1
|
Li K, Ďurana J, Kocábková B, Pysanenko A, Yan Y, Ončák M, Fárník M, Lengyel J. Hydrated Formic Acid Clusters and their Interaction with Electrons. Chemphyschem 2024; 25:e202400071. [PMID: 38372591 DOI: 10.1002/cphc.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
We investigate ion formation in hydrated formic acid (FA) clusters upon collision with electrons of variable energy, focusing on electron ionization at 70 eV (EI) and low-energy (1.5-15 eV) electron attachment (EA). To uncover details about the composition of neutral clusters, we aim to elucidate the ion formation processes in FAM ⋅ WN clusters initiated by interaction with electrons and determine the extent of cluster fragmentation. EI predominantly produces protonated [FAm+H]+ ions, and in FA-rich clusters, the stable ring structures surrounding H3O+ ions are formed. In contrast, EA leads to a competition between the formation of intact [FAm ⋅ Wn]- and dissociated [FAm ⋅ Wn-H]- fragment ions, influenced by the cluster size, level of hydration, and electron energy. Our findings reveal a predisposition of low-energy EA towards forming [FAm ⋅ Wn]-, while higher electron energies tend to favor the formation of [FAm ⋅ Wn-H]- due to intracluster ion-molecule reactions. The comparison of positive and negative ion spectra suggests that the mass spectra of FA-rich clusters may indicate their actual size and composition. On the other hand, the more weakly bound water evaporation from the clusters depends strongly on the ionization. Thus, for the hydrated clusters, the neutral cluster size can hardly be estimated from the mass spectra.
Collapse
Affiliation(s)
- Kevin Li
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Jozef Ďurana
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic
| | - Barbora Kocábková
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic
| | - Andrij Pysanenko
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic
| | - Yihui Yan
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic
| | - Jozef Lengyel
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
2
|
Fan M, Xie J, Wang E, Tian SX. Evaporative cooling and reaction of carbon dioxide clusters by low-energy electron attachment. J Chem Phys 2024; 160:044301. [PMID: 38251801 DOI: 10.1063/5.0179993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Anionic carbonate CO3- has been found in interstellar space and the Martian atmosphere, but its production mechanism is in debate so far. To mimic the irradiation-induced reactions on icy micrograins in the Martian atmosphere and the icy shell of interstellar dust, here we report a laboratory investigation on the dissociative electron attachments to the molecular clusters of CO2. We find that anionic species (CO2)n-1O- and (CO2)n- (n = 2, 3, 4) are produced in the concerted reaction and further stabilized by the evaporative cooling after the electron attachment. We further propose a dynamics model to elucidate their competitive productions: the (CO2)n- yields survive substantially in the molecular evaporative cooling at the lower electron attachment energy, while the reactions leading to (CO2)n-1O- are favored at the higher attachment energy. This work provides new insights into physicochemical processes in CO2-rich atmospheres and interstellar space.
Collapse
Affiliation(s)
- Mengyuan Fan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jingchen Xie
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Enliang Wang
- Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
3
|
Pysanenko A, Huss T, Fárník M, Lengyel J. Effect of Hydration on Electron Attachment to Methanesulfonic Acid Clusters. J Phys Chem A 2022; 126:1542-1550. [PMID: 35230848 DOI: 10.1021/acs.jpca.2c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an experimental and computational study of the electron-induced chemistry of methanesulfonic acid (MSA, MeSO3H) in clusters. We combine the mass spectra after the 70 eV electron ionization with the negative ion spectra after electron attachment (EA) at low electron energies of 0-15 eV of the MSA molecule, small MSA clusters, and microhydrated MSA clusters to reveal the solvation effects. The MSA/He coexpansion only generates small MSA clusters with up to four molecules, but adding water substantially hydrates the MSA clusters, resulting in clusters composed of 1-2 MSA molecules accompanied by quite a few water molecules. The clustering strongly suppresses the fragmentation of the MSA molecules upon both the positive ionization and EA. The electron-energy-dependent ion yield for different negative ions is measured. For the MSA molecule and pure MSA clusters, EA leads to an H-abstraction yielding MeSO3-. It proceeds efficiently at low electron energies below 2 eV with a shoulder at 3-4 eV and a broad, almost 2 orders of magnitude weaker, peak around 8 eV. The hydrated (H2O)nMeSO3- ions with n ≤ 3 exhibit only a broad peak around 7 eV similar to EA of pure water clusters. Thus, for the small clusters, the electron attachment and hydrogen abstraction from water occur. On the other hand, the larger clusters with n > 4 display a peak below 2 eV, which quickly dominates the spectrum with increasing n. This peak is related to the formation of the H3O+·MeSO3- ion pair upon hydration and subsequent dipole-supported electron attachment followed by the hydronium neutralization and H3O• radical dissociation. The size-resolved experimental data indicate that the ionic dissociation of MSA starts to occur in the neutral MeSO3H(H2O)N clusters with about four water molecules.
