1
|
Zheng F, Zhang S, Mo J, Yi H, Zhang S, Yu H, Lin K, Sha J, Chen Y. Ion Concentration Effect on Nanoscale Electrospray Modes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000397. [PMID: 32485055 DOI: 10.1002/smll.202000397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The phenomena and mechanism of electrospray modes in nanoscale are investigated from experiments and molecular dynamics simulations. It is found that the ionic concentration plays a crucial role in determining the dripping or the jetting modes in a nanoscale electrospray system. Molecular dynamics simulations uncover that the two modes are caused by the competition between the electric field stress and surface tension, which is similar to the mechanism in a macroscale electrospray system. However, in a nanoscale electrospray system, the two competing forces of the electric field stress and surface tension are more sensitive to the ion distributions than that in a macroscale electrospray system, in which the applied voltage and pressure dominate. With the decrease of the nozzle diameter to nanoscale, the ions not only affect the local electric field stress, but also destroy the hydrogen bonds among water molecules, which lead to that the ion concentration becomes a dominant factor in determining the electrospray modes in nanoscale. The discovery provides a novel method to control nanoscale electrospray modes, which may find potential applications for mass spectrometry, film deposition, and electrohydrodynamic printing.
Collapse
Affiliation(s)
- Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shuai Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jingwen Mo
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Haojie Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shizhao Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hongyang Yu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Kabin Lin
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
2
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Jung S, Effelsberg U, Tallarek U. Microchip Electrospray: Improvements in Spray and Signal Stability during Gradient Elution by an Inverted Postcolumn Makeup Flow. Anal Chem 2011; 83:9167-73. [DOI: 10.1021/ac202413z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stephanie Jung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Uwe Effelsberg
- Agilent Technologies, Hewlett-Packard-Strasse 8, 76337 Waldbronn, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
4
|
Microchip electrospray: Cone-jet stability analysis for water–acetonitrile and water–methanol mobile phases. J Chromatogr A 2011; 1218:1611-9. [DOI: 10.1016/j.chroma.2011.01.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 12/23/2022]
|