidly fluctuating IDPs that do not possess persistent intrachain interactions? IDPs exhibit diffusive conformational dynamics that is predominantly dominated by the segmental motion of the backbone arising due to the dihedral rotations in the Ramachandran Φ-Ψ space. The physical origin of friction in a complex biopolymeric system such as IDPs can be described by classic polymer models, namely, Rouse/Zimm models with internal friction. These one-dimensional models do not invoke torsional fluctuation components. Kuhn's classic description includes the connection between internal friction and microscopic dihedral hopping. Based on our time-resolved fluorescence anisotropy results, we describe that the sequence-dependent, collective, short-range backbone dihedral rotations govern localized internal friction in an archetypal IDP, namely, α-synuclein. The highly sensitive, residue-specific fluorescence depolarization kinetics offers a potent methodology to characterize and quantify the directional decorrelation engendered due to the short-range dihedral relaxation of the polypeptide backbone in the dihedral space. We utilized this characteristic relaxation time scale as our dynamic readout to quantify the site-specific frictional component. Our linear viscosity-dependent model of torsional relaxation time scale furnished a finite nonzero time constant at the zero solvent viscosity representing the solvent-independent internal friction. These results unveil the effect of the degree of dihedral restraining parameter on the internal friction component by showing that a restrained proline residue imparts higher torsional stiffness in the chain segments and, therefore, exhibits higher internal friction. This Account sheds light on the molecular underpinning of the sequence-specific internal friction in IDPs and will be of interest to unmask the role of internal friction in a diverse range of biomolecular processes involving binding-induced folding, allosteric interaction, protein misfolding and aggregation, and biomolecular condensation via phase separation.
Collapse
Affiliation(s)
- Debapriya Das
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
4
|
Deopa SPS, Rajput SS, Kumar A, Patil S. Direct and Simultaneous Measurement of the Stiffness and Internal Friction of a Single Folded Protein. J Phys Chem Lett 2022; 13:9473-9479. [PMID: 36198174 DOI: 10.1021/acs.jpclett.2c02257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The nanomechanical response of a folded single protein, the natural nanomachine responsible for myriad biological processes, provides insight into its function. The conformational flexibility of a folded state, characterized by its viscoelasticity, allows proteins to adopt different shapes to perform their function. Despite efforts, its direct measurement has not been possible so far. We present a direct and simultaneous measurement of the stiffness and internal friction of the folded domains of the protein titin using a special interferometer based atomic force microscope. We analyzed the data by carefully separating different contributions affecting the response of the experimental probe to obtain the folded state's viscoelasticity. Above ∼95 pN of force, the individual immunoglobulins of titin transition from an elastic solid-like native state to a soft viscoelastic intermediate.
Collapse
Affiliation(s)
- Surya Pratap S Deopa
- Department of Physics, Indian Institute of Science Education & Research, Pune411008, Maharashtra, India
| | - Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education & Research, Pune411008, Maharashtra, India
| | - Aadarsh Kumar
- Department of Physics, Indian Institute of Science Education & Research, Pune411008, Maharashtra, India
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education & Research, Pune411008, Maharashtra, India
| |
Collapse
|
5
|
Stirnemann G. Molecular interpretation of single-molecule force spectroscopy experiments with computational approaches. Chem Commun (Camb) 2022; 58:7110-7119. [PMID: 35678696 DOI: 10.1039/d2cc01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single molecule force-spectroscopy techniques have granted access to unprecedented molecular-scale details about biochemical and biological mechanisms. However, the interpretation of the experimental data is often challenging. Computational and simulation approaches (all-atom steered MD simulations in particular) are key to provide molecular details about the associated mechanisms, to help test different hypotheses and to predict experimental results. In this review, particular recent efforts directed towards the molecular interpretation of single-molecule force spectroscopy experiments on proteins and protein-related systems (often in close collaboration with experimental groups) will be presented. These results will be discussed in the broader context of the field, highlighting the recent achievements and the ongoing challenges for computational biophysicists and biochemists. In particular, I will focus on the input gained from molecular simulations approaches to rationalize the origin of the unfolded protein elasticity and the protein conformational behavior under force, to understand how force denaturation differs from chemical, thermal or shear unfolding, and to unravel the molecular details of unfolding events for a variety of systems. I will also discuss the use of models based on Langevin dynamics on a 1-D free-energy surface to understand the effect of protein segmentation on the work exerted by a force, or, at the other end of the spectrum of computational techniques, how quantum calculations can help to understand the reactivity of disulfide bridges exposed to force.