Collapse
Affiliation(s)
- Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Tabea Huss
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jozef Lengyel
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
4
|
Lengyel J, Pysanenko A, Swiderek P, Heiz U, Fárník M, Fedor J. Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. J Phys Chem A 2021; 125:1919-1926. [PMID: 33651608 DOI: 10.1021/acs.jpca.1c00135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Focused electron beam deposition often requires the use of purification techniques to increase the metal content of the respective deposit. One of the promising methods is adding H2O vapor as a reactive agent during the electron irradiation. However, various contrary effects of such addition have been reported depending on the experimental condition. We probe the elementary electron-induced processes that are operative in a heterogeneous system consisting of iron pentacarbonyl as an organometallic precursor and water. We use an electron beam of controlled energy that interacts with free mixed Fe(CO)5/H2O clusters. These mimic the heterogeneous system and, at the same time, allow direct mass spectrometric analysis of the reaction products. The anionic decomposition pathways are initiated by dissociative electron attachment (DEA), either to Fe(CO)5 or to H2O. The former one proceeds mainly at low electron energies (<3 eV). Comparison of nonhydrated and hydrated conditions reveals that the presence of water actually stabilizes the ligands against dissociation. The latter one proceeds at higher electron energies (>6 eV), where the DEA to H2O forms OH- in the first reaction step. This intermediate reacts with Fe(CO)5, leading to enhanced decomposition, with the desorption of up to three CO ligands. The present results demonstrate that the water action on Fe(CO)5 decomposition is sensitive to the involved electron energy range and depends on the hydration degree.
Collapse
Affiliation(s)
- Jozef Lengyel
- Chair of Physical Chemistry, Department of Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Petra Swiderek
- Institute of Applied and Physical Chemistry, Faculty 2 (Chemistry/Biology), University of Bremen, Leobener Strasse 5, 28359 Bremen, Germany
| | - Ueli Heiz
- Chair of Physical Chemistry, Department of Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
5
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Infrared multiple photon dissociation spectroscopy of anionic copper formate clusters. J Chem Phys 2020; 153:184301. [DOI: 10.1063/5.0030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Meißner R, Feketeová L, Bayer A, Postler J, Limão‐Vieira P, Denifl S. Positive and negative ions of the amino acid histidine formed in low-energy electron collisions. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:802-816. [PMID: 31410948 PMCID: PMC6916310 DOI: 10.1002/jms.4427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 05/28/2023]
Abstract
Histidine is an aromatic amino acid crucial for the biological functioning of proteins and enzymes. When biological matter is exposed to ionising radiation, highly energetic particles interact with the surrounding tissue which leads to efficient formation of low-energy electrons. In the present study, the interaction of low-energy electrons with gas-phase histidine is studied at a molecular level in order to extend the knowledge of electron-induced reactions with amino acids. We report both on the formation of positive ions formed by electron ionisation and negative ions induced by electron attachment. The experimental data were complemented by quantum chemical calculations. Specifically, the free energies for possible fragmentation reactions were derived for the τ and the π tautomer of histidine to get insight into the structures of the formed ions and the corresponding neutrals. We report the experimental ionisation energy of (8.48 ± 0.03) eV for histidine which is in good agreement with the calculated vertical ionisation energy. In the case of negative ions, the dehydrogenated parent anion is the anion with the highest mass observed upon dissociative electron attachment. The comparison of experimental and computational results was also performed in view of a possible thermal decomposition of histidine during the experiments, since the sample was sublimated in the experiment by resistive heating of an oven. Overall, the present study demonstrates the effects of electrons as secondary particles in the chemical degradation of histidine. The reactions induced by those electrons differ when comparing positive and negative ion formation. While for negative ions, simple bond cleav ages prevail, the observed fragment cations exhibit partly restructuring of the molecule during the dissociation process.
