1
|
Wen B, Weng X, Zhu S, Wu X, Lin X, Chen H, He Y. Carbohydrate polymer-driven nanoparticle synthesis and functionalization in the brain tumor therapy: A review. Int J Biol Macromol 2024; 285:138194. [PMID: 39617244 DOI: 10.1016/j.ijbiomac.2024.138194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The brain tumors have been characterized with aggressive and heterogeneous nature. The treatment of brain tumors has been challenging due to their sensitive location and also, presence of blood-brain barrier (BBB) that reduces the entrance of bioactive compounds to the brain tissue. Therefore, the new treatment strategies should be focused on improving the efficacy of conventional therapeutics, crossing over biological barriers and introducing new kinds of methods for brain tumor elimination. In the recent years, the application of carbohydrate polymers in the treatment of human cancers has been increased as they possess biocompatibility, biodegradability and selective targeting of tumor cells. Moreover, carbohydrate polymer-based nanoparticles demonstrate desirable drug loading and encapsulation, making them suitable for the delivery of bioactive compounds. Accordingly, the carbohydrate polymers and their nanoparticles have been developed to improve the drug and gene delivery to brain tumors. Moreover, these nanoparticles can increase sensitivity of chemotherapy and immunotherapy. In addition to providing combination therapy, the carbohydrate polymer-based nanoparticles can elevate the phototherapy-mediated tumor ablation. These nanocarriers have demonstrated desirable particle size, zeta potential and encapsulation efficiency that are beneficial for brain tumor therapy. Moreover, these nanoparticles have high biocompatibility that can be subsequently utilized in clinical studies.
Collapse
Affiliation(s)
- Baoquan Wen
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiqing Weng
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Shujun Zhu
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiujuan Wu
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiaofeng Lin
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Hong Chen
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China.
| | - Yuqin He
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China.
| |
Collapse
|
2
|
Qiao J, Hwang YH, Kim DP, Qi L. Simultaneous Monitoring of Temperature and Ca2+ Concentration Variation by Fluorescent Polymer during Intracellular Heat Production. Anal Chem 2020; 92:8579-8583. [DOI: 10.1021/acs.analchem.0c01534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yoon-Ho Hwang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Nam-Gu, Pohang-Si, Gyungsangbuk-do 37673, South Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology, Nam-Gu, Pohang-Si, Gyungsangbuk-do 37673, South Korea
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Chen B, He XY, Yi XQ, Zhuo RX, Cheng SX. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15148-15153. [PMID: 26168166 DOI: 10.1021/acsami.5b03866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Drug delivery has become an important strategy for improving the chemotherapy efficiency. Here we developed a multifunctionalized nanosized albumin-based drug-delivery system with tumor-targeting, cell-penetrating, and endolysosomal pH-responsive properties. cRGD-BSA/KALA/DOX nanoparticles were fabricated by self-assembly through electrostatic interaction between cell-penetrating peptide KALA and cRGD-BSA, with cRGD as a tumor-targeting ligand. Under endosomal/lysosomal acidic conditions, the changes in the electric charges of cRGD-BSA and KALA led to the disassembly of the nanoparticles to accelerate intracellular drug release. cRGD-BSA/KALA/DOX nanoparticles showed an enhanced inhibitory effect in the growth of αvβ3-integrin-overexpressed tumor cells, indicating promising application in cancer treatments.
Collapse
Affiliation(s)
- Bin Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiao-Qing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
4
|
Zhao X, Li Y, Jin D, Xing Y, Yan X, Chen L. A near-infrared multifunctional fluorescent probe with an inherent tumor-targeting property for bioimaging. Chem Commun (Camb) 2015; 51:11721-4. [PMID: 26104217 DOI: 10.1039/c5cc03878b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A mitochondria-targeting probe, by conjugating a quaternary ammonium cation with glucosamine modified pH-activated cyanine, was designed and synthesized. This probe has excellent selectivity and sensitivity toward pH, stability, cellular membrane permeability and low cytotoxicity. Owing to the acidic feature of tumors and the more negative mitochondrial membrane potential of tumor cells than that of normal cells, this probe can selectively accumulate in tumor cells and light up its fluorescence. It has been successfully applied for in vivo tumor imaging with a high signal-to-noise ratio. Moreover, this multifunctional switchable sensor was also employed for the fluorescent imaging of the fluctuation of intracellular pH in HeLa cells.
Collapse
Affiliation(s)
- Xu Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China.
| | | | | | | | | | | |
Collapse
|
5
|
Huang C, Qin H, Qian J, Zhang J, Zhao S, Changyi Y, Li B, Zhang J, Zhu J, Xing D, Yang S, Li C. Multi-parametric imaging of the invasiveness-permissive acidic microenvironment in human glioma xenografts. RSC Adv 2015. [DOI: 10.1039/c5ra07685d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-invasive multi-parametric imaging demonstrated the positive correlation between the invasiveness and extracellular acidity in glioma xenografts.
