1
|
Jiang N, Shrotriya P. Low-Cost and Portable Biosensor Based on Monitoring Impedance Changes in Aptamer-Functionalized Nanoporous Anodized Aluminum Oxide Membrane. MICROMACHINES 2024; 16:35. [PMID: 39858691 PMCID: PMC11767673 DOI: 10.3390/mi16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and the impedance reader is utilized to monitor transmembrane impedance changes. The biosensor is utilized to detect amodiaquine molecules using an amodiaquine-binding aptamer (OR7)-functionalized membrane. The aptamer-functionalized membrane is exposed to different concentrations of amodiaquine molecules to characterize the sensitivity of the sensor response. The specificity of the sensor response is characterized by exposure to varying concentrations of chloroquine, which is similar in structure to amodiaquine but does not bind to the OR7 aptamer. A commercial potentiostat is also used to measure the sensor response for amodiaquine and chloroquine. The sensing response measured using both the portable impedance reader and the commercial potentiostat showed a similar dynamic response and detection threshold. The specific and sensitive sensing results for amodiaquine demonstrate the efficacy of the low-cost and portable biosensor.
Collapse
Affiliation(s)
- Nianyu Jiang
- Ames National Laboratory, Mechanical Engineering Department, Iowa State University, Ames, IA 50014, USA;
| | - Pranav Shrotriya
- Ames National Laboratory, Mechanical Engineering Department, Iowa State University, Ames, IA 50014, USA;
- Mechanical Engineering Department, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
2
|
Electrochemistry combined-surface plasmon resonance biosensors: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Lo SC, Wang SH, Chang TW, Lee KL, Chern RL, Wei PK. Dual Gold-Nanoslit Electrodes for Ultrasensitive Detection of Antigen-Antibody Reactions in Electrochemical Surface Plasmon Resonance. ACS Sens 2022; 7:2597-2605. [PMID: 36095281 DOI: 10.1021/acssensors.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present the use of surface charges in dual gold-nanoslit electrodes to improve the surface plasmon resonance (SPR) detection limit by several orders of magnitude. The SPR is directly generated by gold-nanoslit arrays in the two electrodes. The SPR shifts for both nanoslit arrays are measured simultaneously with a simple hyperspectral setup. When biomolecules are captured by specific antibodies on the dual electrodes, the surface charge is changed during the electrochemical process due to the increase in surface impedance. The push-pull-type electrodes generate opposite surface charges. Using the differences in both spectral shifts, the change in surface charge is detected sensitively. We demonstrate that using a [Fe(CN)6]3-/4- redox process after antigen-antibody interactions, the dual nanoslit electrodes show an enhancement of the detection limit from 1 μg/mL to 10 pg/mL.
Collapse
Affiliation(s)
- Shu-Cheng Lo
- Institute of Applied Mechanics, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan.,Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| | - Sheng-Hann Wang
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| | - Ting-Wei Chang
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| | - Kuang-Li Lee
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| | - Ruey-Lin Chern
- Institute of Applied Mechanics, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| |
Collapse
|
4
|
Liu T, Li M, Wang Y, Fang Y, Wang W. Electrochemical impedance spectroscopy of single Au nanorods. Chem Sci 2018; 9:4424-4429. [PMID: 29896383 PMCID: PMC5956977 DOI: 10.1039/c8sc00983j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022] Open
Abstract
Monochromatic dark-field microscopy coupled with high-frequency potential modulation leads to non-faradaic electrochemical impedance spectroscopy of single Au nanorods.
