1
|
Farooq S, Bereczki A, Habib M, Costa I, Cardozo O. High-performance plasmonics nanostructures in gas sensing: a comprehensive review. Med Gas Res 2025; 15:1-9. [PMID: 39436166 PMCID: PMC11515073 DOI: 10.4103/mgr.medgasres-d-23-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 10/23/2024] Open
Abstract
Plasmonic nanostructures have emerged as indispensable components in the construction of high-performance gas sensors, playing a pivotal role across diverse applications, including industrial safety, medical diagnostics, and environmental monitoring. This review paper critically examines seminal research that underscores the remarkable efficacy of plasmonic materials in achieving superior attributes such as heightened sensitivity, selectivity, and rapid response times in gas detection. Offering a synthesis of pivotal studies, this review aims to furnish a comprehensive discourse on the contemporary advancements within the burgeoning domain of plasmonic gas sensing. The featured investigations meticulously scrutinize various plasmonic structures and their applications in detecting gases like carbon monoxide, carbon dioxide, hydrogen and nitrogen dioxide. The discussed frameworks encompass cutting-edge approaches, spanning ideal absorbers, surface plasmon resonance sensors, and nanostructured materials, thereby elucidating the diverse strategies employed for advancing plasmonic gas sensing technologies.
Collapse
Affiliation(s)
- Sajid Farooq
- Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Allan Bereczki
- Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Muhammad Habib
- Department of Physics, COMSAT University, Lahore, Pakistan
| | - Isolda Costa
- Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Olavo Cardozo
- Post graduate program on material sciences, CCEN, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Su ZC, Li YH, Lin CF. Mid-Infrared Response from Cr/n-Si Schottky Junction with an Ultra-Thin Cr Metal. NANOMATERIALS 2022; 12:nano12101750. [PMID: 35630971 PMCID: PMC9143420 DOI: 10.3390/nano12101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022]
Abstract
Infrared detection technology has been widely applied in many areas. Unlike internal photoemission and the photoelectric mechanism, which are limited by the interface barrier height and material bandgap, the research of the hot carrier effect from nanometer thickness of metal could surpass the capability of silicon-based Schottky devices to detect mid-infrared and even far-infrared. In this work, we investigate the effects of physical characteristics of Cr nanometal surfaces and metal/silicon interfaces on hot carrier optical detection. Based on the results of scanning electron microscopy, atomic force microscopy, and X-ray diffraction analysis, the hot carrier effect and the variation of optical response intensity are found to depend highly on the physical properties of metal surfaces, such as surface coverage, metal thickness, and internal stress. Since the contact layer formed by Cr and Si is the main role of infrared light detection in the experiment, the higher the metal coverage, the higher the optical response. Additionally, a thicker metal surface makes the hot carriers take a longer time to convert into current signals after generation, leading to signal degradation due to the short lifetime of the hot carriers. Furthermore, the film with the best hot carrier effect induced in the Cr/Si structure is able to detect an infrared signal up to 4.2 μm. Additionally, it has a 229 times improvement in the signal-to-noise ratio (SNR) for a single band compared with ones with less favorable conditions.
Collapse
Affiliation(s)
- Zih-Chun Su
- Graduate Institute of Photonics and Optoelectronics, The Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; (Z.-C.S.); (Y.-H.L.)
| | - Yu-Hao Li
- Graduate Institute of Photonics and Optoelectronics, The Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; (Z.-C.S.); (Y.-H.L.)
| | - Ching-Fuh Lin
- Graduate Institute of Photonics and Optoelectronics, The Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; (Z.-C.S.); (Y.-H.L.)
