1
|
Sharma V, Sharma A, Wadje BN, Bharate SB. Benzopyrone, a privileged scaffold in drug discovery: An overview of FDA-approved drugs and clinical candidates. Med Res Rev 2024; 44:2035-2077. [PMID: 38532246 DOI: 10.1002/med.22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Natural products have always served as an important source of drugs for treating various diseases. Among various privileged natural product scaffolds, the benzopyrone class of compounds has a substantial presence among biologically active compounds. One of the pioneering anticoagulant drugs, warfarin approved in 1954 bears a benzo-α-pyrone (coumarin) nucleus. The widely investigated psoriasis drugs, methoxsalen, and trioxsalen, also contain a benzo-α-pyrone nucleus. Benzo-γ-pyrone (chromone) containing drugs, cromoglic acid, and pranlukast were approved as treatments for asthma in 1982 and 2007, respectively. Numerous other small molecules with a benzopyrone core are under clinical investigation. The present review discusses the discovery, absorption, distribution, metabolism, excretion properties, and synthetic approaches for the Food and Drug Administration-approved and clinical-stage benzopyrone class of compounds. The role of the pyrone core in biological activity has also been discussed. The present review unravels the potential of benzopyrone core in medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Venu Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bhagyashri N Wadje
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Kalra S, Donnelly A, Singh N, Matthews D, Del Villar-Guerra R, Bemmer V, Dominguez C, Allcock N, Cherny D, Revyakin A, Rusling DA. Functionalizing DNA Origami by Triplex-Directed Site-Specific Photo-Cross-Linking. J Am Chem Soc 2024; 146:13617-13628. [PMID: 38695163 PMCID: PMC11100008 DOI: 10.1021/jacs.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Here, we present a cross-linking approach to covalently functionalize and stabilize DNA origami structures in a one-pot reaction. Our strategy involves adding nucleotide sequences to adjacent staple strands, so that, upon assembly of the origami structure, the extensions form short hairpin duplexes targetable by psoralen-labeled triplex-forming oligonucleotides bearing other functional groups (pso-TFOs). Subsequent irradiation with UVA light generates psoralen adducts with one or both hairpin staples leading to site-specific attachment of the pso-TFO (and attached group) to the origami with ca. 80% efficiency. Bis-adduct formation between strands in proximal hairpins further tethers the TFO to the structure and generates "superstaples" that improve the structural integrity of the functionalized complex. We show that directing cross-linking to regions outside of the origami core dramatically reduces sensitivity of the structures to thermal denaturation and disassembly by T7 RNA polymerase. We also show that the underlying duplex regions of the origami core are digested by DNase I and thus remain accessible to read-out by DNA-binding proteins. Our strategy is scalable and cost-effective, as it works with existing DNA origami structures, does not require scaffold redesign, and can be achieved with just one psoralen-modified oligonucleotide.
Collapse
Affiliation(s)
- Shantam Kalra
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Amber Donnelly
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Nishtha Singh
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Daniel Matthews
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Rafael Del Villar-Guerra
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Victoria Bemmer
- Centre
for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, U.K.
| | - Cyril Dominguez
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Natalie Allcock
- Core
Biotechnology Services Electron Microscopy Facility, University of Leicester, Leicester LE1 7RH, U.K.
| | - Dmitry Cherny
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Andrey Revyakin
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - David A. Rusling
- School
of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, U.K.
| |
Collapse
|
3
|
Kosar M, Piccini D, Foiani M, Giannattasio M. A rapid method to visualize human mitochondrial DNA replication through rotary shadowing and transmission electron microscopy. Nucleic Acids Res 2021; 49:e121. [PMID: 34500456 PMCID: PMC8643652 DOI: 10.1093/nar/gkab770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
We report a rapid experimental procedure based on high-density in vivo psoralen inter-strand DNA cross-linking coupled to spreading of naked purified DNA, positive staining, low-angle rotary shadowing, and transmission electron microscopy (TEM) that allows quick visualization of the dynamic of heavy strand (HS) and light strand (LS) human mitochondrial DNA replication. Replication maps built on linearized mitochondrial genomes and optimized rotary shadowing conditions enable clear visualization of the progression of the mitochondrial DNA synthesis and visualization of replication intermediates carrying long single-strand DNA stretches. One variant of this technique, called denaturing spreading, allowed the inspection of the fine chromatin structure of the mitochondrial genome and was applied to visualize the in vivo three-strand DNA structure of the human mitochondrial D-loop intermediate with unprecedented clarity.
