1
|
Keith A, Brichtová EP, Barber JG, Wales DJ, Jackson SE, Röder K. Energy Landscapes and Structural Ensembles of Glucagon-like Peptide-1 Monomers. J Phys Chem B 2024; 128:5601-5611. [PMID: 38831581 PMCID: PMC11182347 DOI: 10.1021/acs.jpcb.4c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
While GLP-1 and its analogues are important pharmaceutical agents in the treatment of type 2 diabetes and obesity, their susceptibility to aggregate into amyloid fibrils poses a significant safety issue. Many factors may contribute to the aggregation propensity, including pH. While it is known that the monomeric structure of GLP-1 has a strong impact on primary nucleation, probing its diverse structural ensemble is challenging. Here, we investigated the monomer structural ensembles at pH 3, 4, and 7.5 using state-of-the-art computational methods in combination with experimental data. We found significant stabilization of β-strand structures and destabilization of helical structures at lower pH, correlating with observed aggregation lag times, which are lower under these conditions. We further identified helical defects at pH 4, which led to the fastest observed aggregation, in agreement with our far-UV circular dichroism data. The detailed atomistic structures that result from the computational studies help to rationalize the experimental results on the aggregation propensity of GLP-1. This work provides a new insight into the pH-dependence of monomeric structural ensembles of GLP-1 and connects them to experimental observations.
Collapse
Affiliation(s)
- Alasdair
D. Keith
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Now:
Department of Biochemistry, School of Medicine, Emory University, 1510 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Eva Přáda Brichtová
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Now:
Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstr. 1A, Vienna 1060, Austria
| | - Jack G. Barber
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - David J. Wales
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Sophie E. Jackson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Konstantin Röder
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Now:
Randall Centre for Cell & Molecular Biophysics, King’s College London, Great Maze Pond, London SE1 1UL, U.K.
| |
Collapse
|
2
|
Takahashi S, Iuchi S, Hiraoka S, Sato H. Theoretical and computational methodologies for understanding coordination self-assembly complexes. Phys Chem Chem Phys 2023; 25:14659-14671. [PMID: 37051715 DOI: 10.1039/d3cp00082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This perspective highlights three theoretical and computational methods to capture the coordination self-assembly processes at the molecular level: quantum chemical modeling, molecular dynamics, and reaction network analysis. These methods cover the different scales from the metal-ligand bond to a more global aspect, and approaches that are best suited to understand the coordination self-assembly from different perspectives are introduced. Theoretical and numerical researches based on these methods are not merely ways of interpreting the experimental studies but complementary to them.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Satoru Iuchi
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
3
|
Ozkan A, Sitharam M, Flores-Canales JC, Prabhu R, Kurnikova M. Baseline Comparisons of Complementary Sampling Methods for Assembly Driven by Short-Ranged Pair Potentials toward Fast and Flexible Hybridization. J Chem Theory Comput 2021; 17:1967-1987. [PMID: 33576635 DOI: 10.1021/acs.jctc.0c00945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work measures baseline sampling characteristics that highlight fundamental differences between sampling methods for assembly driven by short-ranged pair potentials. Such granular comparison is essential for fast, flexible, and accurate hybridization of complementary methods. Besides sampling speed, efficiency, and accuracy of uniform grid coverage, other sampling characteristics measured are (i) accuracy of covering narrow low energy regions that have low effective dimension (ii) ability to localize sampling to specific basins, and (iii) flexibility in sampling distributions. As a proof of concept, we compare a recently developed geometric methodology EASAL (Efficient Atlasing and Search of Assembly Landscapes) and the traditional Monte Carlo (MC) method for sampling the energy landscape of two assembling trans-membrane helices, driven by short-range pair potentials. By measuring the above-mentioned sampling characteristics, we demonstrate that EASAL provides localized and accurate coverage of crucial regions of the energy landscape of low effective dimension, under flexible sampling distributions, with much fewer samples and computational resources than MC sampling. EASAL's empirically validated theoretical guarantees permit credible extrapolation of these measurements and comparisons to arbitrary number and size of assembling units. Promising avenues for hybridizing the complementary advantages of the two methods are discussed.
