1
|
Firrao G, Torelli E, Polano C, Ferrante P, Ferrini F, Martini M, Marcelletti S, Scortichini M, Ermacora P. Genomic Structural Variations Affecting Virulence During Clonal Expansion of Pseudomonas syringae pv. actinidiae Biovar 3 in Europe. Front Microbiol 2018; 9:656. [PMID: 29675009 PMCID: PMC5895724 DOI: 10.3389/fmicb.2018.00656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) biovar 3 caused pandemic bacterial canker of Actinidia chinensis and Actinidia deliciosa since 2008. In Europe, the disease spread rapidly in the kiwifruit cultivation areas from a single introduction. In this study, we investigated the genomic diversity of Psa biovar 3 strains during the primary clonal expansion in Europe using single molecule real-time (SMRT), Illumina and Sanger sequencing technologies. We recorded evidences of frequent mobilization and loss of transposon Tn6212, large chromosome inversions, and ectopic integration of IS sequences (remarkably ISPsy31, ISPsy36, and ISPsy37). While no phenotype change associated with Tn6212 mobilization could be detected, strains CRAFRU 12.29 and CRAFRU 12.50 did not elicit the hypersensitivity response (HR) on tobacco and eggplant leaves and were limited in their growth in kiwifruit leaves due to insertion of ISPsy31 and ISPsy36 in the hrpS and hrpR genes, respectively, interrupting the hrp cluster. Both strains had been isolated from symptomatic plants, suggesting coexistence of variant strains with reduced virulence together with virulent strains in mixed populations. The structural differences caused by rearrangements of self-genetic elements within European and New Zealand strains were comparable in number and type to those occurring among the European strains, in contrast with the significant difference in terms of nucleotide polymorphisms. We hypothesize a relaxation, during clonal expansion, of the selection limiting the accumulation of deleterious mutations associated with genome structural variation due to transposition of mobile elements. This consideration may be relevant when evaluating strategies to be adopted for epidemics management.
Collapse
Affiliation(s)
- Giuseppe Firrao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Emanuela Torelli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Cesare Polano
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Patrizia Ferrante
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Rome, Italy
| | - Francesca Ferrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Simone Marcelletti
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Rome, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
2
|
Ågren JA. Selfish genetic elements and the gene's-eye view of evolution. Curr Zool 2016; 62:659-665. [PMID: 29491953 PMCID: PMC5804262 DOI: 10.1093/cz/zow102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
During the last few decades, we have seen an explosion in the influx of details about the biology of selfish genetic elements. Ever since the early days of the field, the gene's-eye view of Richard Dawkins, George Williams, and others, has been instrumental to make sense of new empirical observations and to the generation of new hypotheses. However, the close association between selfish genetic elements and the gene's-eye view has not been without critics and several other conceptual frameworks have been suggested. In particular, proponents of multilevel selection models have used selfish genetic elements to criticize the gene's-eye view. In this paper, I first trace the intertwined histories of the study of selfish genetic elements and the gene's-eye view and then discuss how their association holds up when compared with other proposed frameworks. Next, using examples from transposable elements and the major transitions, I argue that different models highlight separate aspects of the evolution of selfish genetic elements and that the productive way forward is to maintain a plurality of perspectives. Finally, I discuss how the empirical study of selfish genetic elements has implications for other conceptual issues associated with the gene's-eye view, such as agential thinking, adaptationism, and the role of fitness maximizing models in evolution.
