1
|
Sikulu-Lord MT, Edstein MD, Goh B, Lord AR, Travis JA, Dowell FE, Birrell GW, Chavchich M. Rapid and non-invasive detection of malaria parasites using near-infrared spectroscopy and machine learning. PLoS One 2024; 19:e0289232. [PMID: 38527002 PMCID: PMC10962802 DOI: 10.1371/journal.pone.0289232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/26/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Novel and highly sensitive point-of-care malaria diagnostic and surveillance tools that are rapid and affordable are urgently needed to support malaria control and elimination. METHODS We demonstrated the potential of near-infrared spectroscopy (NIRS) technique to detect malaria parasites both, in vitro, using dilutions of infected red blood cells obtained from Plasmodium falciparum cultures and in vivo, in mice infected with P. berghei using blood spotted on slides and non-invasively, by simply scanning various body areas (e.g., feet, groin and ears). The spectra were analysed using machine learning to develop predictive models for infection. FINDINGS Using NIRS spectra of in vitro cultures and machine learning algorithms, we successfully detected low densities (<10-7 parasites/μL) of P. falciparum parasites with a sensitivity of 96% (n = 1041), a specificity of 93% (n = 130) and an accuracy of 96% (n = 1171) and differentiated ring, trophozoite and schizont stages with an accuracy of 98% (n = 820). Furthermore, when the feet of mice infected with P. berghei with parasitaemia ≥3% were scanned non-invasively, the sensitivity and specificity of NIRS were 94% (n = 66) and 86% (n = 342), respectively. INTERPRETATION These data highlights the potential of NIRS technique as rapid, non-invasive and affordable tool for surveillance of malaria cases. Further work to determine the potential of NIRS to detect malaria in symptomatic and asymptomatic malaria cases in the field is recommended including its capacity to guide current malaria elimination strategies.
Collapse
Affiliation(s)
- Maggy T. Sikulu-Lord
- School of the Environment, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael D. Edstein
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Brendon Goh
- School of the Environment, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Anton R. Lord
- Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jye A. Travis
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Floyd E. Dowell
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, Manhattan, Kansas, United States of America
| | - Geoffrey W. Birrell
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| | - Marina Chavchich
- Department of Drug Evaluation, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Suárez L, Kosar AJ, Dodd EL, Tazoo D, Lambert AC, Bohle DS. Soluble meso and deuteroporphyrin analogs of the malaria pigment hematin anhydride. J Inorg Biochem 2024; 252:112470. [PMID: 38218137 DOI: 10.1016/j.jinorgbio.2023.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Two soluble heme analogs of the insoluble malaria pigment hematin anhydride (HA, or β-hematin), [Fe(III)(protoporphyrin)]2, with either mesoporphyrin (MHA) or deuteroporphyrin (DHA) are characterized by elemental analysis, SEM, IR spectroscopy, electronic spectroscopy, paramagnetic 1H NMR spectroscopy and solution magnetic susceptibility. While prior single crystal and X-ray powder diffraction results indicate all three have a common propionate linked dimer motif, there is considerable solid state variation in the conformation. This is associated with enhanced solubility of MHA and DHA. As with HA, DHA undergoes thermally promoted reversible hydration/dehydration in the solid state. Solution 1H NMR studies of DHA suggest a high spin dimeric structure with the porphyrin methyls distributed between two isomers which are also present in the solid state. These soluble iron(III)porphyrin dimers allow for the first direct solution studies by NMR and UV-Vis spectroscopies of these key species. Taken together the results illustrate the importance and utility of varying the substituents on the periphery of the porphyrin for studying heme aggregation and malaria pigment formation.
Collapse
Affiliation(s)
- Liliana Suárez
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Canada
| | - Aaron J Kosar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Canada
| | - Erin L Dodd
- Département de Chimie de l'UQAM, 2101, rue Jeanne-Mance, Montréal H2X 2J6, Canada
| | - Dagobert Tazoo
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Canada
| | | | - D Scott Bohle
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal H3A 0B8, Canada.
| |
Collapse
|
3
|
Wolf S, Domes R, Domes C, Frosch T. Spectrally Resolved and Highly Parallelized Raman Difference Spectroscopy for the Analysis of Drug-Target Interactions between the Antimalarial Drug Chloroquine and Hematin. Anal Chem 2024; 96:3345-3353. [PMID: 38301154 PMCID: PMC10902819 DOI: 10.1021/acs.analchem.3c04231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Malaria is a severe disease caused by cytozoic parasites of the genus Plasmodium, which infiltrate and infect red blood cells. Several drugs have been developed to combat the devastating effects of malaria. Antimalarials based on quinolines inhibit the crystallization of hematin into hemozoin within the parasite, ultimately leading to its demise. Despite the frequent use of these agents, there are unanswered questions about their mechanisms of action. In the present study, the quinoline chloroquine and its interaction with the target structure hematin was investigated using an advanced, highly parallelized Raman difference spectroscopy (RDS) setup. Simultaneous recording of the spectra of hematin and chloroquine mixtures with varying compositions enabled the observation of changes in peak heights and positions based on the altered molecular structure resulting from their interaction. A shift of (-1.12 ± 0.05) cm-1 was observed in the core-size marker band ν(CαCm)asym peak position of the 1:1 chloroquine-hematin mixture compared to pure hematin. The oxidation-state marker band ν(pyrrole half-ring)sym exhibited a shift by (+0.93 ± 0.13) cm-1. These results were supported by density functional theory (DFT) calculations, indicating a hydrogen bond between the quinolinyl moiety of chloroquine and the oxygen atom of ferric protoporphyrin IX hydroxide (Fe(III)PPIX-OH). The consequence is a reduced electron density within the porphyrin moiety and an increase in its core size. This hypothesis provided further insights into the mechanism of hemozoin inhibition, suggesting chloroquine binding to the monomeric form of hematin, thereby preventing its further crystallization to hemozoin.
Collapse
Affiliation(s)
- Sebastian Wolf
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| |
Collapse
|
4
|
Domes R, Frosch T. Molecular Interactions Identified by Two-Dimensional Analysis-Detailed Insight into the Molecular Interactions of the Antimalarial Artesunate with the Target Structure β-Hematin by Means of 2D Raman Correlation Spectroscopy. Anal Chem 2023; 95:12719-12731. [PMID: 37586701 PMCID: PMC10469332 DOI: 10.1021/acs.analchem.3c01415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
A thorough understanding of the interaction of endoperoxide antimalarial agents with their biological target structures is of utmost importance for the tailored design of future efficient antimalarials. Detailed insights into molecular interactions between artesunate and β-hematin were derived with a combination of resonance Raman spectroscopy, two-dimensional correlation analysis, and density functional theory calculations. Resonance Raman spectroscopy with three distinct laser wavelengths enabled the specific excitation of different chromophore parts of β-hematin. The resonance Raman spectra of the artesunate-β-hematin complexes were thoroughly analyzed with the help of high-resolution and highly sensitive two-dimensional correlation spectroscopy. Spectral changes in the peak properties were found with increasing artesunate concentration. Changes in the low-frequency, morphology-sensitive Raman bands indicated a loss in crystallinity of the drug-target complexes. Differences in the high-wavenumber region were assigned to increased distortions of the planarity of the structure of the target molecule due to the appearance of various coexisting alkylation species. Evidence for the appearance of high-valent ferryl-oxo species could be observed with the help of differences in the peak properties of oxidation-state sensitive Raman modes. To support those findings, the relaxed ground-state structures of ten possible covalent mono- and di-meso(Cm)-alkylated hematin-dihydroartemisinyl complexes were calculated using density functional theory. A very good agreement with the experimental peak properties was achieved, and the out-of-plane displacements along the lowest-frequency normal coordinates were investigated by normal coordinate structural decomposition analysis. The strongest changes in all data were observed in vibrations with a high participation of Cm-parts of β-hematin.