- Graduate Institute of Electronics Engineering, The Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Rashid MA, Muneer S, Alhamhoom Y, Islam N. Rapid Assay for the Therapeutic Drug Monitoring of Edoxaban. Biomolecules 2022; 12:biom12040590. [PMID: 35454179 PMCID: PMC9027065 DOI: 10.3390/biom12040590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Edoxaban is a direct oral anticoagulant (DOAC) that has been recently indicated for the treatment of pulmonary embolism (PE) in SARS-CoV-2 infections. Due to its pharmacokinetic variability and a narrow therapeutic index, the safe administration of the drug requires its therapeutic drug monitoring (TDM) in patients receiving the treatment. In this work, we present a label-free method for the TDM of edoxaban by surface enhanced Raman spectroscopy (SERS). The new method utilises the thiol chemistry of the drug to chemisorb its molecules onto a highly sensitive SERS substrate. This leads to the formation of efficient hotspots and a strong signal enhancement of the drug Raman bands, thus negating the need for a Raman reporter for its SERS quantification. The standard samples were run with a concentration range of 1.4 × 10−4 M to 10−12 M using a mobile phase comprising of methanol/acetonitrile (85:15 v/v) at 291 nm followed by the good linearity of R2 = 0.997. The lowest limit of quantification (LOQ) by the SERS method was experimentally determined to be 10−12 M, whereas LOQ for HPLC-UV was 4.5 × 10−7 M, respectively. The new method was used directly and in a simple HPLC-SERS assembly to detect the drug in aqueous solutions and in spiked human blood plasma down to 1 pM. Therefore, the SERS method has strong potential for the rapid screening of the drug at pathology labs and points of care.
Collapse
Affiliation(s)
- Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
- Correspondence:
| | - Saiqa Muneer
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Nazrul Islam
- Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
4
|
Matsumoto C, Gen M, Matsuki A, Seto T. Development of spray-drying-based surface-enhanced Raman spectroscopy. Sci Rep 2022; 12:4511. [PMID: 35296775 PMCID: PMC8927375 DOI: 10.1038/s41598-022-08598-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
We report a spray-drying method to fabricate silver nanoparticle (AgNP) aggregates for application in surface-enhanced Raman spectroscopy (SERS). A custom-built system was used to fabricate AgNP aggregates of four sizes, 48, 86, 151, and 218 nm, from drying droplets containing AgNPs atomized from an AgNP suspension. Sample solutions of Rhodamine B (RhB) at 10-6, 10-8, and 10-10 M concentrations were dropped onto the AgNP aggregates as probe molecules to examine the enhancement of the Raman signals of the RhB. The ordering of the analytical enhancement factors (AEFs) by aggregate size at a 10-6 M RhB was 86 nm > 218 nm > 151 nm > 48 nm. When RhB concentrations are below 10-8 M, the 86 and 151 nm AgNP aggregates show clear RhB peaks. The AEFs of the 86 nm AgNP aggregates were the highest in all four aggregates and higher than those of the 218-nm aggregates, although the 218-nm aggregates had more hot spots where Raman enhancement occurred. This finding was attributable to the deformation and damping of the electron cloud in the highly aggregated AgNPs, reducing the sensitivity for Raman enhancement. When RhB was premixed with the AgNP suspension prior to atomization, the AEFs at 10-8 M RhB rose ~ 100-fold compared to those in the earlier experiments (the post-dropping route). This significant enhancement was probably caused by the increased opportunity for the trapping of the probe molecules in the hot spots.
Collapse
Affiliation(s)
- Chigusa Matsumoto
- Graduate School of Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Atsushi Matsuki
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Takafumi Seto
- Graduate School of Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
5
|
Barik P, Pradhan M. Selectivity in trace gas sensing: recent developments, challenges, and future perspectives. Analyst 2022; 147:1024-1054. [DOI: 10.1039/d1an02070f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Selectivity is one of the most crucial figures of merit in trace gas sensing, and thus a comprehensive assessment is necessary to have a clear picture of sensitivity, selectivity, and their interrelations in terms of quantitative and qualitative views.