Collapse
Affiliation(s)
- Aysegul Ozkan
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | - Meera Sitharam
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | | | - Rahul Prabhu
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | - Maria Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Takahashi S, Tateishi T, Sasaki Y, Sato H, Hiraoka S. Towards kinetic control of coordination self-assembly: a case study of a Pd 3L 6 double-walled triangle to predict the outcomes by a reaction network model. Phys Chem Chem Phys 2020; 22:26614-26626. [PMID: 33201952 DOI: 10.1039/d0cp04623j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Numerical analysis of self-assembly process (NASAP) was performed for a [Pd3L6]6+ double-walled triangle (DWT) complex. With a chemical reaction network and a parameter set of the reaction rate constants obtained from a numerical search in an eighteen-dimensional parameter space to obtain a good fit to the data from the experimental counterpart (quantitative analysis of self-assembly process, QASAP), a refined calculation resulted in a detailed time evolution of each molecular species. Analysis based on those clues revealed dominant self-assembly pathways and a balance between inter- and intramolecular reactions, and enabled prediction of the reaction outcomes depending on the initial stoichiometric ratio under kinetic control.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | | | | | | | |
Collapse
|
5
|
Chakraborty D, Chebaro Y, Wales DJ. A multifunnel energy landscape encodes the competing α-helix and β-hairpin conformations for a designed peptide. Phys Chem Chem Phys 2020; 22:1359-1370. [PMID: 31854397 DOI: 10.1039/c9cp04778f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depending on the amino acid sequence, as well as the local environment, some peptides have the capability to fold into multiple secondary structures. Conformational switching between such structures is a key element of protein folding and aggregation. Specifically, understanding the molecular mechanism underlying the transition from an α-helix to a β-hairpin is critical because it is thought to be a harbinger of amyloid assembly. In this study, we explore the energy landscape for an 18-residue peptide (DP5), designed by Araki and Tamura to exhibit equal propensities for the α-helical and β-hairpin forms. We find that the degeneracy is encoded in the multifunnel nature of the underlying free energy landscape. In agreement with experiment, we also observe that mutation of tyrosine at position 12 to serine shifts the equilibrium in favor of the α-helix conformation, by altering the landscape topography. The transition from the α-helix to the β-hairpin is a complex stepwise process, and occurs via collapsed coil-like intermediates. Our findings suggest that even a single mutation can tune the emergent features of the landscape, providing an efficient route to protein design. Interestingly, the transition pathways for the conformational switch seem to be minimally perturbed upon mutation, suggesting that there could be universal microscopic features that are conserved among different switch-competent protein sequences.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| |
Collapse
|
6
|
Xiao S, Sharpe DJ, Chakraborty D, Wales DJ. Energy Landscapes and Hybridization Pathways for DNA Hexamer Duplexes. J Phys Chem Lett 2019; 10:6771-6779. [PMID: 31609632 DOI: 10.1021/acs.jpclett.9b02356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strand hybridization is not only a fundamental molecular mechanism underlying the biological functions of nucleic acids but is also a key step in the design of efficient nanodevices. Despite recent efforts, the microscopic rules governing the hybridization mechanisms remain largely unknown. In this study, we exploit the energy landscape framework to assess how sequence-specificity modulates the hybridization mechanisms in DNA. We find that GG-tracts hybridize much more rapidly compared to GC-tracts, via either zippering or slithering pathways. For the hybridization of GG-tracts, both zippering and slithering mechanisms appear to be kinetically relevant. In contrast, for the GC-tracts, the zippering mechanism is dominant. Our work reveals that even for the relatively small systems considered, the energy landscapes feature multiple metastable states and kinetic traps, which is at odds with the conventional "all-or-nothing" model of DNA hybridization formulated on the basis of thermodynamic arguments alone. Interestingly, entropic effects are found to play an important role in determining the thermal stability of competing conformational ensembles and in determining the preferred hybridization pathways.