Collapse
Affiliation(s)
- Robert Domes
- Leibniz
Institute of Photonic Technology, Albert Einstein Strasse 9, D-07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and
Biomedical Engineering Group, Technical
University Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
- Leibniz
Institute of Photonic Technology, Albert Einstein Strasse 9, D-07745 Jena, Germany
| |
Collapse
|
5
|
Domes R, Frosch T. Investigations on the Novel Antimalarial Ferroquine in Biomimetic Solutions Using Deep UV Resonance Raman Spectroscopy and Density Functional Theory. Anal Chem 2023; 95:7630-7639. [PMID: 37141178 DOI: 10.1021/acs.analchem.3c00539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Deep ultraviolet (DUV) resonance Raman experiments are performed, investigating the novel, promising antimalarial ferroquine (FQ). Two buffered aqueous solutions with pH values of 5.13 and 7.00 are used, simulating the acidic and neutral conditions inside a parasite's digestive vacuole and cytosol, respectively. To imitate the different polarities of the membranes and interior, the buffer's 1,4-dioxane content was increased. These experimental conditions should mimic the transport of the drug inside malaria-infected erythrocytes through parasitophorous membranes. Supporting density functional theory (DFT) calculations on the drug's micro-speciation were performed, which could be nicely assigned to shifts in the peak positions of resonantly enhanced high-wavenumber Raman signals at λexc = 257 nm. FQ is fully protonated in polar mixtures like the host interior and the parasite's cytoplasm or digestive vacuole (DV) and is only present as a free base in nonpolar ones, such as the host's and parasitophorous membranes. Additionally, the limit of detection (LoD) of FQ at vacuolic pH values was determined using DUV excitation wavelengths at 244 and 257 nm. By applying the resonant laser line at λexc = 257 nm, a minimal FQ concentration of 3.1 μM was detected, whereas the pre-resonant excitation wavelength 244 nm provides an LoD of 6.9 μM. These values were all up to one order of magnitude lower than the concentration found for the food vacuole of a parasitized erythrocyte.
Collapse
Affiliation(s)
- Robert Domes
- Leibniz Institute of Photonic Technology, Albert-Einstein Strasse 9, 07751 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Albert-Einstein Strasse 9, 07751 Jena, Germany
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany
| |
Collapse
|
6
|
Kongklad G, Chitaree R, Taechalertpaisarn T, Panvisavas N, Nuntawong N. Discriminant Analysis PCA-LDA Assisted Surface-Enhanced Raman Spectroscopy for Direct Identification of Malaria-Infected Red Blood Cells. Methods Protoc 2022; 5:mps5030049. [PMID: 35736550 PMCID: PMC9231316 DOI: 10.3390/mps5030049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Various methods for detecting malaria have been developed in recent years, each with its own set of advantages. These methods include microscopic, antigen-based, and molecular-based analysis of blood samples. This study aimed to develop a new, alternative procedure for clinical use by using a large data set of surface-enhanced Raman spectra to distinguish normal and infected red blood cells. PCA-LDA algorithms were used to produce models for separating P. falciparum (3D7)-infected red blood cells and normal red blood cells based on their Raman spectra. Both average normalized spectra and spectral imaging were considered. However, these initial spectra could hardly differentiate normal cells from the infected cells. Then, discrimination analysis was applied to assist in the classification and visualization of the different spectral data sets. The results showed a clear separation in the PCA-LDA coordinate. A blind test was also carried out to evaluate the efficiency of the PCA-LDA separation model and achieved a prediction accuracy of up to 80%. Considering that the PCA-LDA separation accuracy will improve when a larger set of training data is incorporated into the existing database, the proposed method could be highly effective for the identification of malaria-infected red blood cells.
Collapse
Affiliation(s)
- Gunganist Kongklad
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Ratchapak Chitaree
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Correspondence:
| | - Tana Taechalertpaisarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Nathinee Panvisavas
- Department of Plant, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Noppadon Nuntawong
- National Electronics and Computer Technology Center (NECTEC), 112 Thailand Science Park, Pathum Thani 12120, Thailand;
| |
Collapse
|
7
|
Adegoke JA, Raper H, Gassner C, Heraud P, Wood BR. Visible microspectrophotometry coupled with machine learning to discriminate the erythrocytic life cycle stages of P. falciparum malaria parasites in functional single cells. Analyst 2022; 147:2662-2670. [DOI: 10.1039/d2an00274d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible microspectroscopy combined with machine learning is able to detect and quantify functional malaria infected erythrocytes at different stages of the P. falciparum erythrocytic life cycle.
Collapse
Affiliation(s)
- John A. Adegoke
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Hannah Raper
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Knebl A, Domes C, Domes R, Wolf S, Popp J, Frosch T. Response to Comment on Hydrogen and C2-C6 Alkane Sensing in Complex Fuel Gas Mixtures with Fiber-Enhanced Raman Spectroscopy. Anal Chem 2021; 93:16285-16287. [PMID: 34807580 DOI: 10.1021/acs.analchem.1c04606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Knebl
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, 07745 Jena, Germany
| | - Christian Domes
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, 07745 Jena, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, 07745 Jena, Germany
| | - Sebastian Wolf
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University, 07743 Jena, Germany.,Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology Jena, Albert Einstein Strasse 9, 07745 Jena, Germany.,Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany.,Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
| |
Collapse
|
9
|
Baptista V, Costa MS, Calçada C, Silva M, Gil JP, Veiga MI, Catarino SO. The Future in Sensing Technologies for Malaria Surveillance: A Review of Hemozoin-Based Diagnosis. ACS Sens 2021; 6:3898-3911. [PMID: 34735120 DOI: 10.1021/acssensors.1c01750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early and effective malaria diagnosis is vital to control the disease spread and to prevent the emergence of severe cases and death. Currently, malaria diagnosis relies on optical microscopy and immuno-rapid tests; however, these require a drop of blood, are time-consuming, or are not specific and sensitive enough for reliable detection of low-level parasitaemia. Thus, there is an urge for simpler, prompt, and accurate alternative diagnostic methods. Particularly, hemozoin has been increasingly recognized as an attractive biomarker for malaria detection. As the disease proliferates, parasites digest host hemoglobin, in the process releasing toxic haem that is detoxified into an insoluble crystal, the hemozoin, which accumulates along with infection progression. Given its magnetic, optical, and acoustic unique features, hemozoin has been explored for new label-free diagnostic methods. Thereby, herein, we review the hemozoin-based malaria detection methods and critically discuss their challenges and potential for the development of an ideal diagnostic device.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Mariana S. Costa
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Miguel Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - José Pedro Gil
- Stockholm Malaria Center, Department of Microbiology and Tumour Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
10
|
Adegoke JA, De Paoli A, Afara IO, Kochan K, Creek DJ, Heraud P, Wood BR. Ultraviolet/Visible and Near-Infrared Dual Spectroscopic Method for Detection and Quantification of Low-Level Malaria Parasitemia in Whole Blood. Anal Chem 2021; 93:13302-13310. [PMID: 34558904 DOI: 10.1021/acs.analchem.1c02948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scourge of malaria infection continues to strike hardest against pregnant women and children in Africa and South East Asia. For global elimination, testing methods that are ultrasensitive to low-level ring-staged parasitemia are urgently required. In this study, we used a novel approach for diagnosis of malaria infection by combining both electronic ultraviolet-visible (UV/vis) spectroscopy and near infrared (NIR) spectroscopy to detect and quantify low-level (1-0.000001%) ring-staged malaria-infected whole blood under physiological conditions uisng Multiclass classification using logistic regression, which showed that the best results were achieved using the extended wavelength range, providing an accuracy of 100% for most parasitemia classes. Likewise, partial least-squares regression (PLS-R) analysis showed a higher quantification sensitivity (R2 = 0.898) for the extended spectral region compared to UV/vis and NIR (R2 = 0.806 and 0.556, respectively). For quantifying different-stage blood parasites, the extended wavelength range was able to detect and quantify all thePlasmodium falciparum accurately compared to testing each spectral component separately. These results demonstrate the potential of a combined UV/vis-NIR spectroscopy to accurately diagnose malaria-infected patients without the need for elaborate sample preparation associated with the existing mid-IR approaches.
