1
|
Zhu X, Huang J, Eikerling M. pH Effects in a Model Electrocatalytic Reaction Disentangled. JACS AU 2023; 3:1052-1064. [PMID: 37124300 PMCID: PMC10131201 DOI: 10.1021/jacsau.2c00662] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Varying the solution pH not only changes the reactant concentrations in bulk solution but also the local reaction environment (LRE) that is shaped furthermore by macroscopic mass transport and microscopic electric double layer (EDL) effects. Understanding ubiquitous pH effects in electrocatalysis requires disentangling these interwoven factors, which is a difficult, if not impossible, task without physical modeling. Herein, we demonstrate how a hierarchical model that integrates microkinetics, double-layer charging, and macroscopic mass transport can help understand pH effects of the formic acid oxidation reaction (FAOR). In terms of the relation between the peak activity and the solution pH, intrinsic pH effects without consideration of changes in the LRE would lead to a bell-shaped curve with a peak at pH = 6. Adding only macroscopic mass transport, we can already reproduce qualitatively the experimentally observed trapezoidal shape with a plateau between pH 5 and 10 in perchlorate and sulfate solutions. A quantitative agreement with experimental data requires consideration of EDL effects beyond Frumkin correlations. Specifically, the peculiar nonmonotonic surface charging relation affects the free energies of adsorbed intermediates. We further discuss pH effects of FAOR in phosphate and chloride-containing solutions, for which anion adsorption becomes important. This study underpins the importance of a full consideration of multiple interrelated factors for the interpretation of pH effects in electrocatalysis.
Collapse
Affiliation(s)
- Xinwei Zhu
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
2
|
A mechanistic study of Pt particle electrodeposition and growth on a self-assembled monolayer as an active template. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Aoni Xu
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Ding X, Garlyyev B, Watzele SA, Kobina Sarpey T, Bandarenka AS. Spotlight on the Effect of Electrolyte Composition on the Potential of Maximum Entropy: Supporting Electrolytes Are Not Always Inert. Chemistry 2021; 27:10016-10020. [PMID: 34050569 PMCID: PMC8361723 DOI: 10.1002/chem.202101537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/02/2022]
Abstract
The influence of electrolyte pH, the presence of alkali metal cations (Na+ , K+ ), and the presence of O2 on the interfacial water structure of polycrystalline gold electrodes has been experimentally studied in detail. The potential of maximum entropy (PME) was determined by the laser-induced current transient (LICT) technique. Our results demonstrate that increasing the electrolyte pH and introducing O2 shift the PME to more positive potentials. Interestingly, the PME exhibits a higher sensitivity to the pH change in the presence of K+ than Na+ . Altering the pH of the K2 SO4 solution from 4 to 6 can cause a drastic shift in the PME. These findings reveal that, for example, K2 SO4 and Na2 SO4 cannot be considered as equal supporting electrolytes: it is not a viable assumption. This can likely be extrapolated to other common "inert" supporting electrolytes. Beyond this, knowledge about the near-ideal electrolyte composition can be used to optimize electrochemical devices such as electrolyzers, fuel cells, batteries, and supercapacitors.
Collapse
Affiliation(s)
- Xing Ding
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Batyr Garlyyev
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Sebastian A. Watzele
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Theophilus Kobina Sarpey
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
- Catalysis Research Center TUMTechnical University of MunichErnst-Otto-Fischer-Strasse 185748GarchingGermany
| |
Collapse
|
5
|
Marcandalli G, Villalba M, Koper MTM. The Importance of Acid-Base Equilibria in Bicarbonate Electrolytes for CO 2 Electrochemical Reduction and CO Reoxidation Studied on Au( hkl) Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5707-5716. [PMID: 33913319 PMCID: PMC8154874 DOI: 10.1021/acs.langmuir.1c00703] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Among heterogeneous electrocatalysts, gold comes closest to the ideal reversible electrocatalysis of CO2 electrochemical reduction (CO2RR) to CO and, vice versa, of CO electroxidation to CO2 (COOR). The nature of the electrolyte has proven to crucially affect the electrocatalytic behavior of gold. Herein, we expand the understanding of the effect of the widely employed bicarbonate electrolytes on CO2RR using gold monocrystalline electrodes, detecting the CO evolved during CO2RR by selective anodic oxidation. First, we show that CO2RR to CO is facet dependent and that Au(110) is the most active surface. Additionally, we detect by in situ FTIR measurements the presence of adsorbed COtop only on the Au(110) surface. Second, we highlight the importance of acid-base equilibria for both CO2RR and COOR by varying the electrolyte (partial pressure of CO2 and the concentration of the bicarbonate) and voltammetric parameters. In this way, we identify different regimes of surface pH and bicarbonate speciation, as a function of the current and electrolyte conditions. We reveal the importance of the acid-base bicarbonate/carbonate couple, not only as a buffering equilibrium but also as species involved in the electrochemical reactions under study.