Collapse
Affiliation(s)
- Shiyan Xiao
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Daniel J Sharpe
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Debayan Chakraborty
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| |
Collapse
|
7
|
Sharpe DJ, Wales DJ. Identifying mechanistically distinct pathways in kinetic transition networks. J Chem Phys 2019; 151:124101. [DOI: 10.1063/1.5111939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel J. Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Chakraborty D, Wales DJ. Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling. J Chem Phys 2019; 150:125101. [DOI: 10.1063/1.5070152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Schebarchov D, Baletto F, Wales DJ. Structure, thermodynamics, and rearrangement mechanisms in gold clusters-insights from the energy landscapes framework. NANOSCALE 2018; 10:2004-2016. [PMID: 29319705 PMCID: PMC5901115 DOI: 10.1039/c7nr07123j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/15/2017] [Indexed: 05/27/2023]
Abstract
We consider finite-size and temperature effects on the structure of model AuN clusters (30 ≤ N ≤ 147) bound by the Gupta potential. Equilibrium behaviour is examined in the harmonic superposition approximation, and the size-dependent melting temperature is also bracketed using molecular dynamics simulations. We identify structural transitions between distinctly different morphologies, characterised by various defect features. Reentrant behaviour and trends with respect to cluster size and temperature are discussed in detail. For N = 55, 85, and 147 we visualise the topography of the underlying potential energy landscape using disconnectivity graphs, colour-coded by the cluster morphology; and we use discrete path sampling to characterise the rearrangement mechanisms between competing structures separated by high energy barriers (up to 1 eV). The fastest transition pathways generally involve metastable states with multiple fivefold disclinations and/or a high degree of amorphisation, indicative of melting. For N = 55 we find that reoptimising low-lying minima using density functional theory (DFT) alters their energetic ordering and produces a new putative global minimum at the DFT level; however, the equilibrium structure predicted by the Gupta potential at room temperature is consistent with previous experiments.
Collapse
Affiliation(s)
- D Schebarchov
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | - F Baletto
- Department of Physics, King's College London, London WC2R 2LS, UK.
| | - D J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
10
|
Chakraborty D, Wales DJ. Energy Landscape and Pathways for Transitions between Watson-Crick and Hoogsteen Base Pairing in DNA. J Phys Chem Lett 2018; 9:229-241. [PMID: 29240425 DOI: 10.1021/acs.jpclett.7b01933] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The recent discovery that Hoogsteen (HG) base pairs are widespread in DNA across diverse sequences and positional contexts could have important implications for understanding DNA replication and DNA-protein recognition. While evidence is emerging that the Hoogsteen conformation could be a thermodynamically accessible conformation of the DNA duplex and provide a means to expand its functionality, relatively little is known about the molecular mechanism underlying the Watson-Crick (WC) to HG transition. In this Perspective, we describe pathways and kinetics for this transition at an atomic level of detail, using the energy landscape perspective. We show that competition between the duplex conformations results in a double funnel landscape, which explains some recent experimental observations. The interconversion pathways feature a number of intermediates, with a variable number of WC and HG base pairs. The relatively slow kinetics, with possible deviations from two-state behavior, suggest that this conformational switch is likely to be a challenging target for both simulation and experiment.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, The University of Texas at Austin , 24th Street Stop A5300, Austin, Texas 78712, United States
| | - David J Wales
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Cragnolini T, Chakraborty D, Šponer J, Derreumaux P, Pasquali S, Wales DJ. Multifunctional energy landscape for a DNA G-quadruplex: An evolved molecular switch. J Chem Phys 2017; 147:152715. [DOI: 10.1063/1.4997377] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tristan Cragnolini
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Debayan Chakraborty
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France, Boulevard Saint-Michel, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - David J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Straus RN, Jockusch RA. Probing the Gaseous Structure of a β-Hairpin Peptide with H/D Exchange and Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:358-369. [PMID: 27943124 DOI: 10.1007/s13361-016-1528-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
An improved understanding of the extent to which native protein structure is retained upon transfer to the gas phase promises to enhance biological mass spectrometry, potentially streamlining workflows and providing fundamental insights into hydration effects. Here, we investigate the gaseous conformation of a model β-hairpin peptide using gas-phase hydrogen-deuterium (H/D) exchange with subsequent electron capture dissociation (ECD). Global gas-phase H/D exchange levels, and residue-specific exchange levels derived from ECD data, are compared among the wild type 16-residue peptide GB1p and several variants. High protection from H/D exchange observed for GB1p, but not for a truncated version, is consistent with the retention of secondary structure of GB1p in the gas phase or its refolding into some other compact structure. Four alanine mutants that destabilize the hairpin in solution show levels of protection similar to that of GB1p, suggesting collapse or (re)folding of these peptides upon transfer to the gas phase. These results offer a starting point from which to understand how a key secondary structural element, the β-hairpin, is affected by transfer to the gas phase. This work also demonstrates the utility of a much-needed addition to the tool set that is currently available for the investigation of the gaseous conformation of biomolecules, which can be employed in the future to better characterize gaseous proteins and protein complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rita N Straus
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
13
|
Fačkovec B, Vanden-Eijnden E, Wales DJ. Markov state modeling and dynamical coarse-graining via discrete relaxation path sampling. J Chem Phys 2016; 143:044119. [PMID: 26233119 DOI: 10.1063/1.4926940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A method is derived to coarse-grain the dynamics of complex molecular systems to a Markov jump process (MJP) describing how the system jumps between cells that fully partition its state space. The main inputs are relaxation times for each pair of cells, which are shown to be robust with respect to positioning of the cell boundaries. These relaxation times can be calculated via molecular dynamics simulations performed in each cell separately and are used in an efficient estimator for the rate matrix of the MJP. The method is illustrated through applications to Sinai billiards and a cluster of Lennard-Jones discs.