Collapse
Affiliation(s)
- John A Adegoke
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Isaac O Afara
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta, Kuopio 70210, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4062, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Department of Microbiology and the Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Campbell C, O’Sullivan TD. Quantitative diffuse optical spectroscopy for noninvasive measurements of the malaria pigment hemozoin. BIOMEDICAL OPTICS EXPRESS 2020; 11:5800-5813. [PMID: 33149987 PMCID: PMC7587291 DOI: 10.1364/boe.401771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 05/15/2023]
Abstract
Hemozoin (Hz) is a crystal by-product of hemoglobin consumption by malaria parasites. There are currently no in vivo deep tissue sensing methods that can quantify Hz presence noninvasively, which would be advantageous for malaria research and treatment. In this work, we describe the broadband near-infrared optical characterization of synthetic Hz in static and dynamic tissue-simulating phantoms. Using hybrid frequency domain and continuous-wave near-infrared spectroscopy, we quantified the broadband optical absorption and scattering spectra of Hz and identified the presence of Hz at a minimum tissue-equivalent concentration of 0.014 µg/mL in static lipid emulsion phantoms simulating human adipose. We then constructed a whole blood-containing tissue-simulating phantom and demonstrated the detection of Hz at physiologically-relevant tissue oxygen saturations ranging from 70-90%. Our results suggest that quantitative diffuse optical spectroscopy may be useful for detecting deep tissue Hz in vivo.
Collapse
|
12
|
Mwanga EP, Minja EG, Mrimi E, Jiménez MG, Swai JK, Abbasi S, Ngowo HS, Siria DJ, Mapua S, Stica C, Maia MF, Olotu A, Sikulu-Lord MT, Baldini F, Ferguson HM, Wynne K, Selvaraj P, Babayan SA, Okumu FO. Detection of malaria parasites in dried human blood spots using mid-infrared spectroscopy and logistic regression analysis. Malar J 2019; 18:341. [PMID: 31590669 PMCID: PMC6781347 DOI: 10.1186/s12936-019-2982-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/28/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Epidemiological surveys of malaria currently rely on microscopy, polymerase chain reaction assays (PCR) or rapid diagnostic test kits for Plasmodium infections (RDTs). This study investigated whether mid-infrared (MIR) spectroscopy coupled with supervised machine learning could constitute an alternative method for rapid malaria screening, directly from dried human blood spots. METHODS Filter papers containing dried blood spots (DBS) were obtained from a cross-sectional malaria survey in 12 wards in southeastern Tanzania in 2018/19. The DBS were scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra in the range 4000 cm-1 to 500 cm-1. The spectra were cleaned to compensate for atmospheric water vapour and CO2 interference bands and used to train different classification algorithms to distinguish between malaria-positive and malaria-negative DBS papers based on PCR test results as reference. The analysis considered 296 individuals, including 123 PCR-confirmed malaria positives and 173 negatives. Model training was done using 80% of the dataset, after which the best-fitting model was optimized by bootstrapping of 80/20 train/test-stratified splits. The trained models were evaluated by predicting Plasmodium falciparum positivity in the 20% validation set of DBS. RESULTS Logistic regression was the best-performing model. Considering PCR as reference, the models attained overall accuracies of 92% for predicting P. falciparum infections (specificity = 91.7%; sensitivity = 92.8%) and 85% for predicting mixed infections of P. falciparum and Plasmodium ovale (specificity = 85%, sensitivity = 85%) in the field-collected specimen. CONCLUSION These results demonstrate that mid-infrared spectroscopy coupled with supervised machine learning (MIR-ML) could be used to screen for malaria parasites in human DBS. The approach could have potential for rapid and high-throughput screening of Plasmodium in both non-clinical settings (e.g., field surveys) and clinical settings (diagnosis to aid case management). However, before the approach can be used, we need additional field validation in other study sites with different parasite populations, and in-depth evaluation of the biological basis of the MIR signals. Improving the classification algorithms, and model training on larger datasets could also improve specificity and sensitivity. The MIR-ML spectroscopy system is physically robust, low-cost, and requires minimum maintenance.
Collapse
Affiliation(s)
- Emmanuel P Mwanga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania.
| | - Elihaika G Minja
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Emmanuel Mrimi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | | | - Johnson K Swai
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Said Abbasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Doreen J Siria
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Salum Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Life Sciences, University of Keele, Keele, Staffordshire, ST5 5BG, UK
| | - Caleb Stica
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Marta F Maia
- KEMRI Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Ally Olotu
- KEMRI Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Maggy T Sikulu-Lord
- School of Public Health, University of Queensland, Saint Lucia, Australia
- Department of Mathematics, Statistics and Computer Science, Marquette University, Wisconsin, USA
| | - Francesco Baldini
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
13
|
Recent Advancement in the Surface-Enhanced Raman Spectroscopy-Based Biosensors for Infectious Disease Diagnosis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071448] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Diagnosis is the key component in disease elimination to improve global health. However, there is a tremendous need for diagnostic innovation for neglected tropical diseases that largely consist of mosquito-borne infections and bacterial infections. Early diagnosis of these infectious diseases is critical but challenging because the biomarkers are present at low concentrations, demanding bioanalytical techniques that can deliver high sensitivity with ensured specificity. Owing to the plasmonic nanomaterials-enabled high detection sensitivities, even up to single molecules, surface-enhanced Raman spectroscopy (SERS) has gained attention as an optical analytical tool for early disease biomarker detection. In this mini-review, we highlight the SERS-based assay development tailored to detect key types of biomarkers for mosquito-borne and bacterial infections. We discuss in detail the variations of SERS-based techniques that have developed to afford qualitative and quantitative disease biomarker detection in a more accurate, affordable, and field-transferable manner. Current and emerging challenges in the advancement of SERS-based technologies from the proof-of-concept phase to the point-of-care phase are also briefly discussed.