Collapse
Affiliation(s)
- Puspendu Barik
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
| | - Manik Pradhan
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
| |
Collapse
|
6
|
Semple M, Iyer AK. Surface-enhanced mid-infrared absorption spectroscopy using miniaturized-disc metasurface. Sci Rep 2021; 11:23557. [PMID: 34876645 PMCID: PMC8651662 DOI: 10.1038/s41598-021-02984-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 11/09/2022] Open
Abstract
Surface-enhanced infrared spectroscopy is an important technique for improving the signal-to-noise ratio of spectroscopic material identification measurements in the mid-infrared fingerprinting region. However, the lower bound of the fingerprinting region receives much less attention due to a scarcity of transparent materials, more expensive sources, and weaker plasmonic effects. In this paper, we present a miniaturized metasurface unit cell for surface-enhanced infrared spectroscopy of the 15-[Formula: see text]m vibrational band of CO[Formula: see text]. The unit cell consists of a gold disc, patterned along the edge with fine gaps/wires to create a resonant metamaterial liner. In simulation, our plasmonic metamaterial-lined disc achieves greater than [Formula: see text] the average field intensity enhancement of a comparable dipole array and a miniaturized size of [Formula: see text] using complex, 100-nm features that are patterned using 100-kV electron-beam lithography. In a simple experiment, the metamaterial-lined disc metasurface shows a high tolerance to fabrication imperfections and enhances the absorption of CO[Formula: see text] at 15 [Formula: see text]m. The resonant wavelength and reflection magnitude can be tuned over a wide range by adjusting the liner feature sizes and the metasurface array pitch to target other vibrational bands. This work is a step toward low-cost, more compact on-chip integrated gas sensors.
Collapse
Affiliation(s)
- Mitchell Semple
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ashwin K Iyer
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Mukherjee S, Dutta S, More YD, Fajal S, Ghosh SK. Post-synthetically modified metal-organic frameworks for sensing and capture of water pollutants. Dalton Trans 2021; 50:17832-17850. [PMID: 34787161 DOI: 10.1039/d1dt02862f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thanks to a bottom-up design of metals and organic ligands, the library of metal-organic frameworks (MOFs) has seen a conspicuous growth. Post-synthetically modified MOFs comprise a relatively smaller subset of this library. Whereas the approach of post-synthetic modification was seminally introduced for MOFs in the early 1990s, the earliest examples of post-synthetically modified MOFs are only congruous with adsorption and catalysis. The utility of PSM-derived MOFs for the sensing and capture of water contaminants is relatively niche. Arguably though, an increasing number of post-synthetically modified MOFs are finding relevance in the context of water pollutant remediation. In this article, we review the recent advances in this area and propose a structure-function relationship-guided blueprint for the future outlook.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
8
|
Snitka V, Batiuskaite D, Bruzaite I, Lafont U, Butenko Y, Semprimoschnig C. Surface-enhanced Raman scattering sensors for biomedical and molecular detection applications in space. CEAS SPACE JOURNAL 2021; 13:509-520. [PMID: 34777619 PMCID: PMC7938280 DOI: 10.1007/s12567-021-00356-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The detection of molecular traces in the environment is a technical problem that is critical in pollutant control procedures at all stages of spacecraft assembly, in space flight, as well as in other technological processes such as food production, medical diagnostics, environmental control, warfare. However, in the aerospace industry, it is necessary to detect molecular traces of contaminants with extreme sensitivity, as even concentrations as low as part-per-billion (ppb) can be critical during long missions. The high sensitivity of the Volatile Organic Compounds (VOCs) detection within the air can be a challenge because of the poor affinity of VOC's to the metal surface of the sensor substrate. In this work, we present a surface-enhanced Raman scattering (SERS) spectroscopy technique as a highly sensitive and selective molecular sensor for gas trace detection not sensitive to molecules adsorbtion on sensing element. The developed hybrid SERS platform for molecular trace detection is supported by the hybrid nanoplasmonic porous silicon membrane in conjunction with micropump to achieve the trace level detection of VOCs in the environment. The combination of silicon membrane, made by electrochemical etching of the microchannels in the silicon chip, with chemical deposition of the silver nanoparticles inside the channels, produce a porous Ag nanoparticles membrane with a high density of plasmonic nanostructures ("hot spots"). The micropump integrated with the SERS sensor, pump the air with VOC's molecules through the plasmonic membrane "hot spots" to increase the probability of interaction of VOC's molecules with SERS substrate and to increase the enhancement factor. The sensor chip structure was designed, gas flow in the sensor was simulated, and the sensor was fabricated using 3D printing. The limit of detection of hydrazine with concentration level 10-12 M from solution and the vapor phase 0.1 ppm was demonstrated. The anisole vapors with concentration 0.5 ppb spectra in the air were recorded. Our results demonstrate that plasmonic membrane can be used as a high enhancement factor SERS sensor for many pollutants molecules detection with the nanomolar sensitivity and can be applied in the design of sensors for space applications, environment control, biomedical diagnostic. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12567-021-00356-6.