Collapse
|
6
|
Wang L, Fan Z, Zhang J, Changyi Y, Huang C, Gu Y, Xu Z, Tang Z, Lu W, Wei X, Li C. Evaluating tumor metastatic potential by imaging intratumoral acidosisviapH-activatable near-infrared fluorescent probe. Int J Cancer 2014; 136:E107-16. [DOI: 10.1002/ijc.29153] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Lu Wang
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Zhichao Fan
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Jingye Zhang
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Yinzhi Changyi
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Cuiyun Huang
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Yanjuan Gu
- Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University, Hung Hom; Kowloon Hong Kong China
| | - Ziyao Xu
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Zhijia Tang
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| |
Collapse
|
7
|
Wu W, Wang W, Li S, Wang J, Zhang Q, Li X, Luo X, Li J. Physiological pH-triggered morphological transition of amphiphilic block copolymer self-assembly. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0494-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Gao X, Li C. Nanoprobes visualizing gliomas by crossing the blood brain tumor barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:426-440. [PMID: 24106064 DOI: 10.1002/smll.201301673] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/04/2013] [Indexed: 06/02/2023]
Abstract
The difficulty in delineating the glioma margins in brain is a major obstacle for its completed resection, which leads to the disproportionately high recurrence and mortality. Besides the fast exertion rate, inadequate sensitivity and non-targeting specificity, the main reason leading to failure of small molecular probes to define gliomas is their incapability to efficiently cross the blood brain tumor barrier (BBTB). Nanoprobes (NPs) show promise to precisely delineate the geographically irregular tumor margins due to their tunable size/circulation lifetime that maximize their passive intratumoral accumulation and their convenience for surface modification that increases the BBTB transcytosis efficacy, imaging sensitivity and receptor targeting specificity. In this work, the characteristics of the BBTB are addressed from biological and physiological perspectives, strategies are presented to deliver NPs across the BBTB, recent developments of NPs are reviewed for glioma visualization and finally the difficulty and promise for clinical translation of NPs are described. Overall, NPs hold great potential for glioma imaging and treatment by pre-surgically delineating tumor margins and intra-operatively guiding tumor excision.
Collapse
Affiliation(s)
- Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University 826 Zhangheng Rd., Shanghai, 201203, China
| | | |
Collapse
|
9
|
Yu KK, Li K, Hou JT, Yang J, Xie YM, Yu XQ. Rhodamine based pH-sensitive “intelligent” polymers as lysosome targeting probes and their imaging applications in vivo. Polym Chem 2014. [DOI: 10.1039/c4py00646a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two rhodamine-based polymers were prepared via free radical polymerization and could serve as lysosome targeting probes with good pH sensitivity. Fluorescence imaging of nude mice displayed a chance for visualization of cancerous tissue in vivo by sensing its acidic microenvironments.
Collapse
Affiliation(s)
- Kang-Kang Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
- State Key Laboratory of Biotherapy
| | - Ji-Ting Hou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Jin Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Yong-Mei Xie
- State Key Laboratory of Biotherapy
- West China Hospital
- West China Medical School
- Sichuan University
- Chengdu 610041, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| |
Collapse
|
10
|
Li M, Tang Z, Zhang Y, Lv S, Yu H, Zhang D, Hong H, Chen X. LHRH-peptide conjugated dextran nanoparticles for targeted delivery of cisplatin to breast cancer. J Mater Chem B 2014; 2:3490-3499. [DOI: 10.1039/c4tb00077c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Si Z, Huang C, Gao X, Li C. pH-responsive near-infrared nanoprobe imaging metastases by sensing acidic microenvironment. RSC Adv 2014. [DOI: 10.1039/c4ra07984a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A pH responsive near-infrared fluorescence nanoprobe was developed and visualized pulmonary metastases in a mouse model with a volume as small as 0.5 mm3 by sensing the acidic tumor microenvironment.
Collapse
Affiliation(s)
- Zhan Si
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai 201203, China
| | - Cuiyun Huang
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai 201203, China
| | - Xihui Gao
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai 201203, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai 201203, China
| |
Collapse
|
12
|
Fluorescent imaging of acidic compartments in living cells with a high selective novel one-photon ratiometric and two-photon acidic pH probe. Biosens Bioelectron 2013; 50:42-9. [DOI: 10.1016/j.bios.2013.05.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
|
13
|
Mitochondrial-targeted prodrug cancer therapy using a rhodamine B labeled fluorinated docetaxel. Eur J Pharm Biopharm 2013; 85:541-9. [DOI: 10.1016/j.ejpb.2013.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 06/01/2013] [Accepted: 06/09/2013] [Indexed: 01/21/2023]
|
14
|
Stasinopoulos I, Penet MF, Chen Z, Kakkad S, Glunde K, Bhujwalla ZM. Exploiting the tumor microenvironment for theranostic imaging. NMR IN BIOMEDICINE 2011; 24:636-47. [PMID: 21793072 PMCID: PMC3146040 DOI: 10.1002/nbm.1664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/29/2010] [Accepted: 12/06/2010] [Indexed: 05/12/2023]
Abstract
The integration of chemistry and molecular biology with imaging is providing some of the most exciting opportunities in the treatment of cancer. The field of theranostic imaging, where diagnosis is combined with therapy, is particularly suitable for a disease as complex as cancer, especially now that genomic and proteomic profiling can provide an extensive 'fingerprint' of each tumor. Using this information, theranostic agents can be shaped for personalized treatment to target specific compartments, such as the tumor microenvironment (TME), whilst minimizing damage to normal tissue. These theranostic agents can also be used to target multiple pathways or networks by incorporating multiple small interfering RNAs (siRNAs) within a single agent. A decade ago genetic alterations were the primary focus in cancer research. Now it is apparent that the tumor physiological microenvironment, interactions between cancer cells and stromal cells, such as endothelial cells, fibroblasts and macrophages, the extracellular matrix (ECM), and a host of secreted factors and cytokines, influence progression to metastatic disease, aggressiveness and the response of the disease to treatment. In this review, we outline some of the characteristics of the TME, describe the theranostic agents currently available to target the TME and discuss the unique opportunities the TME provides for the design of novel theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Ioannis Stasinopoulos
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie-France Penet
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhihang Chen
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samata Kakkad
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M. Bhujwalla
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Correspondence to: Z. M. Bhujwalla, Department of Radiology, The Johns Hopkins University School of Medicine, Rm 208C, Traylor Bldg., 720, Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|