1
|
Wu X, Li Y, Shang Y, Wang W, Wu L, Han L, Wang Q, Wang Z, Xu H, Liu W. Application of two-dimensional polymerase chain reaction to detect four types of microorganisms in feces for assisted diagnosis of IBD. Clin Chim Acta 2024; 555:117802. [PMID: 38281660 DOI: 10.1016/j.cca.2024.117802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The incidence of inflammatory bowel disease (IBD) continues to increase annually, accounting for about 6.8 million cases in 2017 worldwide. However, there is currently no gold standard for the diagnosis of IBD. METHODS A method for the detection of four microorganisms in feces by two-dimensional polymerase chain reaction (2D-PCR) has been developed. Plasmids were used to validate the sensitivity and specificity of the method. Clinical samples were tested using a 2D-PCR method. Optimal diagnostic thresholds for IBD were determined based on ROC results. RESULTS Of the 112 samples, 78 were from IBD patients and 34 from patients with other gastrointestinal (GI) diseases. Thomasclavelia ramosum and univ907-1062 positivity are necessary, and two or more positives of the three bacteria (Thomasclavelia spiroforme, Thomasclavelia saccharogumia or Clostridium cluster XVIII) are the optimal diagnostic thresholds for IBD. The area under the curve was 0.826 with a 95% confidence interval of 0.735-0.981 and a p-value of 0.000, corresponding to a sensitivity of 0.769 and a specificity of 0.853. CONCLUSIONS Based on the detection results of microorganisms, IBD and GI can be effectively distinguished. The detection of four microorganisms in feces can assist clinicians in the differential diagnosis of IBD. Our experiment aims to provide a better program for early clinical diagnosis and regular dynamic monitoring of IBD.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, China
| | - Yueying Li
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, China
| | - Yuanjiang Shang
- Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, China
| | - Weifeng Wang
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lixia Wu
- Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, China
| | - Lin Han
- Central Laboratory and Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, China
| | - Qiong Wang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China.
| | - Zhujian Wang
- Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
2
|
Ahmed R, Augustine R, Valera E, Ganguli A, Mesaeli N, Ahmad IS, Bashir R, Hasan A. Spatial mapping of cancer tissues by OMICS technologies. Biochim Biophys Acta Rev Cancer 2021; 1877:188663. [PMID: 34861353 DOI: 10.1016/j.bbcan.2021.188663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Spatial mapping of heterogeneity in gene expression in cancer tissues can improve our understanding of cancers and help in the rapid detection of cancers with high accuracy and reliability. Significant advancements have been made in recent years in OMICS technologies, which possess the strong potential to be applied in the spatial mapping of biopsy tissue samples and their molecular profiling to a single-cell level. The clinical application of OMICS technologies in spatial profiling of cancer tissues is also advancing. The current review presents recent advancements and prospects of applying OMICS technologies to the spatial mapping of various analytes in cancer tissues. We benchmark the current state of the art in the field to advance existing OMICS technologies for high throughput spatial profiling. The factors taken into consideration include spatial resolution, types of biomolecules, number of different biomolecules that can be detected from the same assay, labeled versus label-free approaches, and approximate time required for each assay. Further advancements are still needed for the widespread application of OMICs technologies in performing fast and high throughput spatial mapping of cancer tissues as well as their effective use in research and clinical applications.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar
| | - Enrique Valera
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Anurup Ganguli
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Nasrin Mesaeli
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Rashid Bashir
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar.
| |
Collapse
|
3
|
Multiplex quantitative measurement of mRNAs from fixed tissue microarray sections. Appl Immunohistochem Mol Morphol 2014; 22:323-30. [PMID: 24809843 DOI: 10.1097/pdm.0000000000000039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development of prognostic and diagnostic biomarkers, such as those from gene expression studies, requires independent validation in clinical specimens. Immunohistochemical analysis on tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue is often used to increase the statistical power, and it is used more often than in situ hybridization, which can be technically limiting. Herein, we introduce a method for performing quantitative gene expression analysis across a TMA using an adaptation of 2D-RT-qPCR, a recently developed technology for measuring transcript levels in a histologic section while maintaining 2-dimensional positional information of the tissue sample. As a demonstration of utility, a TMA with tumor and normal human prostate samples was used to validate expression profiles from previous array-based gene discovery studies of prostate cancer. The results show that 2D-RT-qPCR expands the utility of TMAs to include sensitive and accurate gene expression measurements.
Collapse
|
4
|
Armani M, Tangrea MA, Shapiro B, Emmert-Buck MR, Smela E. Quantifying mRNA levels across tissue sections with 2D-RT-qPCR. Anal Bioanal Chem 2011; 400:3383-93. [PMID: 21559756 PMCID: PMC7375691 DOI: 10.1007/s00216-011-5062-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/23/2011] [Accepted: 04/25/2011] [Indexed: 11/24/2022]
Abstract
Measurement of mRNA levels across tissue samples facilitates an understanding of how genes function and what their roles are in disease. Quantifying low-abundance mRNA requires a workflow that preserves spatial information, isolates RNA, and performs reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). This is complex because these steps are typically performed in three separate platforms. In the present study, we describe two-dimensional RT-qPCR (2D-RT-qPCR), a method that quantifies RNA across tissues sections in a single integrated platform. The method uses the grid format of a multi-well plate to macrodissect tissue sections and preserve the spatial location of the RNA; this also eliminates the need for physical homogenization of the tissue. A new lysis and nucleic acid purification protocol is performed in the same multi-well plate, followed by RT-qPCR. The feasibility 2D-RT-qPCR was demonstrated on a variety of tissue types. Potential applications of the technology as a high-throughput tissue analysis platform are discussed.
Collapse
Affiliation(s)
- Michael Armani
- Fischell Department of Bio-Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|