Collapse
|
14
|
Frame L, Brewer J, Lee R, Faulds K, Graham D. Development of a label-free Raman imaging technique for differentiation of malaria parasite infected from non-infected tissue. Analyst 2018; 143:157-163. [PMID: 29143837 DOI: 10.1039/c7an01760j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During malarial infection, the host uses the spleen to clear the malaria parasites, however, the parasites have evolved the ability to bind to endothelial receptors in blood vessels of tissues to avoid removal, known as sequestration, and this is largely responsible for the symptoms and severity of infection. So a technique which could non-invasively diagnose tissue burden could be utilised as an aid for localised malaria diagnosis within tissue. Raman spectroscopy is a label-free imaging technique and can provide unique and chemically specific Raman 'fingerprint' spectrum of biological samples such as tissue. Within this study, Raman imaging was used to observe the changes to the molecular composition of mice spleen tissue under malarial infection, compared with non-infected samples. From analysis of the Raman imaging data, both tissue types showed very similar spectral profiles, which highlighted that their biochemical compositions were closely linked. Principal component analysis showed very clear separation of the two sample groups, with an associated increase in concentration of heme-based Raman vibrations within the infected dataset. This was indicative of the presence of hemozoin, the malaria pigment, being detected within the infected spleen. Separation also showed that as the hemozoin content within the tissue increased, there was a corresponding change to hemoglobin and some lipid/nucleic acid vibrations. These results demonstrate that Raman spectroscopy can be used to easily discriminate the subtle changes in tissue burden upon malarial infection.
Collapse
Affiliation(s)
- Laura Frame
- Centre of Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD, UK.
| | | | | | | | | |
Collapse
|
15
|
Yan D, Domes C, Domes R, Frosch T, Popp J, Pletz MW, Frosch T. Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia. Analyst 2018; 141:6104-6115. [PMID: 27704083 DOI: 10.1039/c6an01670g] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fiber enhanced resonance Raman spectroscopy (FERS) is introduced for chemically selective and ultrasensitive analysis of the biomolecules hematin, hemoglobin, biliverdin, and bilirubin. The abilities for analyzing whole intact, oxygenated erythrocytes are proven, demonstrating the potential for the diagnosis of red blood cell related diseases, such as different types of anemia and hemolytic disorders. The optical fiber enables an efficient light-guiding within a miniaturized sample volume of only a few micro-liters and provides a tremendously improved analytical sensitivity (LODs of 0.5 μM for bilirubin and 0.13 μM for biliverdin with proposed improvements down to the pico-molar range). FERS is a less invasive method than the standard ones and could be a new analytical method for monitoring neonatal jaundice, allowing a precise control of the unconjugated serum bilirubin levels, and therefore, providing a better prognosis for newborns. The potential for sensing very low concentrations of the bile pigments may also open up new opportunities for cancer research. The abilities of FERS as a diagnostic tool are explored for the elucidation of jaundice with different etiologies including the rare, not yet well understood diseases manifested in green jaundice. This is demonstrated by quantifying clinically relevant concentrations of bilirubin and biliverdin simultaneously in the micro-molar range: for the case of hyperbilirubinemia due to malignancy, infectious hepatitis, cirrhosis or stenosis of the common bile duct (1 μM biliverdin together with 50 μM bilirubin) and for hyperbiliverdinemia (25 μM biliverdin and 75 μM bilirubin). FERS has high potential as an ultrasensitive analytical technique for a wide range of biomolecules and in various life-science applications.
Collapse
Affiliation(s)
- Di Yan
- Leibniz Institute of Photonic Technology, Jena, Germany
| | | | - Robert Domes
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Timea Frosch
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany and Friedrich Schiller University, Institute for Physical Chemistry, Jena, Germany and Friedrich Schiller University, Abbe Centre of Photonics, Jena, Germany.
| | - Mathias W Pletz
- University Hospital, Center for Infectious Diseases and Infection Control, Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Jena, Germany and Friedrich Schiller University, Institute for Physical Chemistry, Jena, Germany and Friedrich Schiller University, Abbe Centre of Photonics, Jena, Germany.
| |
Collapse
|
16
|
Perez-Guaita D, Marzec KM, Hudson A, Evans C, Chernenko T, Matthäus C, Miljkovic M, Diem M, Heraud P, Richards JS, Andrew D, Anderson DA, Doerig C, Garcia-Bustos J, McNaughton D, Wood BR. Parasites under the Spotlight: Applications of Vibrational Spectroscopy to Malaria Research. Chem Rev 2018; 118:5330-5358. [DOI: 10.1021/acs.chemrev.7b00661] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Katarzyna M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, Kraków 30-348, Poland
- Center for Medical Genomics (OMICRON), Jagiellonian University, Kopernika 7C, Krakow 31-034, Poland
| | - Andrew Hudson
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Corey Evans
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Tatyana Chernenko
- Becton Dickinson and Company, 2350 Qume Drive, San Jose, California 95131, United States
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology, Albert Einstein Straße 9, Jena 07745, Germany
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University, Helmholtz Weg 4, Jena 07743, Germany
| | - Milos Miljkovic
- Department of Mechanical Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Max Diem
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, 316 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02155, United States
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - David A. Anderson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Christian Doerig
- Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jose Garcia-Bustos
- Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Don McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Domes C, Domes R, Popp J, Pletz MW, Frosch T. Ultrasensitive Detection of Antiseptic Antibiotics in Aqueous Media and Human Urine Using Deep UV Resonance Raman Spectroscopy. Anal Chem 2017; 89:9997-10003. [PMID: 28840713 DOI: 10.1021/acs.analchem.7b02422] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Deep UV resonance Raman spectroscopy is introduced as an analytical tool for ultrasensitive analysis of antibiotics used for empirical treatment of patients with sepsis and septic shock, that is, moxifloxacin, meropenem, and piperacillin in aqueous solution and human urine. By employing the resonant excitation wavelengths λexc = 244 nm and λexc = 257 nm, only a small sample volume and short acquisition times are needed. For a better characterization of the matrix urine, the main ingredients were investigated. The capability of detecting the antibiotics in clinically relevant concentrations in aqueous media (LODs: 13.0 ± 1.4 μM for moxifloxacin, 43.6 ± 10.7 μM for meropenem, and 7.1 ± 0.6 μM for piperacillin) and in urine (LODs: 36.6 ± 11.0 μM for moxifloxacin, and 114.8 ± 3.1 μM for piperacillin) points toward the potential of UV Raman spectroscopy as point-of-care method for therapeutic drug monitoring (TDM). This procedure enables physicians to achieve fast adequate dosing of antibiotics to improve the outcome of patients with sepsis.