Collapse
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
6
|
Das D, Arora L, Mukhopadhyay S. Short-Range Backbone Dihedral Rotations Modulate Internal Friction in Intrinsically Disordered Proteins. J Am Chem Soc 2022; 144:1739-1747. [DOI: 10.1021/jacs.1c11236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Debapriya Das
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| |
Collapse
|
7
|
Ranganathan P, Chen CW, Rwei SP. Highly Stretchable Fully Biomass Autonomic Self-Healing Polyamide Elastomers and Their Foam for Selective Oil Absorption. Polymers (Basel) 2021; 13:3089. [PMID: 34577990 PMCID: PMC8468103 DOI: 10.3390/polym13183089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Renewable polymers with self-healing ability, excellent elongation, hydrophobicity, and selective oil absorption attributes are of interest for an extensive range of applications, such as e-skin, soft robots, wearable devices, and cleaning up oil spills. Herein, two fully renewable eco-friendly polyamide (PA)-based self-healing elastomers (namely, PA36,IA, and PA36,36) were prepared by a facile and green one-pot melt polycondensation of itaconic acid (IA), PripolTM 1009, and PriamineTM 1075 monomers. The molecular structures of these PAs were analyzed by FITR, 1H NMR, and 13C NMR. The distinct structure of these PAs shows superior strain values (above 2300%) and high ambient temperature autonomous self-healing ability. Interestingly, the synthesized renewable PA36,36 showed zero water absorption values and hydrophobic properties with a contact angle of θ = 91° compared to the synthesized PA36,IA and other previously reported PAs. These excellent attributes are due to the low concentration of amide groups, the highly entangled main chains, the intermolecular diffusion, the manifold dangling chains, and the numerous reversible physical bonds within the renewable PAs. Furthermore, the hydrophobic properties may aid in the selective oil absorption of the PA36,36-based foam, for which PA36,36 foam is produced by the green supercritical carbon dioxide (scCO2) batch foaming process. The PA36,36 foam with a microporous cellular structure showed better absorption capacity and high stability in repeated use. Due to these advantages, these bio-based PAs have potential for the production of eco-friendly self-healing materials, superabsorbent foams, and other polymeric materials.
Collapse
Affiliation(s)
| | - Chin-Wen Chen
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei 10608, Taiwan;
| | - Syang-Peng Rwei
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei 10608, Taiwan;
| |
Collapse
|
8
|
Rajput SS, Deopa SPS, Ajith VJ, Kamerkar SC, Patil S. Validity of point-mass model in off-resonance dynamic atomic force microscopy. NANOTECHNOLOGY 2021; 32:405702. [PMID: 34144547 DOI: 10.1088/1361-6528/ac0cb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
The quantitative measurement of viscoelasticity of nano-scale entities is an important goal of nanotechnology research and there is considerable progress with advent of dynamic atomic force microscopy. The hydrodynamics of cantilever, the force sensor in AFM measurements, plays a pivotal role in quantitative estimates of nano-scale viscoelasticity. The point-mass (PM) model, wherein the AFM cantilever is approximated as a point-mass with mass-less spring is widely used in dynamic AFM analysis and its validity, particularly in liquid environments, is debated. It is suggested that the cantilever must be treated as a continuous rectangular beam to obtain accurate estimates of nano-scale viscoelasticity of materials it is probing. Here, we derived equations, which relate stiffness and damping coefficient of the material under investigation to measured parameters, by approximating cantilever as a point-mass and also considering the full geometric details. These equations are derived for both tip-excited as well as base-excited cantilevers. We have performed off-resonance dynamic atomic force spectroscopy on a single protein molecule to investigate the validity of widely used PM model. We performed measurements with AFMs equipped with different cantilever excitation methods as well as detection schemes to measure cantilever response. The data was analyzed using both, continuous beam model and the PM model. We found that both models yield same results when the experiments are performed in truly off-resonance regime with small amplitudes and the cantilever stiffness is much higher than the interaction stiffness. Our findings suggest that a simple PM approximation based model is adequate to describe the dynamics, provided care is taken while performing experiments so that the approximations used in these models are valid.