Collapse
Affiliation(s)
- J. Arvid Ågren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| |
Collapse
|
3
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Wu Y, Aandahl RZ, Tanaka MM. Dynamics of bacterial insertion sequences: can transposition bursts help the elements persist? BMC Evol Biol 2015; 15:288. [PMID: 26690348 PMCID: PMC4687120 DOI: 10.1186/s12862-015-0560-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/06/2015] [Indexed: 01/22/2023] Open
Abstract
Background Currently there is no satisfactory explanation for why bacterial insertion sequences (ISs) widely occur across prokaryotes despite being mostly harmful to their host genomes. Rates of horizontal gene transfer are likely to be too low to maintain ISs within a population. IS-induced beneficial mutations may be important for both prevalence of ISs and microbial adaptation to changing environments but may be too rare to sustain IS elements in the long run. Environmental stress can induce elevated rates of IS transposition activities; such episodes are known as ‘transposition bursts’. By examining how selective forces and transposition events interact to influence IS dynamics, this study asks whether transposition bursts can lead to IS persistence. Results We show through a simulation model that ISs are gradually eliminated from a population even if IS transpositions occasionally cause advantageous mutations. With beneficial mutations, transposition bursts create variation in IS copy numbers and improve cell fitness on average. However, these benefits are not usually sufficient to overcome the negative selection against the elements, and transposition bursts amplify the mean fitness effect which, if negative, simply accelerates the extinction of ISs. If down regulation of transposition occurs, IS extinctions are reduced while ISs still generate variation amongst bacterial genomes. Conclusions Transposition bursts do not help ISs persist in a bacterial population in the long run because most burst-induced mutations are deleterious and therefore not favoured by natural selection. However, bursts do create more genetic variation through which occasional advantageous mutations can help organisms adapt. Regulation of IS transposition bursts and stronger positive selection of the elements interact to slow down the burst-induced extinction of ISs. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0560-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Wu
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia. .,Present address: Telethon Kids Institute, University of Western Australia, Perth, 6008, WA, Australia.
| | - Richard Z Aandahl
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Mark M Tanaka
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, 2052, NSW, Australia. .,Evolution & Ecology Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia.
| |
Collapse
|
5
|
Gómez MJ, Díaz-Maldonado H, González-Tortuero E, López de Saro FJ. Chromosomal replication dynamics and interaction with the β sliding clamp determine orientation of bacterial transposable elements. Genome Biol Evol 2014; 6:727-40. [PMID: 24614824 PMCID: PMC3971601 DOI: 10.1093/gbe/evu052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Insertion sequences (ISs) are small transposable elements widespread in bacterial genomes, where they play an essential role in chromosome evolution by stimulating recombination and genetic flow. Despite their ubiquity, it is unclear how ISs interact with the host. Here, we report a survey of the orientation patterns of ISs in bacterial chromosomes with the objective of gaining insight into the interplay between ISs and host chromosomal functions. We find that a significant fraction of IS families present a consistent and family-specific orientation bias with respect to chromosomal DNA replication, especially in Firmicutes. Additionally, we find that the transposases of up to nine different IS families with different transposition pathways interact with the β sliding clamp, an essential replication factor, suggesting that this is a widespread mechanism of interaction with the host. Although we find evidence that the interaction with the β sliding clamp is common to all bacterial phyla, it also could explain the observed strong orientation bias found in Firmicutes, because in this group β is asymmetrically distributed during synthesis of the leading or lagging strands. Besides the interaction with the β sliding clamp, other asymmetries also play a role in the biased orientation of some IS families. The utilization of the highly conserved replication sliding clamps suggests a mechanism for host regulation of IS proliferation and also a universal platform for IS dispersal and transmission within bacterial populations and among phylogenetically distant species.
Collapse
Affiliation(s)
- Manuel J Gómez
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Pál C, Papp B. From passengers to drivers: Impact of bacterial transposable elements on evolvability. Mob Genet Elements 2014; 3:e23617. [PMID: 23734296 PMCID: PMC3661142 DOI: 10.4161/mge.23617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Microbes have several mechanisms that promote evolutionary adaptation in stressful environments. The corresponding molecular pathways promote diversity through modulating rates of recombination, mutation or influence the activity of transposable genetic elements. Recent experimental studies suggest an evolutionary conflict between these mechanisms. Specifically, presence of mismatch repair mutator alleles in a bacterial population dramatically reduced fixation of bacterial insertion sequence elements. When rare, these elements had only a limited impact on adaptive evolution compared with other mutation-generating pathways. IS elements may initially spread like molecular parasites, but once present in many copies in a given genome, they might become generators of novelty during bacterial evolution.