Collapse
Affiliation(s)
- Martin Kosar
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Daniele Piccini
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Marco Foiani
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Dipartimento di Oncologia & Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| | - Michele Giannattasio
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Dipartimento di Oncologia & Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
5
|
Sosic A, Göttlich R, Fabris D, Gatto B. B-CePs as cross-linking probes for the investigation of RNA higher-order structure. Nucleic Acids Res 2021; 49:6660-6672. [PMID: 34125908 PMCID: PMC8266612 DOI: 10.1093/nar/gkab468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/12/2022] Open
Abstract
Elucidating the structure of RNA and RNA ensembles is essential to understand biological functions. In this work, we explored the previously uncharted reactivity of bis-chloropiperidines (B-CePs) towards RNA. We characterized at the molecular level the different adducts induced by the fast reacting compound B-CeP 1 with RNA. Following an approach based on solution thermal melting coupled with ESI mass spectrometry (STHEM-ESI), we proved the ability of B-CePs to induce inter-molecular cross-links between guanines in double stranded RNA. These results open the possibility of using B-CePs as structural probes for investigating higher-order structures, such as the kissing loop complex established by the dimerization initiation site (DIS) of the HIV-1 genome. We confirmed the potential of B-CePs to reveal the identity of RNA structures involved in long-range interactions, expecting to benefit the characterization of samples that are not readily amenable to traditional high-resolution techniques, and thus promoting the elucidation of pertinent RNA systems associated with old and new diseases.
Collapse
Affiliation(s)
- Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Richard Göttlich
- Institute of Organic Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dan Fabris
- Departments of Chemistry and Biological Sciences, University at Albany-SUNY, Albany, NY, 12222, USA
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Hähnel V, Weber I, Tuemmler S, Graf B, Gruber M, Burkhardt R, Ahrens N. Matrix-dependent absorption of 8-methoxypsoralen in extracorporeal photopheresis. Photochem Photobiol Sci 2020; 19:1099-1103. [PMID: 32638713 DOI: 10.1039/c9pp00378a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy for various diseases. Autologous leukocytes are collected, photoactivated with a photosensitizer (8-methoxypsoralen, 8-MOP) and UVA light, and subsequently reinfused back to the patient. Leukapheresis and UVA irradiation systems can be integrated into one device (inline) or handled by two separate devices (offline). ECP works via intercalation of 8-MOP into DNA helices and UVA-based interactions to inhibit DNA replication. 8-MOP is known to adhere to plastic materials, which might reduce its availability for intercalation. In the present study we examined the bioavailability of 8-MOP when different plastic materials and solvents are used as matrices. METHODS Varying amounts of shredded ethylene vinyl acetate (EVA) and polyvinylchloride (PVC) from the MacoGenic irradiation bag (EVA1), UVA PIT irradiation bag (EVA2), UVA PIT recirculation bag (PVC A) and UVA PIT tubing (PVC B) by MacoPharma and PIT Medical Systems, respectively, were incubated with 200 ng mL-1 8-MOP dissolved in diisopropyl ether (DIPE) plus toluene 90/10 vol%, deionized water or plasma. After 2 h 8-MOP concentrations were determined by GC-MS. RESULTS After incubation, 8-MOP concentrations varied depending on the amount and type of plastic (PVC > EVA) and solvent (water > plasma > DIPE/toluene). Absorption to 200 mg EVA1 or EVA2 resulted in 8-MOP concentrations of 57% or 32% in water, 91% or 80% in plasma, and 93% or 92% in DIPE/toluene, while 200 mg PVC A and PVC B yielded recovery rates of 26% and 10% in water, 76% and 75% in plasma, and 55% and 30% in DIPE/toluene, respectively. Remaining 8-MOP differed significantly between container materials (EVA vs. PVC; p < 0.022) but not manufacturers (MacoPharma vs. PIT Medical Systems). CONCLUSION Absorption loss of 8-MOP depends on the type of plastic and solvent and is more pronounced with water than with plasma. As the DNA binding effect of 8-MOP is dose-dependent, ECP starting doses should be adjusted to ensure that a sufficient concentration of free bioavailable 8-MOP is present during UV irradiation.