Collapse
Affiliation(s)
- Giulia Marcandalli
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Matias Villalba
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
Marcandalli G, Goyal A, Koper MTM. Electrolyte Effects on the Faradaic Efficiency of CO 2 Reduction to CO on a Gold Electrode. ACS Catal 2021; 11:4936-4945. [PMID: 34055454 PMCID: PMC8154322 DOI: 10.1021/acscatal.1c00272] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Indexed: 01/26/2023]
Abstract
![]()
The electrochemical
reduction of CO2 aims to be a central
technology to store excess electricity generated by wind and solar
energy. However, the reaction is hindered by the competition with
the hydrogen evolution reaction. In this paper, we present a detailed
quantitative study of the Faradaic efficiency (FE) to CO on a gold
electrode under well-defined mass-transport conditions using rotating
ring-disk electrode voltammetry. Varying the concentration of the
bicarbonate and the electrolyte cation employing different rotation
rates, we map out how these parameters affect the FE(CO). We identify
two different potential regimes for the electrolyte effects, characterized
by a different dependence on the cation and bicarbonate concentrations.
For hydrogen evolution, we analyze the nature of the proton donor
for an increasingly negative potential, showing how it changes from
carbonic acid to bicarbonate and to water. Our study gives detailed
insights into the role of electrolyte composition and mass transport,
and helps defining optimized electrolyte conditions for a high FE(CO).
Collapse
Affiliation(s)
- Giulia Marcandalli
- Leiden Institute of Chemistry, Leiden University, P.O.
Box 9502, 2300 RA Leiden, The Netherlands
| | - Akansha Goyal
- Leiden Institute of Chemistry, Leiden University, P.O.
Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O.
Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Li T, Harrington DA. An Overview of Glycerol Electrooxidation Mechanisms on Pt, Pd and Au. CHEMSUSCHEM 2021; 14:1472-1495. [PMID: 33427408 DOI: 10.1002/cssc.202002669] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
In the most recent decade, glycerol electrooxidation (GEOR) has attracted extensive research interest for valorization of glycerol: the conversion of glycerol to value-added products. These reactions at platinum, palladium, and gold electrodes have a lot of uncertainty in their reaction mechanisms, which has generated some controversies. This review gathers many reported experimental results, observations and proposed reaction mechanisms in order to draw a full picture of GEOR. A particular focus is the clarification of two propositions: Pd is inferior to Pt in cleaving the C-C bonds of glycerol during the electrooxidation and the massive production of CO2 at high overpotentials is due to the oxidation of the already-oxidized carboxylate products. It is concluded that the inferior C-C bond cleavability with Pd electrodes, as compared with Pt electrodes, is due to the inefficiency of deprotonation, and the massive generation of CO2 as well as other C1/C2 side products is partially caused by the consumption of OH- at the anodes, as a lower pH reduces the amount of carboxylates and favors the C-C bond scission. A reaction mechanism is proposed in this review, in which the generation of side products are directly from glycerol ("competition" between each side product) rather than from the further oxidation of C2/C3 products. Additionally, GEOR results and associated interpretations for Ni electrodes are presented, as well as a brief review on the performances of multi-metallic electrocatalysts (most of which are nanocatalysts) as an introduction to these future research hotpots.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Chemistry, University of Victoria, Victoria, BC, Canada, V8W 3V6
| | - David A Harrington
- Department of Chemistry, University of Victoria, Victoria, BC, Canada, V8W 3V6
| |
Collapse
|
8
|
Coverage-dependent formic acid oxidation reaction kinetics determined by oscillating potentials. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Monteiro MO, Jacobse L, Koper MTM. Understanding the Voltammetry of Bulk CO Electrooxidation in Neutral Media through Combined SECM Measurements. J Phys Chem Lett 2020; 11:9708-9713. [PMID: 33136404 PMCID: PMC7681782 DOI: 10.1021/acs.jpclett.0c02779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Recently, the bulk electrooxidation of CO on gold or platinum has been used to detect CO produced during CO2 reduction in neutral media. The CO bulk oxidation voltammetry may show two distinct peaks depending on the reaction conditions, which up to now have not been understood. We have used scanning electrochemical microscopy (SECM) to probe CO oxidation and pH in the diffusion layer during CO2 reduction. Our results show that the two different peaks are due to diffusion limitation by two different species, namely, CO and OH-. We find that between pH 7 and 11, CO oxidation by water and OH- gives rise to the first and second peak observed in the voltammetry, respectively. Additional rotating disc experiments showed that specifically in this pH range the current of the second peak is diffusion limited by the OH- concentration, since it is lower than the CO concentration.