Collapse
Affiliation(s)
- B Fačkovec
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - E Vanden-Eijnden
- Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - D J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| |
Collapse
|
14
|
Razavi AM, Voelz VA. Kinetic Network Models of Tryptophan Mutations in β-Hairpins Reveal the Importance of Non-Native Interactions. J Chem Theory Comput 2015; 11:2801-12. [DOI: 10.1021/acs.jctc.5b00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Asghar M. Razavi
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A. Voelz
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
15
|
Peter EK, Pivkin IV, Shea JE. A kMC-MD method with generalized move-sets for the simulation of folding of α-helical and β-stranded peptides. J Chem Phys 2015; 142:144903. [DOI: 10.1063/1.4915919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Emanuel K. Peter
- Faculty of Informatics, Institute of Computational Science, University of Lugano, Lugano, Switzerland
| | - Igor V. Pivkin
- Faculty of Informatics, Institute of Computational Science, University of Lugano, Lugano, Switzerland
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
16
|
Wales DJ. Perspective: Insight into reaction coordinates and dynamics from the potential energy landscape. J Chem Phys 2015; 142:130901. [DOI: 10.1063/1.4916307] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- D. J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Cao P, Yoon G, Tao W, Eom K, Park HS. The role of binding site on the mechanical unfolding mechanism of ubiquitin. Sci Rep 2015; 5:8757. [PMID: 25736913 PMCID: PMC4348633 DOI: 10.1038/srep08757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
We apply novel atomistic simulations based on potential energy surface exploration to investigate the constant force-induced unfolding of ubiquitin. At the experimentally-studied force clamping level of 100 pN, we find a new unfolding mechanism starting with the detachment between β5 and β3 involving the binding site of ubiquitin, the Ile44 residue. This new unfolding pathway leads to the discovery of new intermediate configurations, which correspond to the end-to-end extensions previously seen experimentally. More importantly, it demonstrates the novel finding that the binding site of ubiquitin can be responsible not only for its biological functions, but also its unfolding dynamics. We also report in contrast to previous single molecule constant force experiments that when the clamping force becomes smaller than about 300 pN, the number of intermediate configurations increases dramatically, where almost all unfolding events at 100 pN involve an intermediate configuration. By directly calculating the life times of the intermediate configurations from the height of the barriers that were crossed on the potential energy surface, we demonstrate that these intermediate states were likely not observed experimentally due to their lifetimes typically being about two orders of magnitude smaller than the experimental temporal resolution.
Collapse
Affiliation(s)
- Penghui Cao
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - Gwonchan Yoon
- 1] Department of Mechanical Engineering, Boston University, Boston, MA 02215 [2] Department of Mechanical Engineering, Korea University, Seoul 136-701, South Korea
| | - Weiwei Tao
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Harold S Park
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
18
|
Li M, Duan M, Fan J, Han L, Huo S. Graph representation of protein free energy landscape. J Chem Phys 2014; 139:185101. [PMID: 24320303 DOI: 10.1063/1.4829768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation of free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system.
Collapse
Affiliation(s)
- Minghai Li
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| | | | | | | | | |
Collapse
|
19
|
Observation time scale, free-energy landscapes, and molecular symmetry. Proc Natl Acad Sci U S A 2013; 111:617-22. [PMID: 24374625 DOI: 10.1073/pnas.1319599111] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When structures that interconvert on a given time scale are lumped together, the corresponding free-energy surface becomes a function of the observation time. This view is equivalent to grouping structures that are connected by free-energy barriers below a certain threshold. We illustrate this time dependence for some benchmark systems, namely atomic clusters and alanine dipeptide, highlighting the connections to broken ergodicity, local equilibrium, and "feasible" symmetry operations of the molecular Hamiltonian.