Collapse
Affiliation(s)
- Viola Hähnel
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Isabell Weber
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Simon Tuemmler
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Bernhard Graf
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany.
| | - Ralph Burkhardt
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Norbert Ahrens
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Galati G, Gandin A, Jolivet Y, Larbat R, Hehn A. Untargeted Metabolomics Approach Reveals Diverse Responses of Pastinaca Sativa to Ozone and Wounding Stresses. Metabolites 2019; 9:E153. [PMID: 31340592 PMCID: PMC6681050 DOI: 10.3390/metabo9070153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/08/2019] [Accepted: 07/20/2019] [Indexed: 12/01/2022] Open
Abstract
Stresses such as wounding or atmospheric pollutant exposure have a significant impact on plant fitness. Since it has been widely described that the metabolome directly reflects plant physiological status, a way to assess this impact is to perform a global metabolomic analysis. In this study, we investigated the effect of two abiotic stresses (mechanical wounding and ozone exposure) on parsnip metabolic balance using a liquid chromatography-mass spectrometry-based untargeted metabolomic approach. For this purpose, parsnip leaves were submitted to an acute ozone exposure or were mechanically wounded and sampled 24, 48, and 72 h post-treatment. Multivariate and univariate statistical analyses highlighted numerous differentially-accumulated metabolic features as a function of time and treatment. Mechanical wounding led to a more differentiated response than ozone exposure. We found that the levels of coumarins and fatty acyls increased in wounded leaves, while flavonoid concentration decreased in the same conditions. These results provide an overview of metabolic destabilization through differentially-accumulated compounds and provide a better understanding of global plant metabolic changes in defense mechanisms.
Collapse
Affiliation(s)
- Gianni Galati
- INRA, LAE, Université de Lorraine, 54000 Nancy France
| | - Anthony Gandin
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Romain Larbat
- INRA, LAE, Université de Lorraine, 54000 Nancy France.
| | - Alain Hehn
- INRA, LAE, Université de Lorraine, 54000 Nancy France
| |
Collapse
|
8
|
Bifunctional cross-linking approaches for mass spectrometry-based investigation of nucleic acids and protein-nucleic acid assemblies. Methods 2018; 144:64-78. [PMID: 29753003 DOI: 10.1016/j.ymeth.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
With the goal of expanding the very limited toolkit of cross-linking agents available for nucleic acids and their protein complexes, we evaluated the merits of a wide range of bifunctional agents that may be capable of reacting with the functional groups characteristic of these types of biopolymers. The survey specifically focused on the ability of test reagents to produce desirable inter-molecular conjugates, which could reveal the identity of interacting components and the position of mutual contacts, while also considering a series of practical criteria for their utilization as viable nucleic acid probes. The survey employed models consisting of DNA, RNA, and corresponding protein complexes to mimic as close as possible typical applications. Denaturing polyacrylamide gel electrophoresis (PAGE) and mass spectrometric (MS) analyses were implemented in concert to monitor the formation of the desired conjugates. In particular, the former was used as a rapid and inexpensive tool for the efficient evaluation of cross-linker activity under a broad range of experimental conditions. The latter was applied after preliminary rounds of reaction optimization to enable full-fledged product characterization and, more significantly, differentiation between mono-functional and intra- versus inter-molecular conjugates. This information provided the feedback necessary to further optimize reaction conditions and explain possible outcomes. Among the reagents tested in the study, platinum complexes and nitrogen mustards manifested the most favorable characteristics for practical cross-linking applications, whereas other compounds provided inferior yields, or produced rather unstable conjugates that did not survive the selected analytical conditions. The observed outcomes will help guide the selection of the most appropriate cross-linking reagent for a specific task, whereas the experimental conditions described here will provide an excellent starting point for approaching these types of applications. As a whole, the results of the survey clearly emphasize that finding a universal reagent, which may afford excellent performance with all types of nucleic acid substrates, will require extending the exploration beyond the traditional chemistries employed to modify the constitutive functional groups of these vital biopolymers.
Collapse
|
9
|
Brodbelt JS. Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem Soc Rev 2014; 43:2757-83. [PMID: 24481009 PMCID: PMC3966968 DOI: 10.1039/c3cs60444f] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodissociation mass spectrometry combines the ability to activate and fragment ions using photons with the sensitive detection of the resulting product ions by mass spectrometry. This combination affords a versatile tool for characterization of biological molecules. The scope and breadth of photodissociation mass spectrometry have increased substantially over the past decade as new research groups have entered the field and developed a number of innovative applications that illustrate the ability of photodissociation to produce rich fragmentation patterns, to cleave bonds selectively, and to target specific molecules based on incorporation of chromophores. This review focuses on many of the key developments in photodissociation mass spectrometry over the past decade with a particular emphasis on its applications to biological molecules.