Collapse
Affiliation(s)
- Christian Domes
- Leibniz Institute of Photonic Technology , Jena 07745, Germany
| | - Robert Domes
- Leibniz Institute of Photonic Technology , Jena 07745, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology , Jena 07745, Germany.,Friedrich Schiller University , Institute for Physical Chemistry, Jena 07743, Germany.,Friedrich Schiller University , Abbe Centre of Photonics, Jena 07745, Germany
| | - Mathias W Pletz
- Center for Infectious Diseases and Infection Control, Jena University Hospital , Jena 07743, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology , Jena 07745, Germany.,Friedrich Schiller University , Institute for Physical Chemistry, Jena 07743, Germany.,Friedrich Schiller University , Abbe Centre of Photonics, Jena 07745, Germany
| |
Collapse
|
18
|
Atkins CG, Buckley K, Blades MW, Turner RFB. Raman Spectroscopy of Blood and Blood Components. APPLIED SPECTROSCOPY 2017; 71:767-793. [PMID: 28398071 DOI: 10.1177/0003702816686593] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blood is a bodily fluid that is vital for a number of life functions in animals. To a first approximation, blood is a mildly alkaline aqueous fluid (plasma) in which a large number of free-floating red cells (erythrocytes), white cells (leucocytes), and platelets are suspended. The primary function of blood is to transport oxygen from the lungs to all the cells of the body and move carbon dioxide in the return direction after it is produced by the cells' metabolism. Blood also carries nutrients to the cells and brings waste products to the liver and kidneys. Measured levels of oxygen, nutrients, waste, and electrolytes in blood are often used for clinical assessment of human health. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to provide information on chemical composition, and hence has a potential role in this clinical assessment process. Raman spectroscopic probing of blood components and of whole blood has been on-going for more than four decades and has proven useful in applications ranging from the understanding of hemoglobin oxygenation, to the discrimination of cancerous cells from healthy lymphocytes, and the forensic investigation of crime scenes. In this paper, we review the literature in the field, collate the published Raman spectroscopy studies of erythrocytes, leucocytes, platelets, plasma, and whole blood, and attempt to draw general conclusions on the state of the field.
Collapse
Affiliation(s)
- Chad G Atkins
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Kevin Buckley
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 3 Nanoscale Biophotonics Laboratory, National University of Ireland, Ireland
| | - Michael W Blades
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Robin F B Turner
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
- 4 Department of Electrical and Computer Engineering, The University of British Columbia, Canada
| |
Collapse
|
19
|
Domes R, Domes C, Albert CR, Bringmann G, Popp J, Frosch T. Vibrational spectroscopic characterization of arylisoquinolines by means of Raman spectroscopy and density functional theory calculations. Phys Chem Chem Phys 2017; 19:29918-29926. [DOI: 10.1039/c7cp05415g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Seven new AIQ antimalarial agents were investigated using FT-NIR and deep-UV resonance Raman spectroscopy.
Collapse
Affiliation(s)
- Robert Domes
- Leibniz Institute of Photonic Technology
- Jena
- Germany
| | | | | | - Gerhard Bringmann
- Julius-Maximilians University
- Institute of Organic Chemistry
- Würzburg
- Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Friedrich Schiller University
- Institute for Physical Chemistry
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Friedrich Schiller University
- Institute for Physical Chemistry
| |
Collapse
|
20
|
Banoth E, Kasula VK, Jagannadh VK, Gorthi SS. Optofluidic single-cell absorption flow analyzer for point-of-care diagnosis of malaria. JOURNAL OF BIOPHOTONICS 2016; 9:610-618. [PMID: 26192714 DOI: 10.1002/jbio.201500118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
In this work, an optofluidic flow analyzer, which can be used to perform malaria diagnosis at the point-of-care is demonstrated. The presented technique is based on quantitative optical absorption measurements carried out on a single cell level for a given population of Human Red Blood Cells (RBCs). By measuring the optical absorption of each RBC, the decrease in the Hemoglobin (Hb) concentration in the cytoplasm of the cell due to the invasion of malarial parasite is detected. Cells are assessed on a single cell basis, as they pass through a microfluidic channel. The proposed technique has been implemented with inexpensive off-the-shelf components like laser diode, photo-detector and a micro-controller. The ability of the optofluidic flow analyzer to asses about 308,049 cells within 3 minutes has been demonstrated. The presented technique is capable of detecting very low parasitemia levels with high sensitivity.
Collapse
Affiliation(s)
- Earu Banoth
- Optics & Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012
| | - Vamshi Krishna Kasula
- Optics & Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012
| | - Veerendra Kalyan Jagannadh
- Optics & Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012
| | - Sai Siva Gorthi
- Optics & Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012.
| |
Collapse
|
21
|
Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy. Sci Rep 2016; 6:20177. [PMID: 26858127 PMCID: PMC4746575 DOI: 10.1038/srep20177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023] Open
Abstract
We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive.
Collapse
|
22
|
Fiber-enhanced Raman multi-gas spectroscopy: what is the potential of its application to breath analysis? Bioanalysis 2015; 7:281-4. [PMID: 25697186 DOI: 10.4155/bio.14.299] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Hobro AJ, Pavillon N, Fujita K, Ozkan M, Coban C, Smith NI. Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin. Analyst 2015; 140:2350-9. [PMID: 25646175 DOI: 10.1039/c4an01850h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hemozoin, the 'malaria pigment', is engulfed by phagocytic cells, such as macrophages, during malaria infection. This biocrystalline substance is difficult to degrade and often accumulates in phagocytes. The macrophage response to hemozoin relates to the severity of the disease and the potential for malaria-related disease complications. In this study we have used Raman spectroscopy as a label-free method to investigate the biochemical changes occurring in macrophages during the first few hours of hemozoin uptake. We found a number of distinct spectral groups, spectrally or spatially related to the presence of the hemozoin inside the cell. Intracellular hemozoin was spectrally identical to extracellular hemozoin, regardless of the location in the cell. A small proportion of hemozoin was found to be associated with lipid-based components, consistent with the uptake of hemozoin into vesicles such as phagosomes and lysosomes. The spatial distribution of the hemozoin was observed to be inhomogeneous, and its presence largely excluded that of proteins and lipids, demonstrating that cells were not able to break down the biocrystals on the time scales studied here. These results show that Raman imaging can be used to answer some of the open questions regarding the role of hemozoin in the immune response. How different combinations of hemozoin and other molecules are treated by macrophages, whether hemozoin can be broken down by the cell, and more importantly, which co-factors or products are involved in the subsequent cell reaction are the expected issues to be elucidated by this technique.
Collapse
Affiliation(s)
- Alison J Hobro
- Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Burnett JL, Carns JL, Richards-Kortum R. In vivo microscopy of hemozoin: towards a needle free diagnostic for malaria. BIOMEDICAL OPTICS EXPRESS 2015; 6:3462-74. [PMID: 26417515 PMCID: PMC4574671 DOI: 10.1364/boe.6.003462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 05/20/2023]
Abstract
Clinical diagnosis of malaria suffers from poor specificity leading to overtreatment with antimalarial medications. Alternatives, like blood smear microscopy or antigen-based tests, require a blood sample. We investigate in vivo microscopy as a needle-free malaria diagnostic. Two optical signatures, birefringence and absorbance, of the endogenous malaria by-product hemozoin were evaluated as in vivo optical biomarkers. Hemozoin birefringence was difficult to detect in highly scattering tissue; however, hemozoin absorbance was observed in increasingly complex biological environments and detectable over a clinically-relevant range of parasitemia in vivo in a P. yoelii-infected mouse model of malaria.
Collapse
|
25
|
Brückner M, Becker K, Popp J, Frosch T. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells. Anal Chim Acta 2015; 894:76-84. [PMID: 26423630 DOI: 10.1016/j.aca.2015.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes.