Collapse
|
20
|
Co NT, Hu CK, Li MS. Dual effect of crowders on fibrillation kinetics of polypeptide chains revealed by lattice models. J Chem Phys 2013; 138:185101. [PMID: 23676073 DOI: 10.1063/1.4804299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have developed the lattice model for describing polypeptide chains in the presence of crowders. The influence of crowding confinement on the fibrillation kinetics of polypeptide chains is studied using this model. We observed the non-trivial behavior of the fibril formation time τfib that it decreases with the concentration of crowders if crowder sizes are large enough, but the growth is observed for crowders of small sizes. This allows us to explain the recent experimental observation on the dual effect of crowding particles on fibril growth of proteins that for a fixed crowder concentration the fibrillation kinetics is fastest at intermediate values of total surface of crowders. It becomes slow at either small or large coverages of cosolutes. It is shown that due to competition between the energetics and entropic effects, the dependence of τfib on the size of confined space is described by a parabolic function.
Collapse
Affiliation(s)
- Nguyen Truong Co
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | | | | |
Collapse
|
21
|
Rühle V, Kusumaatmaja H, Chakrabarti D, Wales DJ. Exploring Energy Landscapes: Metrics, Pathways, and Normal-Mode Analysis for Rigid-Body Molecules. J Chem Theory Comput 2013; 9:4026-34. [PMID: 26592398 DOI: 10.1021/ct400403y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present new methodology for exploring the energy landscapes of molecular systems, using angle-axis variables for the rigid-body rotational coordinates. The key ingredient is a distance measure or metric tensor, which is invariant to global translation and rotation. The metric is used to formulate a generalized nudged elastic band method for calculating pathways, and a full prescription for normal-mode analysis is described. The methodology is tested by mapping the potential energy and free energy landscape of the water octamer, described by the TIP4P potential.
Collapse
Affiliation(s)
- Victor Rühle
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Halim Kusumaatmaja
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Department of Physics, Durham University , South Road, Durham DH1 3LE, United Kingdom
| | - Dwaipayan Chakrabarti
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
22
|
Lempesis N, Boulougouris GC, Theodorou DN. Temporal disconnectivity of the energy landscape in glassy systems. J Chem Phys 2013; 138:12A545. [PMID: 23556796 DOI: 10.1063/1.4792363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An alternative graphical representation of the potential energy landscape (PEL) has been developed and applied to a binary Lennard-Jones glassy system, providing insight into the unique topology of the system's potential energy hypersurface. With the help of this representation one is able to monitor the different explored basins of the PEL, as well as how--and mainly when--subsets of basins communicate with each other via transitions in such a way that details of the prior temporal history have been erased, i.e., local equilibration between the basins in each subset has been achieved. In this way, apart from detailed information about the structure of the PEL, the system's temporal evolution on the PEL is described. In order to gather all necessary information about the identities of two or more basins that are connected with each other, we consider two different approaches. The first one is based on consideration of the time needed for two basins to mutually equilibrate their populations according to the transition rate between them, in the absence of any effect induced by the rest of the landscape. The second approach is based on an analytical solution of the master equation that explicitly takes into account the entire explored landscape. It is shown that both approaches lead to the same result concerning the topology of the PEL and dynamical evolution on it. Moreover, a "temporal disconnectivity graph" is introduced to represent a lumped system stemming from the initial one. The lumped system is obtained via a specially designed algorithm [N. Lempesis, D. G. Tsalikis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Phys. 135, 204507 (2011)]. The temporal disconnectivity graph provides useful information about both the lumped and the initial systems, including the definition of "metabasins" as collections of basins that communicate with each other via transitions that are fast relative to the observation time. Finally, the two examined approaches are compared to an "on the fly" molecular dynamics-based algorithm [D. G. Tsalikis, N. Lempesis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Theory Comput. 6, 1307 (2010)].