Collapse
|
10
|
Silva EBF, Barbosa IJF, Barreto HM, Siqueira-Júnior JP. Modulation of the UVB-induced lethality by furocoumarins in Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:260-3. [PMID: 24362322 DOI: 10.1016/j.jphotobiol.2013.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/19/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022]
Abstract
Furocumarins (FCs) are photoactive compounds capable of binding to DNA, and once excited by UVA light (∼365nm), they form photoadducts which can lead to mutagenicity and lethality. However, the biological effects of FCs combined with UVB light (312nm) is still little investigated. In the present study, the lethal effect of UVB light alone and combined with different concentrations of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP) and 3-carbethoxypsoralen (3-CPs) was evaluated in a strain of Staphylococcus aureus. 8-MOP-UVB and TMP-UVB were more effective in inducing lethality compared to UVB alone, indicating that these FCs act as photosensitizing agents for UVB. The increase in concentration of 8-MOP resulted in a greater mortality. On the contrary, a decrease in mortality was found with an increase in TMP concentration. 3-CPs protected bacteria against damage induced by UVB, which can be attributed to the inhibition of cyclobutyl pyrimidine dimer formation. The different modulatory effects on lethality induced by UVB shown by the FCs tested could be related to differences in the specificity of each compound for particular nucleotide sequences, as well as other chemical characteristics of each molecule could influence the number and types of adducts formed, contributing to the photosensitizing or photoprotective effects observed.
Collapse
Affiliation(s)
- Emanuelle B F Silva
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Ideltônio J F Barbosa
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Humberto M Barreto
- Departamento de Ciências da Natureza, Universidade Federal do Piauí, Floriano, Brazil
| | - José P Siqueira-Júnior
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
11
|
Silvestri C, Brodbelt JS. Tandem mass spectrometry for characterization of covalent adducts of DNA with anticancer therapeutics. MASS SPECTROMETRY REVIEWS 2013; 32:247-66. [PMID: 23150278 PMCID: PMC3578003 DOI: 10.1002/mas.21363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 05/17/2023]
Abstract
The chemotherapeutic activities of many anticancer and antibacterial drugs arise from their interactions with nucleic acid substrates. Some of these ligands interact with DNA in a way that causes conformational changes or damage to the nucleic acid targets, ultimately altering recognition by key DNA-specific enzymes, interfering with DNA transcription or prohibiting replication, and terminating cell growth and proliferation. The design and synthesis of ligands that bind to nucleic acids remains a dynamic field in medicinal chemistry and pharmaceutical research. The quest for more selective and efficacious DNA-interactive anticancer chemotherapeutics has likewise catalyzed the need for sensitive analytical methods that can provide structural information about the nature of the resulting DNA adducts and provide insight into the mechanistic pathways of the DNA/drug interactions and the impact on the cellular processes in biological systems. This review focuses on the array of tandem mass spectrometric strategies developed and applied for characterization of covalent adducts formed between DNA and anticancer ligands.
Collapse
Affiliation(s)
- Catherine Silvestri
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
12
|
Xu Z, Shaw JB, Brodbelt JS. Comparison of MS/MS methods for characterization of DNA/cisplatin adducts. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:265-273. [PMID: 23264150 PMCID: PMC3570664 DOI: 10.1007/s13361-012-0532-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 06/01/2023]
Abstract
The development of activation/dissociation techniques such as ultraviolet photodissociation (UVPD), infrared multiphoton dissociation (IRMPD), and electron transfer dissociation (ETD) as alternatives to collision induced dissociation (CID) has extended the range of strategies for characterizing biologically relevant molecules. Here, we describe a comprehensive comparison of CID, IRMPD, UVPD, ETD, and hybrid processes termed ETcaD and ET-IRMPD (and analogous hybrid methods in the negative mode NETcaD and NET-IRMPD) for generating sequence-specific fragment ions and allowing adduction sites to be pinpointed for DNA/cisplatin adducts. Among the six MS/MS methods, the numerous products generated by the IRMPD and UVPD techniques resulted in the most specific and extensive backbone cleavages. We conclude that IRMPD and UVPD methods generally offer the best characteristics for pinpointing the cisplatin adduction sites in the fragment-rich spectra.
Collapse
|
13
|
Cadet J, Mouret S, Ravanat JL, Douki T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 2012; 88:1048-65. [PMID: 22780837 DOI: 10.1111/j.1751-1097.2012.01200.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E n°3, CEA/UJF, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex, France
| | | | | | | |
Collapse
|
14
|
Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H. Photo-Cross-Linking-Assisted Thermal Stability of DNA Origami Structures and Its Application for Higher-Temperature Self-Assembly. J Am Chem Soc 2011; 133:14488-91. [DOI: 10.1021/ja204546h] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arivazhagan Rajendran
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masayuki Endo
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yousuke Katsuda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Erba EB, Zenobi R. Mass spectrometric studies of dissociation constants of noncovalent complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1pc90006d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|