We propose monochromatic dark-field imaging microscopy (DFM) to measure the non-faradaic electrochemical impedance spectroscopy (EIS) of single Au nanorods (AuNRs). DFM was utilized to monitor the plasmonic scattering of monochromatic incident light by surface-immobilized individual AuNRs. When modulating the surface potential at a certain frequency, non-faradaic charging and discharging of AuNRs altered their electron density, leading to periodical fluctuations in the scattering intensity. Analysis of the amplitude and phase of the optical intensity fluctuation as a function of modulation frequency resulted in the EIS of single AuNRs. High-frequency (>100 Hz) modulation allowed us to differentiate the intrinsic charging effect from other contributions such as the periodic migration and accumulation of counterions in the surrounding medium, because the latter occurred at a longer timescale. As a result, single nanoparticle EIS led to the surface capacitance of single AuNRs being closer to the theoretical value. Since interfacial capacitance has been proven sensitive to molecular interactions, the present work also offers a new platform for single nanoparticle sensing by measuring the single nanoparticle capacitance.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Meng Li
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yongjie Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yimin Fang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| |
Collapse
|
5
|
Yuan L, Tao N, Wang W. Plasmonic Imaging of Electrochemical Impedance. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:183-200. [PMID: 28301751 DOI: 10.1146/annurev-anchem-061516-045150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) measures the frequency spectrum of an electrochemical interface to resist an alternating current. This method allows label-free and noninvasive studies on interfacial adsorption and molecular interactions and has applications in biosensing and drug screening. Although powerful, traditional EIS lacks spatial resolution or imaging capability, hindering the study of heterogeneous electrochemical processes on electrodes. We have recently developed a plasmonics-based electrochemical impedance technique to image local electrochemical impedance with a submicron spatial resolution and a submillisecond temporal resolution. In this review, we provide a systematic description of the theory, instrumentation, and data analysis of this technique. To illustrate its present and future applications, we further describe several selected samples analyzed with this method, including protein microarrays, two-dimensional materials, and single cells. We conclude by summarizing the technique's unique features and discussing the remaining challenges and new directions of its application.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| |
Collapse
|
6
|
Hinman SS, Cheng Q. Bioinspired Assemblies and Plasmonic Interfaces for Electrochemical Biosensing. J Electroanal Chem (Lausanne) 2016; 781:136-146. [PMID: 28163664 PMCID: PMC5283611 DOI: 10.1016/j.jelechem.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrochemical biosensing represents a collection of techniques that may be utilized for capture and detection of biomolecules in both simple and complex media. While the instrumentation and technological aspects play important roles in detection capabilities, the interfacial design aspects are of equal importance, and often, those inspired by nature produce the best results. This review highlights recent material designs, recognition schemes, and method developments as they relate to targeted electrochemical analysis for biological systems. This includes the design of electrodes functionalized with peptides, proteins, nucleic acids, and lipid membranes, along with nanoparticle mediated signal amplification mechanisms. The topic of hyphenated surface plasmon resonance assays is also discussed, as this technique may be performed concurrently with complementary and/or confirmatory measurements. Together, smart materials and experimental designs will continue to pave the way for complete biomolecular analyses of complex and technically challenging systems.
Collapse
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
| | - Quan Cheng
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Surface Plasmon Resonance Sensors: Methods of Surface Functionalization and Sensitivity Enhancement. THEOR EXP CHEM+ 2015. [DOI: 10.1007/s11237-015-9427-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Esteves-Villanueva JO, Trzeciakiewicz H, Martic S. A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker. Analyst 2015; 139:2823-31. [PMID: 24740472 DOI: 10.1039/c4an00204k] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A protein-based electrochemical biosensor was developed for detection of tau protein aimed towards electrochemically sensing misfolding proteins. The electrochemical assay monitors tau-tau binding and misfolding during the early stage of tau oligomerization. Electrochemical impedance spectroscopy was used to detect the binding event between solution tau protein and immobilized tau protein (tau-Au), acting as a recognition element. The charge transfer resistance (Rct) of tau-Au was 2.9 ± 0.6 kΩ. Subsequent tau binding to tau-Au decreased the Rct to 0.3 ± 0.1 kΩ (90 ± 3% decrease) upon formation of a tau-tau-Au interface. A linear relationship between the Rct and the solution tau concentration was observed from 0.2 to 1.0 μM. The Rct decrease was attributed to an enhanced charge permeability of the tau-tau-Au surface to a redox probe [Fe(CN)6](3-/4-). The electrochemical and surface characterization data suggested conformational and electrostatic changes induced by tau-tau binding. The protein-based electrochemical platform was highly selective for tau protein over bovine serum albumin and allowed for a rapid sample analysis. The protein-based interface was selective for a non-phosphorylated tau441 isoform over the paired-helical filaments of tau, which were composed of phosphorylated and truncated tau isoforms. The electrochemical approach may find application in screening of the early onset of neurodegeneration and aggregation inhibitors.
