1
|
Alexander BW, Bartfield NM, Gupta V, Mercado BQ, Del Campo M, Herzon SB. An oxidative photocyclization approach to the synthesis of Securiflustra securifrons alkaloids. Science 2024; 383:849-854. [PMID: 38386756 DOI: 10.1126/science.adl6163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Securines and securamines are cytotoxic alkaloids that contain reactive alkene and heterocyclic residues embedded in skeletons comprising four to six oxidized rings. This structural complexity imparts a rich chemistry to the isolates but has impeded synthetic access to the structures in the nearly three decades since their isolation. We present a flexible route to eight isolates that exemplify the three skeletal classes of metabolites. The route proceeds by the modular assembly of the advanced azides 38 and 49 (13 steps, 6 to 10% yield), sequential oxidative photocyclizations, and late-stage functional group manipulations. With this approach, the targets were obtained in 17 to 19 steps, 12 to 13 purifications, and 0.5 to 3.5% overall yield. The structure of an advanced intermediate was elucidated by microcrystal electron diffraction (MicroED) analysis. The route will support structure-function and target identification studies of the securamines.
Collapse
Affiliation(s)
| | - Noah M Bartfield
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Vaani Gupta
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Chemical and Biological Instrumentation Center, Yale University, New Haven, CT 06511, USA
| | - Mark Del Campo
- Rigaku Americas Corporation, The Woodlands, TX 77381, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Wang YJ, Zhao LM. Synthesis of 10-Membered Azecines through Pd-Catalyzed Formal [6+4] Cycloaddition and Their Transannular Reaction to Polycyclic Compounds. Chemistry 2023; 29:e202302111. [PMID: 37776147 DOI: 10.1002/chem.202302111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Azecine fragments are frequently presented in natural products and bioactive compounds. However, minor efforts have been devoted to these 10-membered N-heterocycles, and their synthesis is still challenging. Reported herein is the first catalytic formal [6+4] cycloaddition for the synthesis of 10-membered azecines. Under palladium catalysis, the reaction of δ-vinylvalerolactones and benzofuran-derived azadienes proceeds smoothly to afford benzofuran-fused azecines with high diastereoselectivity in moderate to good yields. A unique transannular reaction of these 10-membered azecines for the construction of polycyclic compounds is also demonstrated.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| |
Collapse
|
3
|
Abstract
Chartelline C, a marine alkaloid, possesses a unique core scaffold including indolenine β-lactam and imidazole moieties linked by an unsaturated 10-membered ring. A new synthetic approach for the construction of the indolenine β-lactam was planned, based on the inherent reactivity of chartelline A with NaOMe, triggered by bromination of bromoenamide, and proceeding through an N-acyl imine. However, the N-acyl imine intermediate was not observed. Instead, the corresponding bromoindolenine was obtained, which led to the desired indolenine β-lactam in 92% yield.
Collapse
Affiliation(s)
- Yoshiki Nakane
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Wu W, Fang S, Jiang G, Li M, Jiang H. Palladium-catalyzed regioselective C–H alkynylation of indoles with bromoalkynes in water. Org Chem Front 2019. [DOI: 10.1039/c8qo01261j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A palladium-catalyzed regioselective C(sp2)–H alkynylation between indoles and bromoalkynes in water has been developed, affording diverse functionalized 2-alkynylindoles in good yields.
Collapse
Affiliation(s)
- Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
| | - Songjia Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Guangbin Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
5
|
Seo HA, Cheon CH. Synthesis of 2-Vinylindole-3-Acetic Acid Derivatives via Cyanide-Catalyzed Imino-Stetter Reaction. J Org Chem 2016; 81:7917-23. [DOI: 10.1021/acs.joc.6b01621] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Ahn Seo
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Cheol-Hong Cheon
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
James MJ, O'Brien P, Taylor RJK, Unsworth WP. Synthesis of Spirocyclic Indolenines. Chemistry 2015; 22:2856-81. [DOI: 10.1002/chem.201503835] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 12/12/2022]
Affiliation(s)
| | - Peter O'Brien
- Department of Chemistry; University of York; York YO10 5DD UK
| | | | | |
Collapse
|
7
|
Yang L, Yang C, Li C, Zhao Q, Liu L, Fang X, Chen XY. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Sci Bull (Beijing) 2015; 61:3-17. [PMID: 26844006 PMCID: PMC4722072 DOI: 10.1007/s11434-015-0929-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/15/2015] [Indexed: 10/27/2022]
Abstract
Plants synthesize and accumulate large amount of specialized (or secondary) metabolites also known as natural products, which provide a rich source for modern pharmacy. In China, plants have been used in traditional medicine for thousands of years. Recent development of molecular biology, genomics and functional genomics as well as high-throughput analytical chemical technologies has greatly promoted the research on medicinal plants. In this article, we review recent advances in the elucidation of biosynthesis of specialized metabolites in medicinal plants, including phenylpropanoids, terpenoids and alkaloids. These natural products may share a common upstream pathway to form a limited numbers of common precursors, but are characteristic in distinct modifications leading to highly variable structures. Although this review is focused on traditional Chinese medicine, other plants with a great medicinal interest or potential are also discussed. Understanding of their biosynthesis processes is critical for producing these highly value molecules at large scale and low cost in microbes and will benefit to not only human health but also plant resource conservation.