Collapse
Affiliation(s)
- Nikolaos Lempesis
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece
| | | | | |
Collapse
|
23
|
Tyka MD, Jung K, Baker D. Efficient sampling of protein conformational space using fast loop building and batch minimization on highly parallel computers. J Comput Chem 2012; 33:2483-91. [PMID: 22847521 PMCID: PMC3760475 DOI: 10.1002/jcc.23069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/30/2012] [Accepted: 06/24/2012] [Indexed: 12/22/2022]
Abstract
All-atom sampling is a critical and compute-intensive end stage to protein structural modeling. Because of the vast size and extreme ruggedness of conformational space, even close to the native structure, the high-resolution sampling problem is almost as difficult as predicting the rough fold of a protein. Here, we present a combination of new algorithms that considerably speed up the exploration of very rugged conformational landscapes and are capable of finding heretofore hidden low-energy states. The algorithm is based on a hierarchical workflow and can be parallelized on supercomputers with up to 128,000 compute cores with near perfect efficiency. Such scaling behavior is notable, as with Moore's law continuing only in the number of cores per chip, parallelizability is a critical property of new algorithms. Using the enhanced sampling power, we have uncovered previously invisible deficiencies in the Rosetta force field and created an extensive decoy training set for optimizing and testing force fields.
Collapse
Affiliation(s)
- Michael D Tyka
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
24
|
Wales DJ, Carr JM. Quasi-Continuous Interpolation Scheme for Pathways between Distant Configurations. J Chem Theory Comput 2012; 8:5020-34. [PMID: 26593194 DOI: 10.1021/ct3004832] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A quasi-continuous interpolation (QCI) scheme is introduced for characterizing physically realistic initial pathways from which to initiate transition state searches and construct kinetic transition networks. Applications are presented for peptides, proteins, and a morphological transformation in an atomic cluster. The first step in each case involves end point alignment, and we describe the use of a shortest augmenting path algorithm for optimizing permutational isomers. The QCI procedure then employs an interpolating potential, which preserves the covalent bonding framework for the biomolecules and includes repulsive terms between unconstrained atoms. This potential is used to identify an interpolating path by minimizing contributions from a connected set of images, including terms corresponding to minima in the interatomic distances between them. This procedure detects unphysical geometries in the line segments between images. The most difficult cases, where linear interpolation would involve chain crossings, are treated by growing the structure an atom at a time using the interpolating potential. To test the QCI procedure, we carry through a series of benchmark calculations where the initial interpolation is coupled to explicit transition state searches to produce complete pathways between specified local minima.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Joanne M Carr
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
25
|
Wales DJ. Decoding the energy landscape: extracting structure, dynamics and thermodynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:2877-2899. [PMID: 22615466 DOI: 10.1098/rsta.2011.0208] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Describing a potential energy surface in terms of local minima and the transition states that connect them provides a conceptual and computational framework for understanding and predicting observable properties. Visualizing the potential energy landscape using disconnectivity graphs supplies a graphical connection between different structure-seeking systems, which can relax efficiently to a particular morphology. Landscapes involving competing morphologies support multiple potential energy funnels, which may exhibit characteristic heat capacity features and relaxation time scales. These connections between the organization of the potential energy landscape and structure, dynamics and thermodynamics are common to all the examples presented, ranging from atomic and molecular clusters to biomolecules and soft and condensed matter. Further connections between motifs in the energy landscape and the interparticle forces can be developed using symmetry considerations and results from catastrophe theory.
Collapse
Affiliation(s)
- David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
26
|
Wales DJ, Head-Gordon T. Evolution of the potential energy landscape with static pulling force for two model proteins. J Phys Chem B 2012; 116:8394-411. [PMID: 22432920 DOI: 10.1021/jp211806z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The energy landscape is analyzed for off-lattice bead models of protein L and protein G as a function of a static pulling force. Two different pairs of attachment points (pulling directions) are compared in each case, namely, residues 1/56 and 10/32. For the terminal residue pulling direction 1/56, the distinct global minimum structures are all extended, aside from the compact geometry that correlates with zero force. The helical turns finally disappear at the highest pulling forces considered. For the 10/32 pulling direction, the changes are more complicated, with a variety of competing arrangements for beads outside the region where the force is directly applied. These alternatives produce frustrated energy landscapes, with low-lying minima separated by high barriers. The calculated folding pathways in the absence of force are in good agreement with previous work. The N-terminal hairpin folds first for protein L and the C-terminal hairpin for protein G, which exhibits an intermediate. However, for a relatively low static force, where the global minimum retains its structure, the folding mechanisms change, sometimes dramatically, depending on the protein and the attachment points. The scaling relations predicted by catastrophe theory are found to hold in the limit of short path lengths.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK.
| | | |
Collapse
|
27
|
Abstract
The evolution of many systems is dominated by rare activated events that occur on timescale
ranging from nanoseconds to the hour or more. For such systems, simulations must leave aside the
full thermal description to focus specifically on mechanisms that generate a configurational change.