Collapse
Affiliation(s)
- Mariana
C. O. Monteiro
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Leon Jacobse
- DESY
NanoLab, Deutsches Elektronensynchrotron
DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
Wu K, Zhang Q, Lin Y, Ali MA, Zhao S, Heumann S, Centi G. Real‐Time Carbon Monoxide Detection using a Rotating Gold Ring Electrode: A Feasibility Study. ChemElectroChem 2020. [DOI: 10.1002/celc.202001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kuang‐Hsu Wu
- School of Chemical Engineering The University of New South Wales Kensington Sydney NSW 2052 Australia
| | - Qingran Zhang
- School of Chemical Engineering The University of New South Wales Kensington Sydney NSW 2052 Australia
| | - Yangming Lin
- Max-Planck Institute for Chemical Energy Conversion Mülheim 45470 Germany
| | - Mohammad A. Ali
- Materials Research Lab The Grainger College of Engineering University of Illinois at Urbana Champaign Urbana IL 61801 USA
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown Sydney NSW 2006 Australia
| | - Saskia Heumann
- Max-Planck Institute for Chemical Energy Conversion Mülheim 45470 Germany
| | - Gabriele Centi
- Department of MIFT University of Messina ERIC AISBL and CASPE/INSTM 98166 Messina Italy
| |
Collapse
|
11
|
Mayet N, Servat K, Kokoh KB, Napporn TW. Electrochemical Oxidation of Carbon Monoxide on Unsupported Gold Nanospheres in Alkaline Medium. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00626-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Auer A, Andersen M, Wernig EM, Hörmann NG, Buller N, Reuter K, Kunze-Liebhäuser J. Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte. Nat Catal 2020. [DOI: 10.1038/s41929-020-00505-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Sargeant E, Kolodziej A, Le Duff CS, Rodriguez P. Electrochemical Conversion of CO 2 and CH 4 at Subzero Temperatures. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elizabeth Sargeant
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Adam Kolodziej
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Cécile S. Le Duff
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Paramaconi Rodriguez
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
14
|
Goyal A, Marcandalli G, Mints VA, Koper MTM. Competition between CO 2 Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions. J Am Chem Soc 2020; 142:4154-4161. [PMID: 32041410 PMCID: PMC7059182 DOI: 10.1021/jacs.9b10061] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gold is one of the most selective catalysts for the electrochemical reduction of CO2 (CO2RR) to CO. However, the concomitant hydrogen evolution reaction (HER) remains unavoidable under aqueous conditions. In this work, a rotating ring disk electrode (RRDE) setup has been developed to study quantitatively the role of mass transport in the competition between these two reactions on the Au surface in 0.1 M bicarbonate electrolyte. Interestingly, while the faradaic selectivity for CO formation was found to increase with enhanced mass transport (from 67% to 83%), this effect is not due to an enhancement of the CO2RR rate. Remarkably, the inhibition of the competing HER from water reduction with increasing disk rotation rate is responsible for the enhanced CO2RR selectivity. This can be explained by the observation that, on the Au electrode, water reduction improves with more alkaline pH. As a result, the decrease in the local alkalinity near the electrode surface with enhanced mass transport suppresses HER due to the water reduction. Our study shows that controlling the local pH by mass transport conditions can tune the HER rate, in turn regulating the CO2RR and HER competition in the general operating potential window for CO2RR (-0.4 to -1 V vs RHE).