Collapse
Affiliation(s)
- Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Surya Pratap S Deopa
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - V J Ajith
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sukrut C Kamerkar
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
9
|
Rajput SS, Deopa SPS, Yadav J, Ahlawat V, Talele S, Patil S. The nano-scale viscoelasticity using atomic force microscopy in liquid environment. NANOTECHNOLOGY 2021; 32:085103. [PMID: 33120375 DOI: 10.1088/1361-6528/abc5f3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We measured viscoelasticity of two nanoscale systems, single protein molecules and molecular layers of water confined between solid walls. In order to quantify the viscoelastic response of these nanoscale systems in liquid environment, the measurements are performed using two types of atomic force microscopes (AFMs), which employ different detection schemes to measure the cantilever response. We used a deflection detection scheme, available in commercial AFMs, that measures cantilever bending and a fibre-interferometer based detection which measures cantilever displacement. The hydrodynamics of the cantilever is modelled using Euler-Bernoulli equation with appropriate boundary conditions which accommodate both detection schemes. In a direct contradiction with many reports in the literature, the dissipation coefficient of a single octomer of titin I278 is found to be immeasurably low. The upper bound on the dissipation coefficient is 5 × 10-7 kg s-1, which is much lower than the reported values. The entropic stiffness of single unfolded domains of protein measured using both methods is in the range of 10 mN m-1. We show that in a conventional deflection detection measurement, the phase of the bending signal can be a primary source of artefacts in the dissipation estimates. It is recognized that the measurement of cantilever displacement, which has negligibly small phase lag due to hydrodynamics of the cantilever at low excitation frequencies, is better suited for ensuring artefact-free measurement of viscoelasticity compared to the measurement of the cantilever bending. Further, it was possible to measure dissipation in molecular layers of water confined between the tip and the substrate using fibre interferometer based AFM with similar experimental parameters. It confirms that the dissipation coefficient of a single I278 is below the detection limit of AFM. The results shed light on the discrepancy observed in the measured diffusional dynamics of protein collapse measured using Force spectroscopic techniques and single-molecule optical techniques.
Collapse
Affiliation(s)
- Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Surya Pratap S Deopa
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jyoti Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Vikhyaat Ahlawat
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Saurabh Talele
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
10
|
Elias-Mordechai M, Chetrit E, Berkovich R. Interplay between Viscoelasticity and Force Rate Affects Sequential Unfolding in Polyproteins Pulled at Constant Velocity. Macromolecules 2020; 53:3021-3029. [PMID: 32905266 PMCID: PMC7467765 DOI: 10.1021/acs.macromol.0c00278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Indexed: 11/30/2022]
Abstract
![]()
Polyproteins are
unique constructs, comprised of folded protein
domains in tandem and polymeric linkers. These macromolecules perform
under biological stresses by modulating their response through partial
unfolding and extending. Although these unfolding events are considered
independent, a history dependence of forced unfolding within polyproteins
was reported. Here we measure the unfolding of single poly(I91) octamers,
complemented with Brownian dynamics simulations, displaying increasing
hierarchy in unfolding-foces, accompanied by a decrease in the effective
stiffness. This counters the existing understanding that relates stiffness
with variations in domain size and probe stiffness, which is expected
to reduce the unfolding forces with every consecutive unfolding event.