Collapse
Affiliation(s)
| | - Katja Becker
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, 35392 Giessen, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany; Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena, Germany; Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany; Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena, Germany; Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena, Germany.
| |
Collapse
|
26
|
Keiner R, Frosch T, Massad T, Trumbore S, Popp J. Enhanced Raman multigas sensing - a novel tool for control and analysis of (13)CO(2) labeling experiments in environmental research. Analyst 2015; 139:3879-84. [PMID: 24791270 DOI: 10.1039/c3an01971c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cavity-enhanced Raman multigas spectrometry is introduced as a versatile technique for monitoring of (13)CO2 isotope labeling experiments, while simultaneously quantifying the fluxes of O2 and other relevant gases across a wide range of concentrations. The multigas analysis was performed in a closed cycle; no gas was consumed, and the gas composition was not altered by the measurement. Isotope labeling of plant metabolites via photosynthetic uptake of (13)CO2 enables the investigation of resource flows in plants and is now an important tool in ecophysiological studies. In this experiment the (13)C labeling of monoclonal cuttings of Populus trichocarpa was undertaken. The high time resolution of the online multigas analysis allowed precise control of the pulse labeling and was exploited to calculate the kinetics of photosynthetic (13)CO2 uptake and to extrapolate the exact value of the (13)CO2 peak concentration in the labeling chamber. Further, the leaf dark respiration of immature and mature leaves was analyzed. The quantification of the photosynthetic O2 production rate as a byproduct of the (13)CO2 uptake correlated with the amount of available light and the leaf area of the plants in the labeling chamber. The ability to acquire CO2 and O2 respiration rates simultaneously also simplifies the determination of respiratory quotients (rate of O2 uptake compared to CO2 release) and thus indicates the type of combusted substrate. By combining quantification of respiration quotients with the tracing of (13)C in plants, cavity enhanced Raman spectroscopy adds a valuable new tool for studies of metabolism at the organismal to ecosystem scale.
Collapse
|
27
|
Jochum T, Michalzik B, Bachmann A, Popp J, Frosch T. Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy. Analyst 2015; 140:3143-9. [PMID: 25751376 DOI: 10.1039/c5an00091b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soil and groundwater contamination with benzene can cause serious environmental damage. However, many soil microorganisms are capable to adapt and are known to strongly control the fate of organic contamination. Innovative cavity enhanced Raman multi-gas spectroscopy (CERS) was applied to investigate the short-term response of the soil micro-flora to sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. (13)C-labeled benzene was spiked on a silty-loamy soil column in order to track and separate the changes in heterotrophic soil respiration - involving (12)CO2 and O2- from the natural attenuation process of benzene degradation to ultimately form (13)CO2. The respiratory quotient (RQ) decreased from a value 0.98 to 0.46 directly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with the maximum (13)CO2 concentration rate (0.63 μmol m(-2) s(-1)), indicating the highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into (13)CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore. The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration.
Collapse
Affiliation(s)
- Tobias Jochum
- Leibniz Institute of Photonic Technology, Jena, Germany.
| | | | | | | | | |
Collapse
|
28
|
Keiner R, Herrmann M, Küsel K, Popp J, Frosch T. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing. Anal Chim Acta 2015; 864:39-47. [PMID: 25732425 DOI: 10.1016/j.aca.2015.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 11/18/2022]
Abstract
The comprehensive investigation of changes in N cycling has been challenging so far due to difficulties with measuring gases such as N2 and N2O simultaneously. In this study we introduce cavity enhanced Raman gas spectroscopy as a new analytical methodology for tracing the stepwise reduction of (15)N-labelled nitrate by the denitrifying bacteria Pseudomonas stutzeri. The unique capabilities of Raman multi-gas analysis enabled real-time, continuous, and non-consumptive quantification of the relevant gases ((14)N2, (14)N2O, O2, and CO2) and to trace the fate of (15)N-labeled nitrate substrate ((15)N2, (15)N2O) added to a P. stutzeri culture with one single measurement. Using this new methodology, we could quantify the kinetics of the formation and degradation for all gaseous compounds (educts and products) and thus study the reaction orders. The gas quantification was complemented with the analysis of nitrate and nitrite concentrations for the online monitoring of the total nitrogen element budget. The simultaneous quantification of all gases also enabled the contactless and sterile online acquisition of the pH changes in the P. stutzeri culture by the stoichiometry of the redox reactions during denitrification and the CO2-bicarbonate equilibrium. Continuous pH monitoring - without the need to insert an electrode into solution - elucidated e.g. an increase in the slope of the pH value coinciding with an accumulation of nitrite, which in turn led to a temporary accumulation of N2O, due to an inhibition of nitrous oxide reductase. Cavity enhanced Raman gas spectroscopy has a high potential for the assessment of denitrification processes and can contribute substantially to our understanding of nitrogen cycling in both natural and agricultural systems.
Collapse
Affiliation(s)
- Robert Keiner
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany; Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Martina Herrmann
- Institute of Ecology, Friedrich Schiller University Jena, Jena 07743, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - Kirsten Küsel
- Institute of Ecology, Friedrich Schiller University Jena, Jena 07743, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany; Leibniz Institute of Photonic Technology, Jena 07745, Germany; InfectoGnostics Forschungscampus, Zentrum für Angewandte Forschung, Jena 07743, Germany; Abbe School of Photonics, Friedrich Schiller University, Jena, Germany
| | - Torsten Frosch
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany; Leibniz Institute of Photonic Technology, Jena 07745, Germany; InfectoGnostics Forschungscampus, Zentrum für Angewandte Forschung, Jena 07743, Germany.
| |
Collapse
|
29
|
Raman spectroscopic investigation of 13CO 2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech). Anal Bioanal Chem 2015; 407:1813-7. [PMID: 25577365 DOI: 10.1007/s00216-014-8446-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/27/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
An important issue, in times of climate change and more extreme weather events, is the investigation of forest ecosystem reactions to these events. Longer drought periods stress the vitality of trees and promote mass insect outbreaks, which strongly affect ecosystem processes and services. Cavity-enhanced Raman gas spectrometry was applied for online multi-gas analysis of the gas exchange rates of O2 and CO2 and the labeling of Fagus sylvatica L. (European beech) seedlings with (13)CO2. The rapid monitoring of all these gases simultaneously allowed for the separation of photosynthetic uptake of CO2 by the beech seedlings and a constant (12)CO2 efflux via respiration and thus for a correction of the measured (12)CO2 concentrations in course of the labeling experiment. The effects of aphid infestation with the woolly beech aphid (Phyllaphis fagi L.) as well as the effect of a drought period on the respirational gas exchange were investigated. A slightly decreased respirational activity of drought-stressed seedlings in comparison to normally watered seedlings was found already for a low drought intensity. Cavity-enhanced Raman gas monitoring of O2, (12)CO2, and (13)CO2 was proven to be a powerful new tool for studying the effect of drought stress and aphid infestation on the respirational activity of European beech seedlings as an example of important forest species in Central Europe.
Collapse
|
30
|
Hanf S, Fischer S, Hartmann H, Keiner R, Trumbore S, Popp J, Frosch T. Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry. Analyst 2015; 140:4473-81. [DOI: 10.1039/c5an00402k] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CERS monitoring of RQ values enables the analysis of nutrition shifts in trees in response to environmental stress.