Collapse
Affiliation(s)
- Akansha Goyal
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Giulia Marcandalli
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Vladislav A Mints
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
15
|
|
16
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
17
|
Ahangari HT, Marshall AT. Preventing the Deactivation of Gold Cathodes During Electrocatalytic CO2 Reduction While Avoiding Gold Dissolution. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00564-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Iijima G, Inomata T, Yamaguchi H, Ito M, Masuda H. Role of a Hydroxide Layer on Cu Electrodes in Electrochemical CO2 Reduction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00896] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Go Iijima
- Advanced Research and Innovation Center, DENSO Corporation, 500-1 minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho,
Showa, Nagoya 466-8555, Japan
| | - Tomohiko Inomata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho,
Showa, Nagoya 466-8555, Japan
| | - Hitoshi Yamaguchi
- Advanced Research and Innovation Center, DENSO Corporation, 500-1 minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
| | - Miho Ito
- Advanced Research and Innovation Center, DENSO Corporation, 500-1 minamiyama, Komenoki-cho, Nisshin 470-0111, Japan
| | - Hideki Masuda
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho,
Showa, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Duan Z, Henkelman G. Calculations of the pH-Dependent Onset Potential for CO Electrooxidation on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15268-15275. [PMID: 30462512 DOI: 10.1021/acs.langmuir.8b03644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
CO electrooxidation on the Au(111) surface exhibits an onset potential that depends strongly on the pH of the electrolyte. In alkaline solution, the onset potential for CO electrooxidation is found, experimentally, to be 0.5 V lower than in acidic media on the reversible hydrogen electrode scale. This phenomenon is explained here with density functional theory which is used to calculate adsorbate binding energies including the electric double layer of the Au(111)/aqueous interface. Our model consists of a charged Au(111) slab and implicit solvation for the electrolyte. The double reference method is used to determine the potential-dependent CO electrooxidation reaction energetics. A microkinetic model, based upon the calculated reaction energetics, confirms the lower onset potential in alkaline media. Our results show that there are three factors contributing to the lower onset potential in base: (1) stronger CO adsorption, (2) attraction between adsorbed CO and OH-, and (3) the high concentration of OH- in base.
Collapse
Affiliation(s)
- Zhiyao Duan
- Department of Chemistry and the Institute for Computational Engineering and Sciences , The University of Texas at Austin , Austin , Texas 78712-0165 , United States
| | - Graeme Henkelman
- Department of Chemistry and the Institute for Computational Engineering and Sciences , The University of Texas at Austin , Austin , Texas 78712-0165 , United States
| |
Collapse
|
20
|
Kwon HC, Kim M, Grote JP, Cho SJ, Chung MW, Kim H, Won DH, Zeradjanin AR, Mayrhofer KJJ, Choi M, Kim H, Choi CH. Carbon Monoxide as a Promoter of Atomically Dispersed Platinum Catalyst in Electrochemical Hydrogen Evolution Reaction. J Am Chem Soc 2018; 140:16198-16205. [PMID: 30383962 DOI: 10.1021/jacs.8b09211] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon monoxide is widely known to poison Pt during heterogeneous catalysis owing to its strong donor-acceptor binding ability. Herein, we report a counterintuitive phenomenon of this general paradigm when the size of Pt decreases to an atomic level, namely, the CO-promoting Pt electrocatalysis toward hydrogen evolution reactions (HER). Compared to pristine atomic Pt catalyst, reduction current on a CO-modified catalyst increases significantly. Operando mass spectroscopy and electrochemical analyses demonstrate that the increased current arises due to enhanced H2 evolution, not additional CO reduction. Through structural identification of catalytic sites and computational analysis, we conclude that CO-ligation on the atomic Pt facilitates Hads formation via water dissociation. This counterintuitive effect exemplifies the fully distinct characteristics of atomic Pt catalysts from those of bulk Pt, and offers new insights for tuning the activity of similar classes of catalysts.
Collapse
Affiliation(s)
- Han Chang Kwon
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Minho Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Jan-Philipp Grote
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Strasse 1 , 40237 Düsseldorf , Germany
| | - Sung June Cho
- Department of Applied Chemical Engineering , Chonnam National University , Gwangju 61186 , Republic of Korea
| | - Min Wook Chung
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Da Hye Won
- Clean Energy Research Center , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Aleksandar R Zeradjanin
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Strasse 1 , 40237 Düsseldorf , Germany.,Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy , Forschungszentrum Jülich , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Karl J J Mayrhofer
- Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Strasse 1 , 40237 Düsseldorf , Germany.,Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy , Forschungszentrum Jülich , Egerlandstrasse 3 , 91058 Erlangen , Germany.,Department of Chemical and Biological Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Minkee Choi
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , Republic of Korea
| | - Chang Hyuck Choi
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
21
|
Le Duff CS, Lawrence MJ, Rodriguez P. Role of the Adsorbed Oxygen Species in the Selective Electrochemical Reduction of CO 2 to Alcohols and Carbonyls on Copper Electrodes. Angew Chem Int Ed Engl 2017; 56:12919-12924. [PMID: 28834583 DOI: 10.1002/anie.201706463] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/03/2017] [Indexed: 11/08/2022]
Abstract
The electrochemical reduction of CO2 into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO2 to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO2 on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO2 reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent.