Collapse
Affiliation(s)
- Csaba Pál
- Synthetic and Systems Biology Unit; Institute of Biochemistry; Biological Research Center; Szeged, Hungary
| | | |
Collapse
|
7
|
Iranzo J, Gómez MJ, López de Saro FJ, Manrubia S. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes. PLoS Comput Biol 2014; 10:e1003680. [PMID: 24967627 PMCID: PMC4072520 DOI: 10.1371/journal.pcbi.1003680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Insertion sequences (IS) are the simplest and most abundant form of transposable DNA found in bacterial genomes. When present in multiple copies, it is thought that they can promote genomic plasticity and genetic exchange, thus being a major force of evolutionary change. The main processes that determine IS content in genomes are, though, a matter of debate. In this work, we take advantage of the large amount of genomic data currently available and study the abundance distributions of 33 IS families in 1811 bacterial chromosomes. This allows us to test simple models of IS dynamics and estimate their key parameters by means of a maximum likelihood approach. We evaluate the roles played by duplication, lateral gene transfer, deletion and purifying selection. We find that the observed IS abundances are compatible with a neutral scenario where IS proliferation is controlled by deletions instead of purifying selection. Even if there may be some cases driven by selection, neutral behavior dominates over large evolutionary scales. According to this view, IS and hosts tend to coexist in a dynamic equilibrium state for most of the time. Our approach also allows for a detection of recent IS expansions, and supports the hypothesis that rapid expansions constitute transient events—punctuations—during which the state of coexistence of IS and host becomes perturbated. Insertion sequences (IS) are mobile genetic elements found in most prokaryotic genomes. They are able to autonomously change position and proliferate in chromosomes. The nature of the coevolutionary dynamics of IS with the genome that hosts them is a matter of debate: Do IS proliferate to the point of causing the extinction of the host? Is it possible that IS and hosts stably coexist? Can environmental perturbations cause IS expansions? What is the role of selection in controlling IS copy number? In this study, we have analysed abundance patterns of IS families to test two different evolutionary hypotheses: in the first one IS evolve neutrally, while in the second case they are affected by selection. Our results indicate that, most of the time, IS and their hosts coexist stably in a neutral scenario where the proliferation of IS through duplications and lateral gene transfer is balanced by regular deletions. Occasionally, though, this balance may be disrupted, causing temporary explosions of IS abundance.
Collapse
Affiliation(s)
- Jaime Iranzo
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
| | - Manuel J. Gómez
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
| | | | - Susanna Manrubia
- Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Abstract
A previous study of prokaryotic genomes identified large reservoirs of putative mobile promoters (PMPs), that is, homologous promoter sequences associated with nonhomologous coding sequences. Here we extend this data set to identify the full complement of mobile promoters in sequenced prokaryotic genomes. The expanded search identifies nearly 40,000 PMP sequences, 90% of which occur in noncoding regions of the genome. To gain further insight from this data set, we develop a birth-death-diversification model for mobile genetic elements subject to sequence diversification; applying the model to PMPs we are able to quantify the relative importance of duplication, loss, horizontal gene transfer (HGT), and diversification to the maintenance of the PMP reservoir. The model predicts low rates of HGT relative to the duplication and loss of PMP copies, rapid dynamics of PMP families, and a pool of PMPs that exist as a single copy in a genome at any given time, despite their mobility. We report evidence of these "singletons" at high frequencies in prokaryotic genomes. We also demonstrate that including selection, either for or against PMPs, was not necessary to describe the observed data.