Collapse
|
9
|
Alves I, Kurylo I, Coffinier Y, Siriwardena A, Zaitsev V, Harté E, Boukherroub R, Szunerits S. Plasmon waveguide resonance for sensing glycan–lectin interactions. Anal Chim Acta 2015; 873:71-9. [DOI: 10.1016/j.aca.2015.02.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 12/18/2022]
|
10
|
Salamifar SE, Lai RY. Application of electrochemical surface plasmon resonance spectroscopy for characterization of electrochemical DNA sensors. Colloids Surf B Biointerfaces 2014; 122:835-839. [DOI: 10.1016/j.colsurfb.2014.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/05/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022]
|
11
|
Patskovsky S, Latendresse V, Dallaire AM, Doré-Mathieu L, Meunier M. Combined surface plasmon resonance and impedance spectroscopy systems for biosensing. Analyst 2014; 139:596-602. [DOI: 10.1039/c3an01685d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Michaels P, Alam MT, Ciampi S, Rouesnel W, Parker SG, Choudhury MH, Gooding JJ. A robust DNA interface on a silicon electrode. Chem Commun (Camb) 2014; 50:7878-80. [DOI: 10.1039/c4cc03418j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of a DNA sensing interface formed on oxide-free silicon electrodes that both resist nonspecific adsorption of DNA and maintains stable electrical properties in biological media.
Collapse
Affiliation(s)
- Pauline Michaels
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| | | | - Simone Ciampi
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| | - William Rouesnel
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| | - Stephen G. Parker
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
- Australian Centre for NanoMedicine
- The University of New South Wales
| | | | - J. Justin Gooding
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
- Australian Centre for NanoMedicine
- The University of New South Wales
| |
Collapse
|
13
|
Combining electrochemical impedance spectroscopy and surface plasmon resonance into one simultaneous read-out system for the detection of surface interactions. SENSORS 2013; 13:14650-61. [PMID: 24172282 PMCID: PMC3871058 DOI: 10.3390/s131114650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/24/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022]
Abstract
In this article we describe the integration of impedance spectroscopy (EIS) and surface plasmon resonance (SPR) into one surface analytic device. A polydimethylsiloxane (PDMS) flow cell is created, matching the dimensions of a commercially available sensor chip used for SPR measurements. This flow cell allowed simultaneous measurements between an EIS and a SPR setup. After a successful integration, a proof of principle study was conducted to investigate any signs of interference between the two systems during a measurement. The flow cell was rinsed with 10 mM Tris-HCl and 1× PBS buffer in an alternating manner, while impedance and shifts of the resonance angle were monitored. After achieving a successful proof of principle, a usability test was conducted. It was assessed whether simultaneous detection occurred when: (i) Protein A is adsorbed to the gold surface of the chip; (ii) The non-occupied zone is blocked with BSA molecules and (iii) IgG1 is bound to the Protein A. The results indicate a successful merge between SPR and EIS.
Collapse
|
14
|
Maalouli N, Barras A, Siriwardena A, Bouazaoui M, Boukherroub R, Szunerits S. Comparison of photo- and Cu(I)-catalyzed "click" chemistries for the formation of carbohydrate SPR interfaces. Analyst 2013; 138:805-12. [PMID: 23223216 DOI: 10.1039/c2an36272d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Understanding interactions of glycans with proteins in key biological events has seen the development of various analytical methods such as microarray techniques. Label-free approaches, such as surface plasmon resonance (SPR) techniques are particularly attractive and we explore here the potential of a novel interface composed of lamellar Ti/Au/silicon dioxide derivatized with sugars to probe lectin-sugar interactions by SPR. Two parallel surface functionalization strategies have been developed: one in which azide-functionalized surfaces are linked via a Cu(I) "click" method to alkynyl-derivatized glycan partners and another wherein perfluorophenyl azide-functionalized surfaces are reacted through a C-H insertion photocoupling reaction with underivatized glycans. The effectiveness of the two interfaces is assessed for their lectin-recognition abilities in an SPR format.