We utilize a simple mechanistic viscoelastic model to show that two
effects are combined within a sequential forced unfolding process:
the viscoelastic properties of the growing linker chain lead to a
hierarchy of the unfolding events, and force-rate application governs
the unfolding kinetics.
Collapse
Affiliation(s)
- Moran Elias-Mordechai
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Einat Chetrit
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ronen Berkovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.,The Ilze Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
11
|
Liang X, Nakajima K. Investigating the Dynamic Viscoelasticity of Single Polymer Chains using Atomic Force Microscopy. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaobin Liang
- Department of Chemical Science and EngineeringSchool of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2‐12‐1, Meguro‐ku Tokyo 152‐8552 Japan
| | - Ken Nakajima
- Department of Chemical Science and EngineeringSchool of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2‐12‐1, Meguro‐ku Tokyo 152‐8552 Japan
| |
Collapse
|
12
|
Nir G, Chetrit E, Vivante A, Garini Y, Berkovich R. The role of near-wall drag effects in the dynamics of tethered DNA under shear flow. SOFT MATTER 2018; 14:2219-2226. [PMID: 29451293 DOI: 10.1039/c7sm01328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We utilized single-molecule tethered particle motion (TPM) tracking, optimized for studying the behavior of short (0.922 μm) dsDNA molecules under shear flow conditions, in the proximity of a wall (surface). These experiments track the individual trajectories through a gold nanobead (40 nm in radius), attached to the loose end of the DNA molecules. Under such circumstances, local interactions with the wall become more pronounced, manifested through hydrodynamic interactions. To elucidate the mechanical mechanism that affects the statistics of the molecular trajectories of the tethered molecules, we estimate the resting diffusion coefficient of our system. Using this value and our measured data, we calculate the orthogonal distance of the extended DNA molecules from the surface. This calculation considers the hydrodynamic drag effect that emerges from the proximity of the molecule to the surface, using the Faxén correction factors. Our finding enables the construction of a scenario according to which the tension along the chain builds up with the applied shear force, driving the loose end of the DNA molecule away from the wall. With the extension from the wall, the characteristic times of the system decrease by three orders of magnitude, while the drag coefficients decay to a plateau value that indicates that the molecule still experiences hydrodynamic effects due to its proximity to the wall.
Collapse
Affiliation(s)
- Guy Nir
- Dep. of Genetics, Harvard Medical School, Boston, MA 02115, USA. and Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Einat Chetrit
- Department of Chemical-Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Anat Vivante
- Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yuval Garini
- Department of Physics and Institute of Nanotechnology, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ronen Berkovich
- Department of Chemical-Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel. and The Ilze Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
13
|
Benedetti F, Gazizova Y, Kulik AJ, Marszalek PE, Klinov DV, Dietler G, Sekatskii SK. Can Dissipative Properties of Single Molecules Be Extracted from a Force Spectroscopy Experiment? Biophys J 2017; 111:1163-1172. [PMID: 27653475 DOI: 10.1016/j.bpj.2016.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022] Open
Abstract
We performed dynamic force spectroscopy of single dextran and titin I27 molecules using small-amplitude and low-frequency (40-240 Hz) dithering of an atomic force microscope tip excited by a sine wave voltage fed onto the tip-carrying piezo. We show that for such low-frequency dithering experiments, recorded phase information can be unambiguously interpreted within the framework of a transparent theoretical model that starts from a well-known partial differential equation to describe the dithering of an atomic force microscope cantilever and a single molecule attached to its end system, uses an appropriate set of initial and boundary conditions, and does not exploit any implicit suggestions. We conclude that the observed phase (dissipation) signal is due completely to the dissipation related to the dithering of the cantilever itself (i.e., to the change of boundary conditions in the course of stretching). For both cases, only the upper bound of the dissipation of a single molecule has been established as not exceeding 3⋅10(-7)kg/s. We compare our results with previously reported measurements of the viscoelastic properties of single molecules, and we emphasize that extreme caution must be taken in distinguishing between the dissipation related to the stretched molecule and the dissipation that originates from the viscous damping of the dithered cantilever. We also present the results of an amplitude channel data analysis, which reveal that the typical values of the spring constant of a I27 molecule at the moment of module unfolding are equal to 4±1.5mN/m, and the typical values of the spring constant of dextran at the moment of chair-boat transition are equal to 30-50mN/m.