Collapse
Affiliation(s)
- Stefan Hanf
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Max Planck Institute for Biogeochemistry
- Jena
| | | | | | | | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Friedrich Schiller University
- Institute for Physical Chemistry
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Friedrich Schiller University
- Institute for Physical Chemistry
| |
Collapse
|
31
|
Hanf S, Bögözi T, Keiner R, Frosch T, Popp J. Fast and Highly Sensitive Fiber-Enhanced Raman Spectroscopic Monitoring of Molecular H2 and CH4 for Point-of-Care Diagnosis of Malabsorption Disorders in Exhaled Human Breath. Anal Chem 2014; 87:982-8. [DOI: 10.1021/ac503450y] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stefan Hanf
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
- Max Planck Institute for Biogeochemistry, Jena 07745, Germany
| | - Timea Bögözi
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Robert Keiner
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
- Institute for Physical Chemistry, Friedrich Schiller University, Jena 07745, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena 07745, Germany
- Institute for Physical Chemistry, Friedrich Schiller University, Jena 07745, Germany
- Abbe Center of Photonics, Friedrich Schiller University, Jena 07745, Germany
| |
Collapse
|
32
|
Yuen C, Liu Q. Optimization of Fe3O4@Ag nanoshells in magnetic field-enriched surface-enhanced resonance Raman scattering for malaria diagnosis. Analyst 2014; 138:6494-500. [PMID: 24049766 DOI: 10.1039/c3an00872j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The great potential of magnetic field enriched surface enhanced resonance Raman spectroscopy (SERRS) for early malaria diagnosis has been demonstrated previously. This technique is able to detect β-hematin, which is equivalent to a malaria biomarker (hemozoin) in Raman features, at a concentration of 5 nM. In this study, we present the optimization of nanoparticles used in the magnetic field enriched SERRS by tuning the core size and shell thickness of nanoparticles with an iron oxide core and a silver shell (Fe3O4@Ag). The discrete dipole approximation (DDA) model was introduced to investigate the localized electromagnetic field distributions and extinction efficiencies of the aggregate of Fe3O4@Ag and β-hematin, in correlation with their magnetic field enriched SERRS performance. We find that the optimal core-shell size of Fe3O4@Ag leading to the effective aggregation of Fe3O4@Ag and β-hematin under an external magnetic field with superior extinction efficiencies is the key to realize highly augmented Raman signals in this strategy. Furthermore, it is noted that the optimized result differs from the case without the external magnetic field to that with the external magnetic field. Therefore, this work demonstrates experimentally and theoretically the potential of tuning the core-shell Fe3O4@Ag for achieving the efficient magnetic field-enriched SERRS detection of β-hematin for early malaria diagnosis.
Collapse
Affiliation(s)
- Clement Yuen
- Division of Bioengineering, School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457.
| | | |
Collapse
|
33
|
Hartung A, Kobelke J, Schwuchow A, Wondraczek K, Bierlich J, Popp J, Frosch T, Schmidt MA. Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes. OPTICS EXPRESS 2014; 22:19131-19140. [PMID: 25320999 DOI: 10.1364/oe.22.019131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Guiding light inside the hollow cores of microstructured optical fibers is a major research field within fiber optics. However, most of current fibers reveal limited spectral operation ranges between the mid-visible and the infrared and rely on complicated microstructures. Here we report on a new type of hollow-core fiber, showing for the first time distinct transmission windows between the deep ultraviolet and the near infrared. The fiber, guiding in a single mode, operates by the central core mode being anti-resonant to adjacent modes, leading to a novel modified tunneling leaky mode. The fiber design is straightforward to implement and reveals beneficial features such as preselecting the lowest loss mode (Gaussian-like or donut-shaped mode). Fibers with such a unique combination of attributes allow accessing the extremely important deep-UV range with Gaussian-like mode quality and may pave the way for new discoveries in biophotonics, multispectral spectroscopy, photo-initiated chemistry or ultrashort pulse delivery.
Collapse
|
34
|
Hanf S, Keiner R, Yan D, Popp J, Frosch T. Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis. Anal Chem 2014; 86:5278-85. [PMID: 24846710 DOI: 10.1021/ac404162w] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Versatile multigas analysis bears high potential for environmental sensing of climate relevant gases and noninvasive early stage diagnosis of disease states in human breath. In this contribution, a fiber-enhanced Raman spectroscopic (FERS) analysis of a suite of climate relevant atmospheric gases is presented, which allowed for reliable quantification of CH4, CO2, and N2O alongside N2 and O2 with just one single measurement. A highly improved analytical sensitivity was achieved, down to a sub-parts per million limit of detection with a high dynamic range of 6 orders of magnitude and within a second measurement time. The high potential of FERS for the detection of disease markers was demonstrated with the analysis of 27 nL of exhaled human breath. The natural isotopes (13)CO2 and (14)N(15)N were quantified at low levels, simultaneously with the major breath components N2, O2, and (12)CO2. The natural abundances of (13)CO2 and (14)N(15)N were experimentally quantified in very good agreement to theoretical values. A fiber adapter assembly and gas filling setup was designed for rapid and automated analysis of multigas compositions and their fluctuations within seconds and without the need for optical readjustment of the sensor arrangement. On the basis of the abilities of such miniaturized FERS system, we expect high potential for the diagnosis of clinically administered (13)C-labeled CO2 in human breath and also foresee high impact for disease detection via biologically vital nitrogen compounds.
Collapse
Affiliation(s)
- Stefan Hanf
- Leibniz Institute of Photonic Technology , Jena, Germany
| | | | | | | | | |
Collapse
|
35
|
Hobro AJ, Konishi A, Coban C, Smith NI. Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. Analyst 2013; 138:3927-33. [PMID: 23529513 DOI: 10.1039/c3an00255a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study Raman spectroscopy has been used to monitor the changes in erythrocytes and plasma during Plasmodium infection in mice, following malaria disease progression over the course of 7 days. The Raman spectra of both samples are dominated by the spectra of hemoglobin and hemozoin, due to their resonant enhancement. In plasma samples, due to the inherently low heme background, heme-based changes in the Raman spectra could be detected in the very early stages of infection, as little as one day after Plasmodium infection, where parasitemia levels were low, on the order of 0.2%, and typically difficult to detect by existing methods. Further principal component analysis also indicates concurrent erythrocyte membrane changes at around day 4, where parasitemia levels reached 3%. These results show that plasma analysis has significant potential for early, quantitative and automated detection of malaria, and to quantify heme levels in serum which modulate malarial effects on the immune system.