Collapse
Affiliation(s)
- Nazek Maalouli
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078), Université Lille 1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
15
|
Meziane D, Barras A, Kromka A, Houdkova J, Boukherroub R, Szunerits S. Thiol-yne reaction on boron-doped diamond electrodes: application for the electrochemical detection of DNA-DNA hybridization events. Anal Chem 2011; 84:194-200. [PMID: 22022777 DOI: 10.1021/ac202350c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boron-doped diamond (BDD) interfaces were chemically functionalized through the catalyst free thiol-yne reaction. Different thiolated precursors (e.g., perfluorodecanethiol, 6-(ferrocenyl)-hexanethiol, DNA) were successfully "clicked" to alkynyl-terminated BDD by irradiating the interface at 365 nm for 30 min. Thiolated oligonucleotide strands were immobilized using the optimized reaction conditions, and the surface concentration was tuned to obtain a surface coverage of 3.1 × 10(12) molecules cm(-2). Electrochemical impedance spectroscopy (EIS) was employed to follow the kinetics of hybridization and dehybridization events. The sensitivity of the oligonucleotide modified BDD interface was assayed, and a detection limit of 1 nM was obtained.
Collapse
Affiliation(s)
- Dalila Meziane
- Institut de Recherche Interdisciplinaire (IRI), CNRS USR 3078, Université de Lille1, Parc de la Haute Borne, 50 avenue de Halley, B;P 70478, 59658 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Ciampi S, James M, Michaels P, Gooding JJ. Tandem "click" reactions at acetylene-terminated Si(100) monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6940-6949. [PMID: 21557551 DOI: 10.1021/la2013733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate a simple method for coupling alkynes to alkynes. The method involves tandem azide-alkyne cycloaddition reactions ("click" chemistry) for the immobilization of 1-alkyne species onto an alkyne modified surface in a one-pot procedure. In the case presented, these reactions take place on a nonoxidized Si(100) surface although the approach is general for linking alkynes to alkynes. The applicability of the method in the preparation of electrically well-behaved functionalized surfaces is demonstrated by coupling an alkyne-tagged ferrocene species onto alkyne-terminated Si(100) surfaces. The utility of the approach in biotechnology is shown by constructing a DNA sensing interface by derivatization of the acetylenyl surface with commercially available alkyne-tagged oligonucleotides. Cyclic voltametry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry are used to characterize the coupling reactions and performance of the final modified surfaces. These data show that this synthetic protocol gives chemically well-defined, electronically well-behaved, and robust (bio)functionalized monolayers on silicon semiconducting surfaces.
Collapse
Affiliation(s)
- Simone Ciampi
- School of Chemistry, The University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | |
Collapse
|
17
|
Investigation of the effects of design parameters on sensitivity of surface plasmon resonance biosensors. Biomed Signal Process Control 2011. [DOI: 10.1016/j.bspc.2010.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Barka-Bouaifel F, Niedziółka-Jönsson J, Castel X, Saison O, Akjouj A, Pennec Y, Djafari-Rouhani B, Woisel P, Lyskawa J, Sambe L, Cooke G, Bezzi N, Boukherroub R, Szunerits S. Optical and electrochemical properties of tunable host–guest complexes linked to plasmonic interfaces. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03293j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Islam MS, Kouzani AZ, Dai XJ, Michalski WP, Gholamhosseini H. Comparison of performance parameters for conventional and localized surface plasmon resonance graphene biosensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:1851-1854. [PMID: 22254690 DOI: 10.1109/iembs.2011.6090526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper investigates the enhancement of the sensitivity and adsorption efficiency of a localized surface plasmon resonance (LSPR) biosensor that includes a layer of graphene sheet on top of the gold layer. For this purpose, biomolecular interactions of biotin-streptavidin with the graphene layer on the gold thin film are monitored. The performance of the LSPR graphene biosensor is theoretically and numerically assessed in terms of sensitivity and adsorption efficiency under varying conditions, including the thickness of biomolecule layer, number of graphene layers and operating wavelength. Enhanced sensitivity and improved adsorption efficiency are obtained for the LSPR graphene biosensor in comparison with its conventional counterpart. It is found that the LSPR graphene biosensor has better sensitivity with lower operating wavelength and larger number of graphene layers.