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Laboratoire de Physique de la Matière Vivante, IPHYS, BSP, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yulia Gazizova
- Laboratoire de Physique de la Matière Vivante, IPHYS, BSP, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Russian Institute of Physical-Chemical Medicine, Moscow, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Andrzej J Kulik
- Laboratoire de Physique de la Matière Vivante, IPHYS, BSP, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Piotr E Marszalek
- Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina
| | - Dmitry V Klinov
- Russian Institute of Physical-Chemical Medicine, Moscow, Russia
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, IPHYS, BSP, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sergey K Sekatskii
- Laboratoire de Physique de la Matière Vivante, IPHYS, BSP, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
15
|
Abstract
Tethering is used to deliver specific biological and industrial functions. For example, single-stranded DNA (ssDNA) is tethered to polymerases and long sequences of double-stranded DNA (dsDNA) during replication, and to solids in DNA microarrays. However, tethering ssDNA to a large object limits not only the available ssDNA conformations, but also the range of time-scales over which the mechanical responses of ssDNA are important. In this work we examine the effect of tethering by measurement of the mechanical response of ssDNA that is tethered at each end to two separate atomic force microscope cantilevers in aqueous solution. Thermal motion of the cantilevers drives the ends of the ssDNA chain at frequencies near 2 kHz. The presence of a tethered molecule makes a large difference to the asymmetric cross-correlation of two cantilevers, which enables resolution of the mechanical properties in our experiments. By analysis of the correlated motion of the cantilevers we extract the friction and stiffness of the ssDNA. We find that the measured friction is much larger than the friction that is usually associated with the unencumbered motion of ssDNA. We also find that the measured relaxation time, ∼30 μs, is much greater than prior measurements of the free-molecule relaxation time. We attribute the difference to the loss of conformational possibilities as a result of constraining the ends of the ssDNA.
Collapse
Affiliation(s)
- Milad Radiom
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24060, USA. Department of Inorganic and Analytic Chemistry, University of Geneva, 1205 Geneva, Switzerland
| | | | | |
Collapse
|
16
|
Markiewicz BN, Jo H, Culik RM, DeGrado WF, Gai F. Assessment of local friction in protein folding dynamics using a helix cross-linker. J Phys Chem B 2013; 117:14688-96. [PMID: 24205975 DOI: 10.1021/jp409334h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Internal friction arising from local steric hindrance and/or the excluded volume effect plays an important role in controlling not only the dynamics of protein folding but also conformational transitions occurring within the native state potential well. However, experimental assessment of such local friction is difficult because it does not manifest itself as an independent experimental observable. Herein, we demonstrate, using the miniprotein trp-cage as a testbed, that it is possible to selectively increase the local mass density in a protein and hence the magnitude of local friction, thus making its effect directly measurable via folding kinetic studies. Specifically, we show that when a helix cross-linker, m-xylene, is placed near the most congested region of the trp-cage it leads to a significant decrease in both the folding rate (by a factor of 3.8) and unfolding rate (by a factor of 2.5 at 35 °C) but has little effect on protein stability. Thus, these results, in conjunction with those obtained with another cross-linked trp-cage and two uncross-linked variants, demonstrate the feasibility of using a nonperturbing cross-linker to help quantify the effect of internal friction. In addition, we estimate that a m-xylene cross-linker could lead to an increase in the roughness of the folding energy landscape by as much as 0.4-1.0k(B)T.