Collapse
Affiliation(s)
- Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu 65, Kaunas, Lithuania
| | - Danute Batiuskaite
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, 58 K.Donelaicio str., 44248 Kaunas, Lithuania
| | - Ingrida Bruzaite
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu 65, Kaunas, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | - Ugo Lafont
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands
| | - Yuriy Butenko
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands
| | - Christopher Semprimoschnig
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands
| |
Collapse
|
9
|
Kim S, Brady J, Al-Badani F, Yu S, Hart J, Jung S, Tran TT, Myung NV. Nanoengineering Approaches Toward Artificial Nose. Front Chem 2021; 9:629329. [PMID: 33681147 PMCID: PMC7935515 DOI: 10.3389/fchem.2021.629329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.
Collapse
Affiliation(s)
- Sanggon Kim
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Jacob Brady
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Faraj Al-Badani
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Sooyoun Yu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Joseph Hart
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sungyong Jung
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Thien-Toan Tran
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Nosang V. Myung
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
10
|
Petrov DV, Kostenko MA, Shcherbakov AA. Silver holographic gratings as substrates for surface-enhanced Raman scattering gas analysis. APPLIED OPTICS 2020; 59:2929-2934. [PMID: 32225843 DOI: 10.1364/ao.386897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
This work is devoted to the investigation of the enhancement of Raman signals of nonadsorbed gases in the vicinity of corrugated metallic surfaces supporting propagating surface plasmon-polaritons (PSPPs). Simulation of the PSPP excitation efficiency on holographic gratings coated with silver films of various thicknesses at different groove heights was carried out. Verification showed good agreement between theory and experiment. Also, it was found that an increase of the PSPP excitation efficiency may not lead to an increase in the enhancement factor of Raman signals of gases located near the surface-enhanced Raman scattering active surface. For a holographic grating with a period of 667 nm, a groove height of 70 nm, and a silver film thickness of 30 nm coated with a protective ${{\rm Al}_2}{{\rm O}_3}$Al2O3 layer, the enhancement factor of Raman signals of nonadsorbed nitrogen molecules was $\sim{{\rm 4\cdot10}^3}$∼4⋅103.
Collapse
|
11
|
Clark CA, Reddy CP, Xu H, Heck KN, Luo G, Senftle TP, Wong MS. Mechanistic Insights into pH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03239] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Hao Xu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | - Guohua Luo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
12
|
Gebavi H, Gašparić V, Risović D, Baran N, Albrycht PH, Ivanda M. Features and advantages of flexible silicon nanowires for SERS applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:725-734. [PMID: 30931214 PMCID: PMC6423564 DOI: 10.3762/bjnano.10.72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The paper reports on the features and advantages of horizontally oriented flexible silicon nanowires (SiNWs) substrates for surface-enhanced Raman spectroscopy (SERS) applications. The novel SERS substrates are described in detail considering three main aspects. First, the key synthesis parameters for the flexible nanostructure SERS substrates were optimized. It is shown that fabrication temperature and metal-plating duration significantly influence the flexibility of the SiNWs and, consequently, determine the SERS enhancement. Second, it is demonstrated how the immersion in a liquid followed by drying results in the formation of SiNWs bundles influencing the surface morphology. The morphology changes were described by fractal dimension and lacunar analyses and correlated with the duration of Ag plating and SERS measurements. SERS examination showed the optimal intensity values for SiNWs thickness values of 60-100 nm. That is, when the flexibility of the self-assembly SiNWs allowed hot spots occurrence. Finally, the test with 4-mercaptophenylboronic acid showed excellent SERS performance of the flexible, horizontally oriented SiNWs in comparison with several other commercially available substrates.