Collapse
Affiliation(s)
- Lei Yang
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602 China
| | - Changqing Yang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Chenyi Li
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China ; University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ling Liu
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602 China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiao-Ya Chen
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602 China ; National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
8
|
Iwasaki K, Kanno R, Morimoto T, Yamashita T, Yokoshima S, Fukuyama T. Synthetic Studies on Chartelline C: Stereoselective Construction of the Core Skeleton. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Iwasaki K, Kanno R, Morimoto T, Yamashita T, Yokoshima S, Fukuyama T. Synthetic Studies on Chartelline C: Stereoselective Construction of the Core Skeleton. Angew Chem Int Ed Engl 2012; 51:9160-3. [DOI: 10.1002/anie.201204726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Indexed: 11/06/2022]
|
10
|
Isaji H, Nakazaki A, Isobe M, Nishikawa T. Concise Synthesis of Deformylflustrabromine, a Marine Indole Alkaloid, through a 2-Propynyl Dicobalt Hexacarbonyl Complex. CHEM LETT 2011. [DOI: 10.1246/cl.2011.1079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Duschek A, Kirsch SF. 2-Iodoxybenzoic Acid-A Simple Oxidant with a Dazzling Array of Potential Applications. Angew Chem Int Ed Engl 2011; 50:1524-52. [DOI: 10.1002/anie.201000873] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Indexed: 12/26/2022]
|
12
|
Duschek A, Kirsch SF. 2-Iodoxybenzoesäure - ein einfaches Oxidationsmittel mit einer Vielfalt an Anwendungsmöglichkeiten. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201000873] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
|
14
|
Affiliation(s)
- Tanja Gaich
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037 La Jolla, California
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037 La Jolla, California
| |
Collapse
|
15
|
Sato S, Shibuya M, Kanoh N, Iwabuchi Y. An Expedient Route to a Potent Gastrin/CCK-B Receptor Antagonist (+)-AG-041R. J Org Chem 2009; 74:7522-4. [DOI: 10.1021/jo901352u] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shigeki Sato
- Graduate school of Pharmaceutical sciences, Tohoku University, 6-3 Aobayama, Sendai 980-8578, Japan
| | - Masatoshi Shibuya
- Graduate school of Pharmaceutical sciences, Tohoku University, 6-3 Aobayama, Sendai 980-8578, Japan
| | - Naoki Kanoh
- Graduate school of Pharmaceutical sciences, Tohoku University, 6-3 Aobayama, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate school of Pharmaceutical sciences, Tohoku University, 6-3 Aobayama, Sendai 980-8578, Japan
| |
Collapse
|
16
|
Abstract
IUPAC defines chemoselectivity as "the preferential reaction of a chemical reagent with one of two or more different functional groups", a definition that describes in rather understated terms the single greatest obstacle to complex molecule synthesis. Indeed, efforts to synthesize natural products often become case studies in the art and science of chemoselective control, a skill that nature has practiced deftly for billions of years but man has yet to master. Confrontation of one or perhaps a collection of functional groups that are either promiscuously reactive or stubbornly inert has the potential to unravel an entire strategic design. One could argue that the degree to which chemists can control chemoselectivity pales in comparison to the state of the art in stereocontrol. In this Account, we hope to illustrate how the combination of necessity and tenacity leads to the invention of chemoselective chemistry for the construction of complex molecules. In our laboratory, a premium is placed upon selecting targets that would be difficult or impossible to synthesize using traditional techniques. The successful total synthesis of such molecules demands a high degree of innovation, which in turn enables the discovery of new reactivity and principles for controlling chemoselectivity. In devising an approach to a difficult target, we choose bond disconnections that primarily maximize skeletal simplification, especially when the proposed chemistry is poorly precedented or completely unknown. By choosing such a strategy--rather than adapting an approach to fit known reactions--innovation and invention become the primary goal of the total synthesis. Delivery of the target molecule in a concise and convergent manner is the natural consequence of such endeavors, and invention becomes a prerequisite for success.
Collapse
Affiliation(s)
- Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
17
|
Alcaide B, Almendros P, Martínez del Campo T, Quirós M. Synthesis of Spiroheterocycles by Palladium-Catalyzed Domino Cycloisomerization/Cross-Coupling of α-Allenols and Baylis-Hillman Acetates. Chemistry 2009; 15:3344-6. [DOI: 10.1002/chem.200900096] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Sato S, Shibuya M, Kanoh N, Iwabuchi Y. Highly enantioselective intramolecular aza-spiroannulation onto indoles using chiral rhodium catalysis: asymmetric entry to the spiro-β-lactam core of chartellines. Chem Commun (Camb) 2009:6264-6. [DOI: 10.1039/b913770j] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|