Collapse
Affiliation(s)
- Rebecca Meißner
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of PhysicsUniversidade NOVA de Lisboa2829‐516CaparicaPortugal
| | - Linda Feketeová
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
- Institut de Physique Nucléaire de Lyon; CNRS/IN2P3, UMR5822Université de Lyon, Université Claude Bernard Lyon 143 Bd du 11 novembre 191869622VilleurbanneFrance
| | - Andreas Bayer
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Johannes Postler
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Paulo Limão‐Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of PhysicsUniversidade NOVA de Lisboa2829‐516CaparicaPortugal
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences Innsbruck (CMBI)Universität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
7
|
Bersenkowitsch NK, Ončák M, van der Linde C, Herburger A, Beyer MK. Photochemistry of glyoxylate embedded in sodium chloride clusters, a laboratory model for tropospheric sea-salt aerosols. Phys Chem Chem Phys 2018; 20:8143-8151. [PMID: 29517776 PMCID: PMC5885371 DOI: 10.1039/c8cp00399h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although marine aerosols undergo extensive photochemical processing in the troposphere, a molecular level understanding of the elementary steps involved in these complex reaction sequences is still missing.
Although marine aerosols undergo extensive photochemical processing in the troposphere, a molecular level understanding of the elementary steps involved in these complex reaction sequences is still missing. As a defined laboratory model system, the photodissociation of sea salt clusters doped with glyoxylate, [NanCln–2(C2HO3)]+, n = 5–11, is studied by a combination of mass spectrometry, laser spectroscopy and ab initio calculations. Glyoxylate acts as a chromophore, absorbing light below 400 nm via two absorption bands centered at about 346 and 231 nm. Cluster fragmentation dominates, which corresponds to internal conversion of the excited state energy into vibrational modes of the electronic ground state and subsequent unimolecular dissociation. Photochemical dissociation pathways in electronically excited states include CO and HCO elimination, leading to [Nan–xCln–x–2HCOO]+ and [NanCln–2COO˙]+ with typical quantum yields in the range of 1–3% and 5–10%, respectively, for n = 5. The latter species contains CO2˙– stabilized by the salt environment. The comparison of different cluster sizes shows that the fragments containing a carbon dioxide radical anion appear in a broad spectral region of 310–380 nm. This suggests that the elusive CO2˙– species may be formed by natural processes in the troposphere. Based on the photochemical cross sections obtained here, the photolysis lifetime of glyoxylate in a dry marine aerosol is estimated as 10 h. Quantum chemical calculations show that dissociation along the C–C bond in glyoxylic acid as well as glyoxylate embedded in the salt cluster occurs after reaching the S1/S0 conical intersection, while this conical intersection is absent in free glyoxylate ions.
Collapse
Affiliation(s)
- Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Andreas Herburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Neustetter M, Jabbour Al Maalouf E, Limão-Vieira P, Denifl S. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization. J Chem Phys 2016; 145:054301. [PMID: 27497555 DOI: 10.1063/1.4959278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n (+) (0 ≤ n ≤ 6) and W2(CO)n (+) (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n (+) (0 ≤ n ≤ 3) and W2C(CO)n (+) (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.