Collapse
Affiliation(s)
- Alison J Hobro
- Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
36
|
Keiner R, Frosch T, Hanf S, Rusznyak A, Akob DM, Küsel K, Popp J. Raman Spectroscopy—An Innovative and Versatile Tool To Follow the Respirational Activity and Carbonate Biomineralization of Important Cave Bacteria. Anal Chem 2013; 85:8708-14. [DOI: 10.1021/ac401699d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert Keiner
- Institute
of Photonic Technology, ‡Institute for Physical Chemistry, §Institute of Ecology,
and ∥Abbe School of Photonics, Friedrich Schiller University, Jena,
Germany
| | - Torsten Frosch
- Institute
of Photonic Technology, ‡Institute for Physical Chemistry, §Institute of Ecology,
and ∥Abbe School of Photonics, Friedrich Schiller University, Jena,
Germany
| | - Stefan Hanf
- Institute
of Photonic Technology, ‡Institute for Physical Chemistry, §Institute of Ecology,
and ∥Abbe School of Photonics, Friedrich Schiller University, Jena,
Germany
| | - Anna Rusznyak
- Institute
of Photonic Technology, ‡Institute for Physical Chemistry, §Institute of Ecology,
and ∥Abbe School of Photonics, Friedrich Schiller University, Jena,
Germany
| | - Denise M. Akob
- Institute
of Photonic Technology, ‡Institute for Physical Chemistry, §Institute of Ecology,
and ∥Abbe School of Photonics, Friedrich Schiller University, Jena,
Germany
| | - Kirsten Küsel
- Institute
of Photonic Technology, ‡Institute for Physical Chemistry, §Institute of Ecology,
and ∥Abbe School of Photonics, Friedrich Schiller University, Jena,
Germany
| | - Jürgen Popp
- Institute
of Photonic Technology, ‡Institute for Physical Chemistry, §Institute of Ecology,
and ∥Abbe School of Photonics, Friedrich Schiller University, Jena,
Germany
| |
Collapse
|
37
|
Frosch T, Yan D, Popp J. Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs. Anal Chem 2013; 85:6264-71. [DOI: 10.1021/ac400365f] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten Frosch
- Institute of Photonic Technology, Jena, Germany
- Friedrich-Schiller University, Institute for Physical Chemistry, Jena,
Germany
| | - Di Yan
- Institute of Photonic Technology, Jena, Germany
| | - Jürgen Popp
- Institute of Photonic Technology, Jena, Germany
- Friedrich-Schiller University, Institute for Physical Chemistry, Jena,
Germany
- Friedrich-Schiller University, Abbe School of Photonics, Jena, Germany
| |
Collapse
|
38
|
Frosch T, Keiner R, Michalzik B, Fischer B, Popp J. Investigation of Gas Exchange Processes in Peat Bog Ecosystems by Means of Innovative Raman Gas Spectroscopy. Anal Chem 2013; 85:1295-9. [DOI: 10.1021/ac3034163] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten Frosch
- Institute of Photonic Technology, Jena, Germany
- Friedrich-Schiller University, Institute for Physical Chemistry, Jena,
Germany
| | - Robert Keiner
- Institute of Photonic Technology, Jena, Germany
- Friedrich-Schiller University, Institute for Physical Chemistry, Jena,
Germany
| | - Beate Michalzik
- Friedrich-Schiller University, Institute of Geography, Jena, Germany
| | | | - Jürgen Popp
- Institute of Photonic Technology, Jena, Germany
- Friedrich-Schiller University, Institute for Physical Chemistry, Jena,
Germany
- Friedrich-Schiller University, Abbe School of Photonics, Jena, Germany
| |
Collapse
|
39
|
Schistosoma mansoni hemozoin modulates alternative activation of macrophages via specific suppression of Retnla expression and secretion. Infect Immun 2012; 81:133-42. [PMID: 23090958 DOI: 10.1128/iai.00701-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trematode Schistosoma mansoni is one of the etiological agents of schistosomiasis, a key neglected tropical disease responsible for an estimated annual loss of 70 million disability-adjusted life years. Hematophagy represents the primary nutrient acquisition pathway of this parasite, but digestion of hemoglobin also liberates toxic heme. Schistosomes detoxify heme via crystallization into hemozoin, which is subsequently regurgitated into the host's circulation. Here we demonstrate that during experimental schistosomiasis, hemozoin accumulating in the mouse liver is taken up by phagocytes at a time coincident with the development of the egg-induced T-helper 2 (Th2) granulomatous immune response. Furthermore, the uptake of hemozoin also coincides with the hepatic expression of markers of alternative macrophage activation. Alternatively activated macrophages are a key effector cell population associated with protection against schistosomiasis, making hemozoin well placed to play an important immunomodulatory role in this disease. To systematically explore this hypothesis, S. mansoni hemozoin was purified and added to in vitro bone marrow-derived macrophage cultures concurrently exposed to cytokines chosen to reflect the shifting state of macrophage activation in vivo. Macrophages undergoing interleukin-4 (IL-4)-induced alternative activation in the presence of hemozoin developed a phenotype specifically lacking in Retnla, a characteristic alternatively activated macrophage product associated with regulation of Th2 inflammatory responses. As such, in addition to its important detoxification role during hematophagy, we propose that schistosome hemozoin also provides a potent immunomodulatory function in the coevolved network of host-parasite relationships during schistosomiasis.
Collapse
|
40
|
Wood BR, Bailo E, Khiavi MA, Tilley L, Deed S, Deckert-Gaudig T, McNaughton D, Deckert V. Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. NANO LETTERS 2011; 11:1868-73. [PMID: 21486022 DOI: 10.1021/nl103004n] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tip-enhanced Raman scattering (TERS) is a powerful technique to obtain molecular information on a nanometer scale, however, the technique has been limited to cell surfaces, viruses, and isolated molecules. Here we show that TERS can be used to probe hemozoin crystals at less than 20 nm spatial resolution in the digestive vacuole of a sectioned malaria parasite-infected cell. The TERS spectra clearly show characteristic bands of hemozoin that can be correlated to a precise position on the crystal by comparison with the corresponding atomic force microscopy (AFM) image. These are the first recorded AFM images of hemozoin crystals inside malaria-infected cells and clearly show the hemozoin crystals protruding from the embedding medium. TERS spectra recorded of these crystals show spectral features consistent with a five-coordinate high-spin ferric heme complex, which include the electron density marker band ν(4) at 1373 cm(-1) and other porphyrin skeletal and ring breathing modes at approximately 1636, 1557, 1412, 1314, 1123, and 1066 cm(-1). These results demonstrate the potential of the AFM/TERS technique to obtain nanoscale molecular information within a sectioned single cell. We foresee this approach paving the way to a new independent drug screening modality for detection of drugs binding to the hemozoin surface within the digestive vacuole of the malaria trophozoite.
Collapse
Affiliation(s)
- Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, 3800 Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Frosch T, Popp J. Structural analysis of the antimalarial drug halofantrine by means of Raman spectroscopy and density functional theory calculations. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041516. [PMID: 20799794 DOI: 10.1117/1.3432656] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The structure of the antimalarial drug halofantrine is analyzed by means of density functional theory (DFT) calculations, IR, and Raman spectroscopy. Strong, selective enhancements of the Raman bands of halofantrine at 1621 and 1590 cm(-1) are discovered by means of UV resonance Raman spectroscopy with excitation wavelength lambda(exc)=244 nm. These signal enhancements can be exploited for a localization of small concentrations of halofantrine in a biological environment. The Raman spectrum of halofantrine is calculated by means of DFT calculations [B3LYP/6-311+G(d,p)]. The calculation is very useful for a thorough mode assignment of the Raman bands of halofantrine. The strong bands at 1621 and 1590 cm(-1) in the UV Raman spectrum are assigned to combined C[Double Bond]C stretching vibrations in the phenanthrene ring of halofantrine. These bands are considered as putative marker bands for pipi interactions with the biological target molecules. The calculation of the electron density demonstrates a strong distribution across the phenanthrene ring of halofantrine, besides the electron withdrawing effect of the Cl and CF(3) substituents. This strong and even electron density distribution supports the hypothesis of pipi stacking as a possible mode of action of halofantrine. Complementary IR spectroscopy is performed for an investigation of vibrations of polar functional groups of the halofantrine molecule.
Collapse
Affiliation(s)
- Torsten Frosch
- Friedrich-Schiller-Universitat Jena, Institut fur Physikalische Chemie, Jena, Germany.
| | | |
Collapse
|