We present here the activation relaxation technique (ART), an open-ended saddle point search
algorithm, and a series of recent improvements to ART nouveau and kinetic ART, an ART-based
on-the-fly off-lattice self-learning kinetic Monte Carlo method.
Collapse
|
28
|
Calvo F, Doye JPK, Wales DJ. Energy landscapes of colloidal clusters: thermodynamics and rearrangement mechanisms. NANOSCALE 2012; 4:1085-1100. [PMID: 21979056 DOI: 10.1039/c1nr10679a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
New experiments involving direct observation of colloidal clusters by optical microscopy promise to deliver a wealth of new information about such systems. Calculations suggest that some of the observable properties may be predicted using a simple pairwise potential to represent the interparticle forces, but in a range of parameter space that is distinctly different from previous representations of atomic clusters. The present contribution provides some benchmark calculations and predictions of structure, thermodynamics and rearrangement mechanisms for colloidal clusters containing up to 80 particles. The results suggest that distinct features characteristic of short-ranged interactions should be observable in terms of the structure, thermodynamics and dynamical properties. Analysis of a kinetic transition network for the 19-particle cluster reveals super-Arrhenius behaviour in the dynamics, analogous to a 'fragile' glass-former.
Collapse
Affiliation(s)
- Florent Calvo
- Université Claude Bernard Lyon 1 and CNRS, LASIM, 43 Bd du 11 Novembre 1918, F69622, Villeurbanne cedex, France
| | | | | |
Collapse
|
29
|
Vitalis A, Caflisch A. Efficient Construction of Mesostate Networks from Molecular Dynamics Trajectories. J Chem Theory Comput 2012; 8:1108-20. [PMID: 26593370 DOI: 10.1021/ct200801b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The coarse-graining of data from molecular simulations yields conformational space networks that may be used for predicting the system's long time scale behavior, to discover structural pathways connecting free energy basins in the system, or simply to represent accessible phase space regions of interest and their connectivities in a two-dimensional plot. In this contribution, we present a tree-based algorithm to partition conformations of biomolecules into sets of similar microstates, i.e., to coarse-grain trajectory data into mesostates. On account of utilizing an architecture similar to that of established tree-based algorithms, the proposed scheme operates in near-linear time with data set size. We derive expressions needed for the fast evaluation of mesostate properties and distances when employing typical choices for measures of similarity between microstates. Using both a pedagogically useful and a real-word application, the algorithm is shown to be robust with respect to tree height, which in addition to mesostate threshold size is the main adjustable parameter. It is demonstrated that the derived mesostate networks can preserve information regarding the free energy basins and barriers by which the system is characterized.
Collapse
Affiliation(s)
- Andreas Vitalis
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
30
|
Calvo F, Yurtsever E, Wales DJ. Energy landscapes of ion clusters in isotropic quadrupolar and octupolar traps. J Chem Phys 2012; 136:024303. [DOI: 10.1063/1.3673318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
Kondov I, Verma A, Wenzel W. Performance assessment of different constraining potentials in computational structure prediction for disulfide-bridged proteins. Comput Biol Chem 2011; 35:230-9. [PMID: 21864792 DOI: 10.1016/j.compbiolchem.2011.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 11/17/2022]
Abstract
The presence of disulfide bonds in proteins has very important implications on the three-dimensional structure and folding of proteins. An adequate treatment of disulfide bonds in de-novo protein simulations is therefore very important. Here we present a computational study of a set of small disulfide-bridged proteins using an all-atom stochastic search approach and including various constraining potentials to describe the disulfide bonds. The proposed potentials can easily be implemented in any code based on all-atom force fields and employed in simulations to achieve an improved prediction of protein structure. Exploring different potential parameters and comparing the structures to those from unconstrained simulations and to experimental structures by means of a scoring function we demonstrate that the inclusion of constraining potentials improves the quality of final structures significantly. For some proteins (1KVG and 1PG1) the native conformation is visited only in simulations in presence of constraints. Overall, we found that the Morse potential has optimal performance, in particular for the β-sheet proteins.