Collapse
Affiliation(s)
- M Neustetter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - E Jabbour Al Maalouf
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - P Limão-Vieira
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - S Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
9
|
Riebe D, Erler A, Ritschel T, Beitz T, Löhmannsröben HG, Beil A, Blaschke M, Ludwig T. Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:566-577. [PMID: 28239970 DOI: 10.1002/jms.3784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/04/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N2 , CO2 and N2 O and the dopant CH2 Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O2- with H2 O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O2- and Cl- (upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N2 and N2 O) and dopants (CH2 Cl2 , C2 H5 Br and CH3 I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3 ]- and [M + Cl]- , adduct ions such as [M + N2 O2 ]- , [M + Br]- and [M + I]- were detected, and their gas-phase structures and energetics are investigated by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel Riebe
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, Germany
| | - Alexander Erler
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, Germany
| | - Thomas Ritschel
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, Germany
| | - Toralf Beitz
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, Germany
| | | | - Andreas Beil
- Bruker Daltonik, Permoserstrasse 15, Leipzig, Germany
| | | | - Thomas Ludwig
- Bruker Daltonik, Permoserstrasse 15, Leipzig, Germany
| |
Collapse
|
10
|
Weber JM. The interaction of negative charge with carbon dioxide – insight into solvation, speciation and reductive activation from cluster studies. INT REV PHYS CHEM 2014. [DOI: 10.1080/0144235x.2014.969554] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Gadre SR, Yeole SD, Sahu N. Quantum chemical investigations on molecular clusters. Chem Rev 2014; 114:12132-73. [PMID: 25341561 DOI: 10.1021/cr4006632] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | | | | |
Collapse
|
12
|
Zuev D, Jagau TC, Bravaya KB, Epifanovsky E, Shao Y, Sundstrom E, Head-Gordon M, Krylov AI. Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks. J Chem Phys 2014; 141:024102. [DOI: 10.1063/1.4885056] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dmitry Zuev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Thomas-C. Jagau
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, USA
| | - Evgeny Epifanovsky
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Q-Chem, Inc., 6601 Owens Drive, Suite 105 Pleasanton, California 94588, USA
| | - Yihan Shao
- Q-Chem, Inc., 6601 Owens Drive, Suite 105 Pleasanton, California 94588, USA
| | - Eric Sundstrom
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
13
|
Postler J, Vizcaino V, Denifl S, Zappa F, Ralser S, Daxner M, Illenberger E, Scheier P. Electron attachment to CO2 embedded in superfluid He droplets. J Phys Chem A 2014; 118:6553-9. [PMID: 24818738 PMCID: PMC4141896 DOI: 10.1021/jp503179d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Electron attachment to CO2 embedded in superfluid He
droplets leads to ionic complexes of the form (CO2)n– and (CO2)nO– and, at much lower intensities,
He containing ions of the form Hem(CO2)nO–. At low
energies (<5 eV), predominantly the non-decomposed complexes (CO2)n– are formed
via two resonance contributions, similar to electron attachment to
pristine CO2 clusters. The significantly different shapes
and relative resonance positions, however, indicate particular quenching
and mediation processes in CO2@He. A series of further
resonances in the energy range up to 67 eV can be assigned to electronic
excitation of He and capture of the inelastically scattered electron
generating (CO2)n– and two additional processes where an intermediately formed He*
leads to the nonstoichiometric anions (CO2)nO–.
Collapse
Affiliation(s)
- Johannes Postler
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck , Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Davis D, Kundu S, Prabhudesai VS, Krishnakumar E. O(-) from amorphous and crystalline CO2 ices. Phys Chem Chem Phys 2014; 16:8582-8. [PMID: 24671070 DOI: 10.1039/c3cp55421j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
O(-) desorbed from amorphous and crystalline films of CO2 at 18 K under low energy electron impact is studied using time of flight mass spectrometry. The nature of the CO2 film is characterized by Fourier transform infrared spectrometry as a function of film thickness. It is found that the desorption rate from amorphous films is considerably larger than that from crystalline films. The desorption signal from the 4 eV resonance is found to be the dominant one as compared to that from the higher energy resonances, notably the one at 8 eV observed in the gas phase. This is explained in terms of the large enhancement in the dissociative electron attachment cross section for the 4 eV resonance in the condensed phase reported earlier using the charge trapping method.