Collapse
|
9
|
Rankin DJ, Turner LA, Heinemann JA, Brown SP. The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and intragenomic conflict. Proc Biol Sci 2012; 279:3706-15. [PMID: 22787022 PMCID: PMC3415908 DOI: 10.1098/rspb.2012.0942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/20/2012] [Indexed: 12/12/2022] Open
Abstract
Bacterial genomes commonly contain 'addiction' gene complexes that code for both a toxin and a corresponding antitoxin. As long as both genes are expressed, cells carrying the complex can remain healthy. However, loss of the complex (including segregational loss in daughter cells) can entail death of the cell. We develop a theoretical model to explore a number of evolutionary puzzles posed by toxin-antitoxin (TA) population biology. We first extend earlier results demonstrating that TA complexes can spread on plasmids, as an adaptation to plasmid competition in spatially structured environments, and highlight the role of kin selection. We then considered the emergence of TA complexes on plasmids from previously unlinked toxin and antitoxin genes. We find that one of these traits must offer at least initially a direct advantage in some but not all environments encountered by the evolving plasmid population. Finally, our study predicts non-transitive 'rock-paper-scissors' dynamics to be a feature of intragenomic conflict mediated by TA complexes. Intragenomic conflict could be sufficient to select deleterious genes on chromosomes and helps to explain the previously perplexing observation that many TA genes are found on bacterial chromosomes.
Collapse
Affiliation(s)
- Daniel J. Rankin
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Building Y27, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge Bâtiment Génopode, 1015 Lausanne, Switzerland
| | - Leighton A. Turner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jack A. Heinemann
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sam P. Brown
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
10
|
Robinson DG, Lee MC, Marx CJ. OASIS: an automated program for global investigation of bacterial and archaeal insertion sequences. Nucleic Acids Res 2012; 40:e174. [PMID: 22904081 PMCID: PMC3526298 DOI: 10.1093/nar/gks778] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Insertion sequences (ISs) are simple transposable elements present in most bacterial and archaeal genomes and play an important role in genomic evolution. The recent expansion of sequenced genomes offers the opportunity to study ISs comprehensively, but this requires efficient and accurate tools for IS annotation. We have developed an open-source program called OASIS, or Optimized Annotation System for Insertion Sequences, which automatically annotates ISs within sequenced genomes. OASIS annotations of 1737 bacterial and archaeal genomes offered an unprecedented opportunity to examine IS evolution. At a broad scale, we found that most IS families are quite widespread; however, they are not present randomly across taxa. This may indicate differential loss, barriers to exchange and/or insufficient time to equilibrate across clades. The number of ISs increases with genome length, but there is both tremendous variation and no increase in IS density for genomes >2 Mb. At the finer scale of recently diverged genomes, the proportion of shared IS content falls sharply, suggesting loss and/or emergence of barriers to successful cross-infection occurs rapidly. Surprisingly, even after controlling for 16S rRNA sequence divergence, the same ISs were more likely to be shared between genomes labeled as the same species rather than as different species.
Collapse
Affiliation(s)
- David G Robinson
- Department of Organismic and Evolutionary Biology and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
11
|
Fehér T, Bogos B, Méhi O, Fekete G, Csörgo B, Kovács K, Pósfai G, Papp B, Hurst LD, Pál C. Competition between transposable elements and mutator genes in bacteria. Mol Biol Evol 2012; 29:3153-9. [PMID: 22527906 DOI: 10.1093/molbev/mss122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although both genotypes with elevated mutation rate (mutators) and mobilization of insertion sequence (IS) elements have substantial impact on genome diversification, their potential interactions are unknown. Moreover, the evolutionary forces driving gradual accumulation of these elements are unclear: Do these elements spread in an initially transposon-free bacterial genome as they enable rapid adaptive evolution? To address these issues, we inserted an active IS1 element into a reduced Escherichia coli genome devoid of all other mobile DNA. Evolutionary laboratory experiments revealed that IS elements increase mutational supply and occasionally generate variants with especially large phenotypic effects. However, their impact on adaptive evolution is small compared with mismatch repair mutator alleles, and hence, the latter impede the spread of IS-carrying strains. Given their ubiquity in natural populations, such mutator alleles could limit early phase of IS element evolution in a new bacterial host. More generally, our work demonstrates the existence of an evolutionary conflict between mutation-promoting mechanisms.