Collapse
Affiliation(s)
- Cécile S Le Duff
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew J Lawrence
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paramaconi Rodriguez
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
22
|
Le Duff CS, Lawrence MJ, Rodriguez P. Role of the Adsorbed Oxygen Species in the Selective Electrochemical Reduction of CO2
to Alcohols and Carbonyls on Copper Electrodes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cécile S. Le Duff
- School of Chemistry; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Matthew J. Lawrence
- School of Chemistry; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | | |
Collapse
|
23
|
Kolodziej A, Figueiredo MC, Koper MT, Fernandez-Trillo F, Rodriguez P. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
An in-situ electrochemical IR investigation of solution CO electro-oxidation on a polycrystalline Au surface in an alkaline electrolyte: Identification of active reaction intermediates. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
|
26
|
Liu H, An W, Li Y, Frenkel AI, Sasaki K, Koenigsmann C, Su D, Anderson RM, Crooks RM, Adzic RR, Liu P, Wong SS. In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction. J Am Chem Soc 2015; 137:12597-609. [PMID: 26402364 DOI: 10.1021/jacs.5b07093] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (∼2 nm) core-shell Pt∼Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu∼Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Hence, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.
Collapse
Affiliation(s)
- Haiqing Liu
- Department of Chemistry, State University of New York at Stony Brook , Stony Brook, New York 11794-3400, United States
| | - Wei An
- Chemistry Department, Brookhaven National Laboratory , Building 555, Upton, New York 11973, United States
| | - Yuanyuan Li
- Department of Physics, Yeshiva University , New York, New York 10016, United States
| | - Anatoly I Frenkel
- Department of Physics, Yeshiva University , New York, New York 10016, United States
| | - Kotaro Sasaki
- Chemistry Department, Brookhaven National Laboratory , Building 555, Upton, New York 11973, United States
| | - Christopher Koenigsmann
- Department of Chemistry, State University of New York at Stony Brook , Stony Brook, New York 11794-3400, United States
| | - Dong Su
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Building 735, Upton, New York 11973, United States
| | - Rachel M Anderson
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | - Richard M Crooks
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | - Radoslav R Adzic
- Chemistry Department, Brookhaven National Laboratory , Building 555, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Department, Brookhaven National Laboratory , Building 555, Upton, New York 11973, United States
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook , Stony Brook, New York 11794-3400, United States.,Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory , Building 480, Upton, New York 11973, United States
| |
Collapse
|
27
|
Intermetallic junction contribution to the CO electrooxidation on a Pt/Au electrode: the excess voltammetric current. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2987-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Monzó J, Malewski Y, Vidal-Iglesias FJ, Solla-Gullon J, Rodriguez P. Electrochemical Oxidation of Small Organic Molecules on Au Nanoparticles with Preferential Surface Orientation. ChemElectroChem 2015. [DOI: 10.1002/celc.201500084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Rodriguez P, Plana D, Fermin DJ, Koper MT. New insights into the catalytic activity of gold nanoparticles for CO oxidation in electrochemical media. J Catal 2014. [DOI: 10.1016/j.jcat.2013.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Abstract
This perspective article reviews recent advances in the study of important catalytic reactions on gold electrodes.