Collapse
Affiliation(s)
- Hrvoje Gebavi
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| | - Vlatko Gašparić
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| | - Dubravko Risović
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| | - Nikola Baran
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| | - Paweł Henryk Albrycht
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mile Ivanda
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| |
Collapse
|
13
|
Wang X, Zhu X, Shi H, Chen Y, Chen Z, Zeng Y, Tang Z, Duan H. Three-Dimensional-Stacked Gold Nanoparticles with Sub-5 nm Gaps on Vertically Aligned TiO 2 Nanosheets for Surface-Enhanced Raman Scattering Detection Down to 10 fM Scale. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35607-35614. [PMID: 30232887 DOI: 10.1021/acsami.8b11713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Seeking for ultrasensitive and low-cost substrates is highly demandable for practical applications of surface-enhanced Raman scattering (SERS) technology. In this work, we report an ultrasensitive SERS-active substrate based on wet-chemistry-synthesized vertically aligned large-area TiO2 nanosheets (NSs) decorated by densely packed gold nanoparticles (Au NPs) with sub-5 nm gaps. Via a multistep successive deposition process, three-dimensional-stacked Au NPs sandwiched by a 3 nm SiO2 layer were assembled onto the TiO2 NS, enabling numerous hotspots due to the formation of both ultratiny plasmonic gaps and semiconductor/metal interfaces. Experimental results show that the fabricated substrate displays a detection limit down to 10 fM (10-14 M) without involving any condensation process by using the crystal violet as probe molecules. Control experiments and electromagnetic simulations indicate that the nanogaps defined by the 3 nm spacer are essential for the obtained excellent SERS performance. With its ultrasensitive detection capability, we demonstrate that the fabricated SERS substrate can be used for the trace analysis of melamine in milk.
Collapse
Affiliation(s)
| | - Xupeng Zhu
- School of Physics Science and Technology , Lingnan Normal University , Zhanjiang 524048 , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Ramanauskaite L, Mazeika V, Snitka V. SERS based monitoring of toluene vapors at ambient and elevated temperatures by using a ruffled silver nanolayer as a substrate. Mikrochim Acta 2018; 185:477. [PMID: 30244290 DOI: 10.1007/s00604-018-3013-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/18/2018] [Indexed: 02/03/2023]
Abstract
The authors describe a Surface enhanced Raman spectroscopy (SERS)-based method for the detection of gaseous toluene at different temperature regimes using 3D ruffled silver SERS substrates and a commercially available handheld Raman system equipped with a 785 nm laser. The 3D silver SERS substrates were synthesized via electroless deposition of silver on the ruffled sandpaper and HF-etched silicon wafers. The morphological characterization of the silver SERS substrates was carried out by atomic force microscopy and scanning electron microscopy. UV-Vis spectroscopy absorption spectra of the silver nanostructures showed plasmonic peaks at 522 nm and 731 nm. Toluene vapors were collected with a syringe at ambient temperature and at 100 °C, while SERS detection was always performed at room temperature. Toluene detection was based on the measurement of the Raman bands at 787 cm-1 and 1003 cm-1 (in the fingerprint region). The method allow gaseous toluene to be detected at its vapor concentrations of 522 ppm (mg/L), 261 ppm (mg/L) and 26 ppm (mg/L). Graphical abstract Schematic presentation of an original method for the detection of toluene vapors by SERS technique. The collection of toluene vapors was carried out at room and at high temperatures. The vapors were transferred to methanol by bubbling. The SERS measurements were carried out at room temperature.
Collapse
Affiliation(s)
- Lina Ramanauskaite
- Faculty of Mathematics and Natural Sciences, Research Centre for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu 65, LT-51369, Kaunas, Lithuania. .,Food Institute, Chemical Laboratory, Kaunas University of Technology, Radvilenu str. 19, LT-50254, Kaunas, Lithuania.