Collapse
Affiliation(s)
- Tamás Fehér
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fuchs TM, Eisenreich W, Heesemann J, Goebel W. Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 2012; 36:435-62. [DOI: 10.1111/j.1574-6976.2011.00301.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/21/2011] [Indexed: 01/02/2023] Open
|
13
|
Graindorge A, Menard A, Monnez C, Cournoyer B. Insertion sequence evolutionary patterns highlight convergent genetic inactivations and recent genomic island acquisitions among epidemic Burkholderia cenocepacia. J Med Microbiol 2011; 61:394-409. [PMID: 21980044 DOI: 10.1099/jmm.0.036822-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Burkholderia cenocepacia B&B clone was found previously to be responsible for an epidemic outbreak within an intensive care unit in France. This clone belongs to the ST32 clonal complex, which is one of the most prevalent among French cystic fibrosis patients and is known to be related to the highly virulent ET12 clonal complex. Genomic repartition biases of insertion sequences (ISs) were investigated to improve our understanding of the evolutionary events leading to B. cenocepacia diversification and the emergence of such epidemic lineages. IS were used for tracking convergent genetic inactivations and recent DNA acquisitions. B. cenocepacia IS families and subgroups were compared in terms of genetic diversity and genomic architecture using fully sequenced genomes, PCR screening and DNA blot analysis. These analyses revealed several features shared by the B&B and ET12 epidemic clones. IS elements showed a frequent localization on genomic islands (GI) and indicated convergent evolution towards inactivation of certain loci. The IS407 subgroup of the IS3 family was identified as a good indicator of recently acquired GIs in clone ET12. Several IS407 elements showed strain-specific or clonal complex-specific localizations. IS407 DNA probing of a DNA library built from the B. cenocepacia B&B epidemic clone led to the identification of a recently acquired IS407-tagged GI likely to be conjugative and integrative. The B&B clone showed significant differences in its IS architecture from that of ST32 strains isolated from Czech cystic fibrosis patients.
Collapse
Affiliation(s)
- Arnault Graindorge
- VetAgro Sup Veterinary School, Lyon, France.,Research Group on Bacterial Opportunistic Pathogens and Environment, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France
| | - Aymeric Menard
- VetAgro Sup Veterinary School, Lyon, France.,Research Group on Bacterial Opportunistic Pathogens and Environment, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France
| | - Claire Monnez
- VetAgro Sup Veterinary School, Lyon, France.,Research Group on Bacterial Opportunistic Pathogens and Environment, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France
| | - Benoit Cournoyer
- Environmental Microbiology Lyon, Biological Resource Center, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France.,VetAgro Sup Veterinary School, Lyon, France.,Research Group on Bacterial Opportunistic Pathogens and Environment, Université de Lyon, UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, Lyon, France
| |
Collapse
|
14
|
Castañeda J, Genzor P, Bortvin A. piRNAs, transposon silencing, and germline genome integrity. Mutat Res 2011; 714:95-104. [PMID: 21600904 DOI: 10.1016/j.mrfmmm.2011.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/04/2011] [Indexed: 12/17/2022]
Abstract
Integrity of the germline genome is essential for the production of viable gametes and successful reproduction. In mammals, the generation of gametes involves extensive epigenetic changes (DNA methylation and histone modification) in conjunction with changes in chromosome structure to ensure flawless progression through meiotic recombination and packaging of the genome into mature gametes. Although epigenetic reprogramming is essential for mammalian reproduction, reprogramming also provides a permissive window for exploitation by transposable elements (TEs), autonomously replicating endogenous elements. Expression and propagation of TEs during the reprogramming period can result in insertional mutagenesis that compromises genome integrity leading to reproductive problems and sporadic inherited diseases in offspring. Recent work has identified the germ cell associated PIWI Interacting RNA (piRNA) pathway in conjunction with the DNA methylation and histone modification machinery in silencing TEs. In this review we will highlight these recent advances in piRNA mediated regulation of TEs in the mouse germline, as well as mention the repercussions of failure to properly regulate TEs.