Collapse
Affiliation(s)
- Md Saiful Islam
- School of Engineering, Deakin University, Geelong, Victoria 3217, Australia.
| | | | | | | | | |
Collapse
|
20
|
Szunerits S, Niedziǒłka-Jönsson J, Boukherroub R, Woisel P, Baumann JS, Siriwardena A. Label-Free Detection of Lectins on Carbohydrate-Modified Boron-Doped Diamond Surfaces. Anal Chem 2010; 82:8203-10. [DOI: 10.1021/ac1016387] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sabine Szunerits
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille Nord de France, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France, Unité des Matériaux Et Transformations (UMET, UMR 8207), Team “Ingénierie des Systèmes Polymères” (ISP), Université Lille Nord de France, 59650 Villeneuve d’Ascq Cedex, France, Laboratoire des Glucides (UMR 6219), Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France, and Institute of Physical Chemistry,
| | - Joanna Niedziǒłka-Jönsson
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille Nord de France, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France, Unité des Matériaux Et Transformations (UMET, UMR 8207), Team “Ingénierie des Systèmes Polymères” (ISP), Université Lille Nord de France, 59650 Villeneuve d’Ascq Cedex, France, Laboratoire des Glucides (UMR 6219), Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France, and Institute of Physical Chemistry,
| | - Rabah Boukherroub
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille Nord de France, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France, Unité des Matériaux Et Transformations (UMET, UMR 8207), Team “Ingénierie des Systèmes Polymères” (ISP), Université Lille Nord de France, 59650 Villeneuve d’Ascq Cedex, France, Laboratoire des Glucides (UMR 6219), Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France, and Institute of Physical Chemistry,
| | - Patrice Woisel
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille Nord de France, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France, Unité des Matériaux Et Transformations (UMET, UMR 8207), Team “Ingénierie des Systèmes Polymères” (ISP), Université Lille Nord de France, 59650 Villeneuve d’Ascq Cedex, France, Laboratoire des Glucides (UMR 6219), Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France, and Institute of Physical Chemistry,
| | - Jean-Sébastien Baumann
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille Nord de France, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France, Unité des Matériaux Et Transformations (UMET, UMR 8207), Team “Ingénierie des Systèmes Polymères” (ISP), Université Lille Nord de France, 59650 Villeneuve d’Ascq Cedex, France, Laboratoire des Glucides (UMR 6219), Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France, and Institute of Physical Chemistry,
| | - Aloysius Siriwardena
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille Nord de France, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France, Unité des Matériaux Et Transformations (UMET, UMR 8207), Team “Ingénierie des Systèmes Polymères” (ISP), Université Lille Nord de France, 59650 Villeneuve d’Ascq Cedex, France, Laboratoire des Glucides (UMR 6219), Université de Picardie Jules Vernes, 33 rue saint Leu, 80039 Amiens, France, and Institute of Physical Chemistry,
| |
Collapse
|
21
|
Krishnamoorthy G, Carlen ET, Kohlheyer D, Schasfoort RBM, van den Berg A. Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions. Anal Chem 2010; 81:1957-63. [PMID: 19186980 DOI: 10.1021/ac802668z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Label-free biomolecular binding measurement methods, such as surface plasmon resonance (SPR), are becoming increasingly more important for the estimation of real-time binding kinetics. Recent advances in surface plasmon resonance imaging (iSPR) are emerging for label-free microarray-based assay applications, where multiple biomolecular interactions can be measured simultaneously. However, conventional iSPR microarray systems rely on protein printing techniques for ligand immobilization to the gold imaging surface and external pumps for analyte transport. In this article, we present an integrated microfluidics and iSPR platform that uses only electrokinetic transport and guiding of ligands and analytes and, therefore, requires only electrical inputs for sample transport. An important advantage of this new approach, compared to conventional systems, is the ability to direct a single analyte to a specific ligand location in the microarray, which can facilitate analysis parallelization. Additionally, this simple approach does not require complicated microfluidic channel arrangements, external pumps, or valves. As a demonstration, kinetics and affinity have been extracted from measured binding responses of human IgG and goat antihuman IgG using a simple 1:1 model and compared to responses measured with conventional pressure driven analyte transport. The measured results indicate similar binding kinetics and affinity between the electrokinetic and pressure-driven sample manipulation methods and no cross contamination to adjacent measurement locations has been observed.