| | - Viktoras Mazeika
- Faculty of Mathematics and Natural Sciences, Research Centre for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu 65, LT-51369, Kaunas, Lithuania
| | - Valentinas Snitka
- Faculty of Mathematics and Natural Sciences, Research Centre for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu 65, LT-51369, Kaunas, Lithuania
| |
Collapse
|
15
|
Zhou H, Liu J, Liu H, Zheng Z. Compact dual-fiber surface-enhanced Raman scattering sensor with monolayer gold nanoparticles self-assembled on optical fiber. APPLIED OPTICS 2018; 57:7931-7937. [PMID: 30462062 DOI: 10.1364/ao.57.007931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Employing a self-assembly method and dual-fiber structure, a compact, low-cost, highly sensitive, fast surface-enhanced Raman scattering (SERS) optical fiber sensor was realized. Through detecting a SERS signal of 10 ppm rhodamine B analyte, sensor parameters such as coupling angle, fiber types, and corresponding glass substrate structure were optimized. The ratio of the SERS signal intensity to excitation light residual peak intensity was used as a significant parameter during the optimization process. Sensor characteristics such as the SERS signal dependence on excitation power, stability related to excitation time, and reusability were studied. Its compatibility in size with microfluidic structure would make it a prospective candidate for integrating into a microfluidic chip.
Collapse
|
16
|
Kim S, Kim DH, Park SG. Highly sensitive and on-site NO2 SERS sensors operated under ambient conditions. Analyst 2018; 143:3006-3010. [DOI: 10.1039/c8an00845k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents the first demonstration of highly sensitive and on-site SERS-based NO2 sensors with a detection limit of 0.1 ppm operated under ambient conditions.
Collapse
Affiliation(s)
- Sunho Kim
- Advanced Nano-Surface Department (ANSD)
- Korea Institute of Materials Science (KIMS)
- Changwon
- Republic of Korea
| | - Dong-Ho Kim
- Advanced Nano-Surface Department (ANSD)
- Korea Institute of Materials Science (KIMS)
- Changwon
- Republic of Korea
| | - Sung-Gyu Park
- Advanced Nano-Surface Department (ANSD)
- Korea Institute of Materials Science (KIMS)
- Changwon
- Republic of Korea
| |
Collapse
|
17
|
Wang X, Zhu X, Chen Y, Zheng M, Xiang Q, Tang Z, Zhang G, Duan H. Sensitive Surface-Enhanced Raman Scattering Detection Using On-Demand Postassembled Particle-on-Film Structure. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31102-31110. [PMID: 28832109 DOI: 10.1021/acsami.7b08818] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly sensitive and low-cost surface-enhanced Raman scattering (SERS) substrates are essential for practical applications of SERS. In this work, we report an extremely simple but effective approach to achieve sensitive SERS detection of molecules (down to 10-10 M) by using a particle/molecule/film sandwich configuration. Compared to conventional SERS substrates which are preprepared to absorb analyte molecules for detection, the proposed sandwich configuration is achieved by postassembling a flexible transparent gel tape embedded with plasmonic nanoparticles onto an Au film decorated with to-be-detected analyte molecules. In such a configuration, the individual plasmonic gel tape and Au film have low or no SERS activity but the final assembled sandwich structure shows strong SERS signal due to the formation of numerous hot spots at the particle-film interface, where the analyte molecules themselves serve as both spacer and signal probes. Because of its simple configuration, we demonstrate that the proposed SERS substrate can be obtained over a large area with extremely low cost. Particularly, because of the on-demand nature and the flexibility, such a postassembly strategy provides an ideal solution to detect the pesticide residue on fruit surfaces with significantly enhanced sensitivity.