Collapse
Affiliation(s)
- Beatrice N Markiewicz
- Department of Chemistry and §Department of Biochemistry & Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
17
|
Changes of protein stiffness during folding detect protein folding intermediates. J Biol Phys 2013; 40:15-23. [PMID: 23975672 DOI: 10.1007/s10867-013-9331-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022] Open
Abstract
Single-molecule force-quench atomic force microscopy (FQ-AFM) is used to detect folding intermediates of a simple protein by detecting changes of molecular stiffness of the protein during its folding process. Those stiffness changes are obtained from shape and peaks of an autocorrelation of fluctuations in end-to-end length of the folding molecule. The results are supported by predictions of the equipartition theorem and agree with existing Langevin dynamics simulations of a simplified model of a protein folding. In the light of the Langevin simulations the experimental data probe an ensemble of random-coiled collapsed states of the protein, which are present both in the force-quench and thermal-quench folding pathways.
Collapse
|
18
|
JC polyomavirus (JCV) and monoclonal antibodies: friends or potential foes? Clin Dev Immunol 2013; 2013:967581. [PMID: 23878587 PMCID: PMC3708391 DOI: 10.1155/2013/967581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS), observed in immunodeficient patients and caused by JC virus ((JCV), also called JC polyomavirus (JCPyV)). After the HIV pandemic and the introduction of immunomodulatory therapy, the PML incidence significantly increased. The correlation between the use of natalizumab, a drug used in multiple sclerosis (MS), and the PML development of particular relevance. The high incidence of PML in natalizumab-treated patients has highlighted the importance of two factors: the need of PML risk stratification among natalizumab-treated patients and the need of effective therapeutic options. In this review, we discuss these two needs under the light of the major viral models of PML etiopathogenesis.
Collapse
|
19
|
Elasticity, structure, and relaxation of extended proteins under force. Proc Natl Acad Sci U S A 2013; 110:3847-52. [PMID: 23407163 DOI: 10.1073/pnas.1300596110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Force spectroscopies have emerged as a powerful and unprecedented tool to study and manipulate biomolecules directly at a molecular level. Usually, protein and DNA behavior under force is described within the framework of the worm-like chain (WLC) model for polymer elasticity. Although it has been surprisingly successful for the interpretation of experimental data, especially at high forces, the WLC model lacks structural and dynamical molecular details associated with protein relaxation under force that are key to the understanding of how force affects protein flexibility and reactivity. We use molecular dynamics simulations of ubiquitin to provide a deeper understanding of protein relaxation under force. We find that the WLC model successfully describes the simulations of ubiquitin, especially at higher forces, and we show how protein flexibility and persistence length, probed in the force regime of the experiments, are related to how specific classes of backbone dihedral angles respond to applied force. Although the WLC model is an average, backbone model, we show how the protein side chains affect the persistence length. Finally, we find that the diffusion coefficient of the protein's end-to-end distance is on the order of 10(8) nm(2)/s, is position and side-chain dependent, but is independent of the length and independent of the applied force, in contrast with other descriptions.
Collapse
|
20
|
Abstract
The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient D(eff) ~ 1,200 nm(2)/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at D(eff) ~ 10(8) nm(2)/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with D(eff) ~ 10(4)-10(6) nm(2)/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk.
Collapse
|
21
|
Affiliation(s)
- Charles E. Sing
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - Alfredo Alexander-Katz
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
22
|
Hablot E, Donnio B, Bouquey M, Avérous L. Dimer acid-based thermoplastic bio-polyamides: Reaction kinetics, properties and structure. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.10.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Taniguchi Y, Khatri BS, Brockwell DJ, Paci E, Kawakami M. Dynamics of the coiled-coil unfolding transition of myosin rod probed by dissipation force spectrum. Biophys J 2010; 99:257-62. [PMID: 20655854 DOI: 10.1016/j.bpj.2010.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/23/2010] [Accepted: 04/01/2010] [Indexed: 01/27/2023] Open
Abstract
The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic force microscopy using a magnetically driven oscillating cantilever to measure the dissipative properties of single myosin rods that provide unique dynamical information about the coiled-coil structure as a function of force. We find that the friction constant of the single myosin rod has a highly nontrivial variation with force; in particular, the single-molecule friction constant is reduced dramatically and increases again as it passes through the coiled-uncoiled transition. This is a direct indication of a large free-energy barrier to uncoiling, which may be related to a fine-tuned dynamic mechanosignaling response to large and unexpected physiological loads. Further, from the critical force at which the minimum in friction occurs we determine the asymmetry of the bistable landscape that controls uncoiling of the coiled coil. This work highlights the sensitivity of the dissipative signal in force unfolding to dynamic molecular structure that is hidden to the elastic signal.