Collapse
Affiliation(s)
- Daly Davis
- Tata Institute of Fundamental Research, Mumbai-400005, India.
| | | | | | | |
Collapse
|
15
|
Wang Z, Liu J, Zhang M, Cukier RI, Bu Y. Solvation and evolution dynamics of an excess electron in supercritical CO2. PHYSICAL REVIEW LETTERS 2012; 108:207601. [PMID: 23003186 DOI: 10.1103/physrevlett.108.207601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/08/2012] [Indexed: 06/01/2023]
Abstract
We present an ab initio molecular dynamics simulation of the dynamics of an excess electron solvated in supercritical CO2. The excess electron can exist in three types of states: CO2-core localized, dual-core localized, and diffuse states. All these states undergo continuous state conversions via a combination of long lasting breathing oscillations and core switching, as also characterized by highly cooperative oscillations of the excess electron volume and vertical detachment energy. All of these oscillations exhibit a strong correlation with the electron-impacted bending vibration of the core CO2, and the core-switching is controlled by thermal fluctuations.
Collapse
Affiliation(s)
- Zhiping Wang
- The Center of Molecular Modeling & Simulation, Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Ferreira da Silva F, Ptasińska S, Denifl S, Gschliesser D, Postler J, Matias C, Märk TD, Limão-Vieira P, Scheier P. Electron interaction with nitromethane embedded in helium droplets: attachment and ionization measurements. J Chem Phys 2012; 135:174504. [PMID: 22070303 DOI: 10.1063/1.3656680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).
Collapse
Affiliation(s)
- F Ferreira da Silva
- Institut für Ionenphysik und Angewandte Physik and Centre of Molecular Biosciences Innsbruck, Universität Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yeole SD, Sahu N, Gadre SR. Structures, energetics and vibrational spectra of CO2 clusters through molecular tailoring and cluster building algorithm. Phys Chem Chem Phys 2012; 14:7718-23. [DOI: 10.1039/c2cp23761j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Vizcaino V, Denifl S, Märk TD, Illenberger E, Scheier P. Low energy (0-4 eV) electron impact to N(2)O clusters: Dissociative electron attachment, ion-molecule reactions, and vibrational Feshbach resonances. J Chem Phys 2010; 133:154512. [PMID: 20969408 DOI: 10.1063/1.3505143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Electron attachment to clusters of N(2)O in the energy range of 0-4 eV yields the ionic complexes [(N(2)O)(n)O](-), [(N(2)O)(n)NO](-), and (N(2)O)(n) (-) . The shape of the ion yields of the three homologous series differs substantially reflecting the different formation mechanisms. While the generation of [(N(2)O)(n)O](-) can be assigned to dissociative electron attachment (DEA) of an individual N(2)O molecule in the target cluster, the formation of [(N(2)O)(n)NO](-) is interpreted via a sequence of ion molecule reactions involving the formation of O(-) via DEA in the first step. The nondecomposed complexes (N(2)O)(n) (-) are preferentially formed at very low energies (below 0.5 eV) as a result of intramolecular stabilization of a diffuse molecular anion at low energy. The ion yields of [(N(2)O)(n)O](-) and (N(2)O)(n) (-) versus electron energy show sharp peaks at the threshold region, which can be assigned to vibrational Feshbach resonances mediated by the diffuse anion state as already observed in an ultrahigh resolution electron attachment study of N(2)O clusters [E. Leber, S. Barsotti, J. Bömmels, J. M. Weber, I. I. Fabrikant, M.-W. Ruf, and H. Hotop, Chem. Phys. Lett. 325, 345 (2000)].
Collapse
Affiliation(s)
- Violaine Vizcaino
- Institut für Ionenphysik und Angewandte Physik, Leopold Franzens-Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|