Collapse
Affiliation(s)
| | | | | | - Mengjie Zheng
- Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University , Changsha 410081, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Sharma SK, Kumar P, Barthwal S, Sharma S, Sharma A. Highly Sensitive Surface-Enhanced Raman Scattering (SERS)- Based Multi Gas Sensor : Au Nanoparticles Decorated on Partially Embedded 2D Colloidal Crystals into Elastomer. ChemistrySelect 2017. [DOI: 10.1002/slct.201701204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satinder K. Sharma
- Department of Chemical Engineering (CHE) & DST Unit on Nano Sciences; Indian Institute of Technology (IIT)-Kanpur; Kanpur, Uttar Pradesh 208016 India
- School of Computing and Electrical Engineering; Indian Institute of Technology (IIT)-Mandi; Mandi, Himachal Pradesh 175001 India
| | - Pawan Kumar
- School of Computing and Electrical Engineering; Indian Institute of Technology (IIT)-Mandi; Mandi, Himachal Pradesh 175001 India
| | - Sumit Barthwal
- Department of Chemical Engineering (CHE) & DST Unit on Nano Sciences; Indian Institute of Technology (IIT)-Kanpur; Kanpur, Uttar Pradesh 208016 India
| | - Seema Sharma
- Department of Chemical Engineering (CHE) & DST Unit on Nano Sciences; Indian Institute of Technology (IIT)-Kanpur; Kanpur, Uttar Pradesh 208016 India
| | - Ashutosh Sharma
- Department of Chemical Engineering (CHE) & DST Unit on Nano Sciences; Indian Institute of Technology (IIT)-Kanpur; Kanpur, Uttar Pradesh 208016 India
| |
Collapse
|
19
|
Zhang Z, Zhan Y, Huang Y, Li G. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:312-318. [PMID: 28458236 DOI: 10.1016/j.saa.2017.04.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 04/01/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be <4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.
Collapse
Affiliation(s)
- Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yisen Zhan
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yichun Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
Del Rosso T, Rey NA, Rosado T, Landi S, Larrude DG, Romani EC, Junior FLF, Quinteiro SM, Cremona M, Aucelio RQ, Margheri G, Pandoli O. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers. NANOTECHNOLOGY 2016; 27:255602. [PMID: 27171728 DOI: 10.1088/0957-4484/27/25/255602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.
Collapse
Affiliation(s)
- T Del Rosso
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yu CC, Lin KT, Su PY, Wang EY, Yen YT, Chen HL. Short-range plasmonic nanofocusing within submicron regimes facilitates in situ probing and promoting of interfacial reactions. NANOSCALE 2016; 8:3647-3659. [PMID: 26809318 DOI: 10.1039/c5nr06555k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.
Collapse
Affiliation(s)
- Chen-Chieh Yu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
22
|
Wang AX, Kong X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. MATERIALS (BASEL, SWITZERLAND) 2015; 8:3024-3052. [PMID: 26900428 PMCID: PMC4758820 DOI: 10.3390/ma8063024] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.
Collapse
Affiliation(s)
- Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Xianming Kong
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland; E-Mail:
| |
Collapse
|
23
|
Recent Advances in the Characterization of Gaseous and Liquid Fuels by Vibrational Spectroscopy. ENERGIES 2015. [DOI: 10.3390/en8043165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Satheeshkumar E, Yang J. Preparation of ZnO Nanowires and Study of Surface-adsorbate Interaction by Fourier-Transform Infrared Spectroscopy. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Firkala T, Farkas A, Vajna B, Farkas I, Marosi G. Investigation of drug distribution in tablets using surface enhanced Raman chemical imaging. J Pharm Biomed Anal 2013; 76:145-51. [DOI: 10.1016/j.jpba.2012.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022]
|
26
|
Alvarez-Puebla RA, Liz-Marzán LM. SERS Detection of Small Inorganic Molecules and Ions. Angew Chem Int Ed Engl 2012; 51:11214-23. [DOI: 10.1002/anie.201204438] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Indexed: 01/21/2023]
|
27
|
Alvarez-Puebla RA, Liz-Marzán LM. Nachweis kleiner anorganischer Moleküle durch oberflächenverstärkte Raman-Streuung (SERS). Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Khaing Oo MK, Guo Y, Reddy K, Liu J, Fan X. Ultrasensitive Vapor Detection with Surface-Enhanced Raman Scattering-Active Gold Nanoparticle Immobilized Flow-Through Multihole Capillaries. Anal Chem 2012; 84:3376-81. [DOI: 10.1021/ac300175v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maung Kyaw Khaing Oo
- Department of Biomedical
Engineering and ‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109, United States
| | - Yunbo Guo
- Department of Biomedical
Engineering and ‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109, United States
| | - Karthik Reddy
- Department of Biomedical
Engineering and ‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109, United States
| | - Jing Liu
- Department of Biomedical
Engineering and ‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109, United States
| | - Xudong Fan
- Department of Biomedical
Engineering and ‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109, United States
| |
Collapse
|