Collapse
Affiliation(s)
| | - Marc T. M. Koper
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden, The Netherlands
| |
Collapse
|
31
|
Kauffman DR, Alfonso D, Matranga C, Ohodnicki P, Deng X, Siva RC, Zeng C, Jin R. Probing active site chemistry with differently charged Au25q nanoclusters (q = −1, 0, +1). Chem Sci 2014. [DOI: 10.1039/c4sc00997e] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.08.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Koverga AA, Frank S, Koper MT. Density Functional Theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.12.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Rabis A, Rodriguez P, Schmidt TJ. Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catal 2012. [DOI: 10.1021/cs3000864] [Citation(s) in RCA: 666] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annett Rabis
- Electrochemistry Laboratory,
General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Paramaconi Rodriguez
- Electrochemistry Laboratory,
General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Thomas J. Schmidt
- Electrochemistry Laboratory,
General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Laboratory of Physical Chemistry,
Electrochemistry Group, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
35
|
Tong YJ. Unconventional promoters of catalytic activity in electrocatalysis. Chem Soc Rev 2012; 41:8195-209. [DOI: 10.1039/c2cs35381d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Rodriguez P, Kwon Y, Koper MTM. The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat Chem 2011; 4:177-82. [DOI: 10.1038/nchem.1221] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/03/2011] [Indexed: 11/09/2022]
|
37
|
Abstract
The advances in spectroscopy and theory that have occurred over the past two decades begin to provide detailed in situ resolution of the molecular transformations that occur at both gas/metal as well as aqueous/metal interfaces. These advances begin to allow for a more direct comparison of heterogeneous catalysis and electrocatalysis. Such comparisons become important, as many of the current energy conversion strategies involve catalytic and electrocatalytic processes that occur at fluid/solid interfaces and display very similar characteristics. Herein, we compare and contrast a few different catalytic and electrocatalytic systems to elucidate the principles that cross-cut both areas and establish characteristic differences between the two with the hope of advancing both areas.
Collapse
|
38
|
Kwon Y, Lai SCS, Rodriguez P, Koper MTM. Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J Am Chem Soc 2011; 133:6914-7. [PMID: 21504194 DOI: 10.1021/ja200976j] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
On the basis of a comparison of the oxidation activity of a series of similar alcohols with varying pK(a) on gold electrodes in alkaline solution, we find that the first deprotonation is base catalyzed, and the second deprotonation is fast but gold catalyzed. The base catalysis follows a Hammett-type correlation with pK(a), and dominates overall reactivity for a series of similar alcohols. The high oxidation activity on gold compared to platinum for some of the alcohols is related to the high resistance of gold toward the formation of poisoning surface oxides. These results indicate that base catalysis is the main driver behind the high oxidation activity of many organic fuels on fuel cell anodes in alkaline media, and not the catalyst interaction with hydroxide.
Collapse
Affiliation(s)
- Youngkook Kwon
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
39
|
Rodriguez P, Garcia-Araez N, Koverga A, Frank S, Koper MTM. CO electroxidation on gold in alkaline media: a combined electrochemical, spectroscopic, and DFT study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12425-12432. [PMID: 20560579 DOI: 10.1021/la1014048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aim of the present work is to provide a deeper understanding of gold catalysis for CO electrooxidation in alkaline media, through a combined electrochemical, spectroscopic, and DFT study. Voltammetric and spectroscopic measurements evidence that the amount of CO irreversibly adsorbed on gold increases as the adsorption potential becomes more negative (vs SHE). This explains why higher CO coverages can be achieved in more alkaline solutions, since the value of adsorption potential vs RHE becomes more negative vs SHE with increasing pH. On the other hand, the combination of FTIRRAS experiments and DFT calculations shows that the adsorption site of irreversibly adsorbed CO on Au(111) depends on the value of the adsorption potential. It is concluded that CO adsorption on top sites takes place at all studied potentials, and hollow and bridge sites also become occupied for adsorption potentials lower and higher than 0 V vs RHE, respectively. However, it should be noted that our DFT calculations give values of the CO binding energies that are not strong enough to explain CO irreversible adsorption. This may be partly attributed to the fact that OH coadsorption is not included in the calculations. Indeed, this work presents two experimental facts that suggest that CO adsorption on gold promotes the coadsorption of OH species: (i) CO irreversibly adsorbed on Au(111) and Au(100) leads to an unusual voltammetric feature, whose charge indicates the stabilization of one OH species per adsorbed CO species; (ii) the apparent transfer coefficient of this unusual state is close to unity, suggesting that it is due to a presumed structural transformation coupled to OH adsorption. Finally, the effect of the adsorption potential on the bulk CO electrooxidation is also studied. It is found that, on Au(111), an increased occupation of CO on multifold (hollow) sites seems to result in a less efficient catalysis. However, on Au(110), an increased coverage of CO on top sites does not produce any significant change in catalysis.
Collapse
Affiliation(s)
- Paramaconi Rodriguez
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|