Collapse
Affiliation(s)
- Yukinori Taniguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
24
|
Hiraiwa T, Ohta T. Linear viscoelasticity of a single semiflexible polymer with internal friction. J Chem Phys 2010; 133:044907. [PMID: 20687686 DOI: 10.1063/1.3463427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The linear viscoelastic behaviors of single semiflexible chains with internal friction are studied based on the wormlike-chain model. It is shown that the frequency dependence of the complex compliance in the high frequency limit is the same as that of the Voigt model. This asymptotic behavior appears also for the Rouse model with internal friction. We derive the characteristic times for both the high frequency limit and the low frequency limit and compare the results with those obtained by Khatri et al.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
25
|
Khatri B, Yew ZT, Krivov S, McLeish T, Paci E. Fluctuation power spectra reveal dynamical heterogeneity of peptides. J Chem Phys 2010; 133:015101. [DOI: 10.1063/1.3456552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Calderon CP, Harris NC, Kiang CH, Cox DD. Analyzing single-molecule manipulation experiments. J Mol Recognit 2009; 22:356-62. [PMID: 19479747 DOI: 10.1002/jmr.959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Single-molecule manipulation studies can provide quantitative information about the physical properties of complex biological molecules without ensemble artifacts obscuring the measurements. We demonstrate computational techniques which aim at more fully utilizing the wealth of information contained in noisy experimental time series. The "noise" comes from multiple sources e.g., inherent thermal motion, instrument measurement error, etc. The primary focus of this paper is a methodology that uses time domain based methods to extract the effective molecular friction from single-molecule pulling data. We studied molecules composed of eight tandem repeat titin I27 domains, but the modeling approaches have applicability to other single-molecule mechanical studies. The merits and challenges associated with applying such a computational approach to existing single-molecule manipulation data are also discussed.
Collapse
Affiliation(s)
- Christopher P Calderon
- Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA.
| | | | | | | |
Collapse
|
27
|
Calderon CP, Arora K. Extracting Kinetic and Stationary Distribution Information from Short MD Trajectories via a Collection of Surrogate Diffusion Models. J Chem Theory Comput 2009; 5:47-58. [PMID: 20046947 PMCID: PMC2739417 DOI: 10.1021/ct800282a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-dimensional stochastic models can summarize dynamical information and make long time predictions associated with observables of complex atomistic systems. Maximum likelihood based techniques for estimating low-dimensional surrogate diffusion models from relatively short time series are presented. It is found that a heterogeneous population of slowly evolving conformational degrees of freedom modulates the dynamics. This underlying heterogeneity results in a collection of estimated low-dimensional diffusion models. Numerical techniques for exploiting this finding to approximate skewed histograms associated with the simulation are presented. In addition, statistical tests are also used to assess the validity of the models and determine physically relevant sampling information, e.g. the maximum sampling frequency at which one can discretely sample from an atomistic time series and have a surrogate diffusion model pass goodness-of-fit tests. The information extracted from such analyses can possibly be used to assist umbrella sampling computations as well as help in approximating effective diffusion coefficients. The techniques are demonstrated on simulations of Adenylate Kinase.
Collapse
Affiliation(s)
- Christopher P. Calderon
- Department of Statistics and Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005-1892, USA
| | - Karunesh Arora
- Department of Chemistry, Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|