Collapse
Affiliation(s)
- Ivan Kondov
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | | | |
Collapse
|
32
|
Pietropaolo A, Branduardi D, Bonomi M, Parrinello M. A chirality-based metrics for free-energy calculations in biomolecular systems. J Comput Chem 2011; 32:2627-37. [PMID: 21656787 DOI: 10.1002/jcc.21842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/28/2011] [Accepted: 04/23/2011] [Indexed: 12/21/2022]
Abstract
In this work, we exploit the chirality index introduced in (Pietropaolo et al., Proteins 2008, 70, 667) as an effective descriptor of the secondary structure of proteins to explore their complex free-energy landscape. We use the chirality index as an alternative metrics in the path collective variables (PCVs) framework and we show in the prototypical case of the C-terminal domain of immunoglobulin binding protein GB1 that relevant configurations can be efficiently sampled in combination with well-tempered metadynamics. While the projections of the configurations found onto a variety of different descriptors are fully consistent with previously reported calculations, this approach provides a unifying perspective of the folding mechanism which was not possible using metadynamics with the previous formulation of PCVs.
Collapse
|
33
|
Klenin K, Strodel B, Wales DJ, Wenzel W. Modelling proteins: conformational sampling and reconstruction of folding kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:977-1000. [PMID: 20851219 DOI: 10.1016/j.bbapap.2010.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/03/2010] [Accepted: 09/05/2010] [Indexed: 01/08/2023]
Abstract
In the last decades biomolecular simulation has made tremendous inroads to help elucidate biomolecular processes in-silico. Despite enormous advances in molecular dynamics techniques and the available computational power, many problems involve long time scales and large-scale molecular rearrangements that are still difficult to sample adequately. In this review we therefore summarise recent efforts to fundamentally improve this situation by decoupling the sampling of the energy landscape from the description of the kinetics of the process. Recent years have seen the emergence of many advanced sampling techniques, which permit efficient characterisation of the relevant family of molecular conformations by dispensing with the details of the short-term kinetics of the process. Because these methods generate thermodynamic information at best, they must be complemented by techniques to reconstruct the kinetics of the process using the ensemble of relevant conformations. Here we review recent advances for both types of methods and discuss their perspectives to permit efficient and accurate modelling of large-scale conformational changes in biomolecules. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Konstantin Klenin
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe, Germany
| | | | | | | |
Collapse
|
34
|
Affentranger R, Daura X. Polypeptide folding on a conformational-space network: dependence of network topology on the structural discretization procedure. J Comput Chem 2010; 31:1889-903. [PMID: 20082384 DOI: 10.1002/jcc.21476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mapping the conformational space of a polypeptide onto a network of conformational states involves a number of subjective choices, mostly in relation to the definition of conformation and its discrete nature in a network framework. Here, we evaluate the robustness of the topology of conformational-space networks derived from Molecular Dynamics (MD) simulations with respect to the use of different discretization (clustering) methods, variation of their parameters, simulation length and analysis time-step, and removing high-frequency motions from the coordinate trajectories. In addition, we investigate the extent to which polypeptide dynamics can be reproduced on the resulting networks when assuming Markovian behavior. The analysis is based on eight 500 ns and eight 400 ns MD simulations in explicit water of two 10-residue peptides. Three clustering algorithms were used, two of them based on the pair-wise root-mean-square difference between structures and one on dihedral-angle patterns. A short characteristic path length and a power-law behavior of the probability distribution of the node degree are obtained irrespective of the clustering method or the value of any of the tested parameters. The average cliquishness is consistently one or two orders of magnitude larger than that of a random realization of a network of corresponding size and connectivity. The cliquishness as function of node degree and the kinetic properties of the networks are found to be most dependent on clustering method and/or parameters. Although Markovian simulations on the networks reproduce cluster populations accurately, their kinetic properties most often differ from those observed in the MD simulations.
Collapse
Affiliation(s)
- Roman Affentranger
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | | |
Collapse
|
35
|
Prentiss MC, Wales DJ, Wolynes PG. The energy landscape, folding pathways and the kinetics of a knotted protein. PLoS Comput Biol 2010; 6:e1000835. [PMID: 20617197 PMCID: PMC2895632 DOI: 10.1371/journal.pcbi.1000835] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/25/2010] [Indexed: 11/18/2022] Open
Abstract
The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.
Collapse
Affiliation(s)
- Michael C Prentiss
- Department of Chemistry, Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|