Collapse
Affiliation(s)
- Ganeshram Krishnamoorthy
- BIOS Lab-On-A-Chip Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Niedziółka-Jönsson J, Barka F, Castel X, Pisarek M, Bezzi N, Boukherroub R, Szunerits S. Development of new localized surface plasmon resonance interfaces based on gold nanostructures sandwiched between tin-doped indium oxide films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4266-4273. [PMID: 20175513 DOI: 10.1021/la903330d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article reports on the fabrication and characterization of plasmonic interfaces composed of a sandwiched structure comprising a tin-doped indium oxide (ITO) substrate, gold nanostructures (Au NSs), and a thin ITO film overcoating. The change in the optical characteristics of the ITO/Au NSs/ITO interfaces as a function of the ITO overlayer thickness (d(ITO) = 0-200 nm) was followed by recording UV-vis transmission spectra. The influence of the thickness of the ITO overcoating on the position and shape of the plasmonic signal is discussed. The possibility to functionalize the ITO/Au NSs/ITO interfaces chemically is demonstrated by covalently linking ethynyl ferrocene to azide-terminated ITO/Au NSs/ITO interfaces. The resulting interfaces were characterized using X-ray photoelectron spectroscopy (XPS), electrochemical (cyclic voltammetry and differential pulse voltammetry) techniques, and UV-vis transmission spectroscopy.
Collapse
Affiliation(s)
- Joanna Niedziółka-Jönsson
- Institut de Recherche Interdisciplinaire (IRI, USR-3078) Parc de la Haute Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
24
|
Chang BY, Park SM. Electrochemical impedance spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:207-29. [PMID: 20636040 DOI: 10.1146/annurev.anchem.012809.102211] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This review describes recent advances in electrochemical impedance spectroscopy (EIS) with an emphasis on its novel applications to various electrochemistry-related problems. Section 1 discusses the development of new EIS techniques to reduce measurement time. For this purpose, various forms of multisine EIS techniques were first developed via a noise signal synthesized by mixing ac waves of various frequencies, followed by fast Fourier transform of the signal and the resulting current. Subsequently, an entirely new concept was introduced in which true white noise was used as an excitation source, followed by Fourier transform of both excitation and response signals. Section 2 describes novel applications of the newly developed techniques to time-resolved impedance measurements as well as to impedance imaging. Section 3 is devoted to recent applications of EIS techniques, specifically traditional measurements in various fields with a special emphasis on biosensor detections.
Collapse
Affiliation(s)
- Byoung-Yong Chang
- Department of Chemistry, Pohang University of Science and Technology, Korea.
| | | |
Collapse
|
25
|
Mohan S, Nigam P, Kundu S, Prakash R. A label-free genosensor for BRCA1 related sequence based on impedance spectroscopy. Analyst 2010; 135:2887-93. [DOI: 10.1039/c0an00258e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|