Collapse
Affiliation(s)
- Julio Castañeda
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
15
|
Rankin DJ, Rocha EPC, Brown SP. What traits are carried on mobile genetic elements, and why? Heredity (Edinb) 2011; 106:1-10. [PMID: 20332804 PMCID: PMC3183850 DOI: 10.1038/hdy.2010.24] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/28/2010] [Accepted: 02/02/2010] [Indexed: 01/22/2023] Open
Abstract
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes.
Collapse
Affiliation(s)
- D J Rankin
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
16
|
Rankin DJ, Bichsel M, Wagner A. Mobile DNA can drive lineage extinction in prokaryotic populations. J Evol Biol 2010; 23:2422-31. [PMID: 20860700 DOI: 10.1111/j.1420-9101.2010.02106.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Natural selection ultimately acts on genes and other DNA sequences. Adaptations that are good for the gene can have adverse effects at higher levels of organization, including the individual or the population. Mobile genetic elements illustrate this principle well, because they can self-replicate within a genome at a cost to their host. As they are costly and can be transmitted horizontally, mobile elements can be seen as genomic parasites. It has been suggested that mobile elements may cause the extinction of their host populations. In organisms with very large populations, such as most bacteria, individual selection is highly effective in purging genomes of deleterious elements, suggesting that extinction is unlikely. Here we investigate the conditions under which mobile DNA can drive bacterial lineages to extinction. We use a range of epidemiological and ecological models to show that harmful mobile DNA can invade, and drive populations to extinction, provided their transmission rate is high and that mobile element-induced mortality is not too high. Population extinction becomes more likely when there are more elements in the population. Even if elements are costly, extinction can still occur because of the combined effect of horizontal gene transfer, a mortality induced by mobile elements. Our study highlights the potential of mobile DNA to be selected at the population level, as well as at the individual level.
Collapse
Affiliation(s)
- D J Rankin
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
17
|
Stoebel DM, Dorman CJ. The effect of mobile element IS10 on experimental regulatory evolution in Escherichia coli. Mol Biol Evol 2010; 27:2105-12. [PMID: 20400481 PMCID: PMC2922620 DOI: 10.1093/molbev/msq101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mobile genetic elements are widespread in bacteria, where they cause several kinds of mutations. Although their effects are on the whole negative, rare beneficial mutations caused by insertion sequence elements are frequently selected in some experimental evolution systems. For example, in earlier work, we found that strains of Escherichia coli that lack the sigma factor RpoS adapt to a high-osmolarity environment by the insertion of element IS10 into the promoter of the otsBA operon, rewiring expression from RpoS dependent to RpoS independent. We wished to determine how the presence of IS10 in the genome of this strain shaped the evolutionary outcome. IS10 could influence the outcome by causing mutations that confer adaptive phenotypes that cannot be achieved by strains without the element. Alternatively, IS10 could influence evolution by increasing the rate of appearance of certain classes of beneficial mutations even if they are no better than those that could be achieved by a strain without the element. We found that populations evolved from an IS10-free strain did not upregulate otsBA. An otsBA-lacZY fusion facilitated the recovery of a number of mutations that upregulate otsB without involving IS10 and found that two caused greater fitness increases than IS10 insertion, implying that evolution could have upregulated otsBA in the IS10-free strain. Finally, we demonstrate that there is epistasis between the IS10 insertion into the otsBA promoter and the other adaptive mutations, implying that introduction of IS10 into the otsBA promoter may alter the trajectory of adaptive evolution. We conclude that IS10 exerts its effect not by creating adaptive phenotypes that could not otherwise occur but by increasing the rate of appearance of certain adaptive mutations.
Collapse
Affiliation(s)
- Daniel M Stoebel
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|