1
|
Perez-Lopez AM, Valero E, Bradley M. Synthesis and optimization of a reactive oxygen species responsive cellular delivery system. NEW J CHEM 2017. [DOI: 10.1039/c6nj02985j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species responsive delivery systems for the detection of peroxides in live macrophages have been designed. The oxidative cleavage of a boronic ester to a phenol triggered by hydrogen peroxide followed by self-immolation of a ROS-sensitive cleavable linkervia1,6-elimination allowed the disturbance of the fluorescence resonance energy transfer turning on the near-infrared fluorescence.
Collapse
Affiliation(s)
| | - Elsa Valero
- School of Chemistry
- University of Edinburgh
- Edinburgh EH9 3JJ
- UK
| | - Mark Bradley
- School of Chemistry
- University of Edinburgh
- Edinburgh EH9 3JJ
- UK
| |
Collapse
|
2
|
Pérez-López AM, Soria-Gila ML, Marsden ER, Lilienkampf A, Bradley M. Fluorogenic Substrates for In Situ Monitoring of Caspase-3 Activity in Live Cells. PLoS One 2016; 11:e0153209. [PMID: 27168077 PMCID: PMC4864350 DOI: 10.1371/journal.pone.0153209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/26/2016] [Indexed: 02/06/2023] Open
Abstract
The in situ detection of caspase-3 activity has applications in the imaging and monitoring of multiple pathologies, notably cancer. A series of cell penetrating FRET-based fluorogenic substrates were designed and synthesised for the detection of caspase-3 in live cells. A variety of modifications of the classical caspase-3 and caspase-7 substrate sequence Asp-Glu-Val-Asp were carried out in order to increase caspase-3 affinity and eliminate caspase-7 cross-reactivity. To allow cellular uptake and good solubility, the substrates were conjugated to a cationic peptoid. The most selective fluorogenic substrate 27, FAM-Ahx-Asp-Leu-Pro-Asp-Lys(MR)-Ahx, conjugated to the cell penetrating peptoid at the C-terminus, was able to detect and quantify caspase-3 activity in apoptotic cells without cross-reactivity by caspase-7.
Collapse
Affiliation(s)
- Ana M. Pérez-López
- School of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black building, West Mains Road, Edinburgh EH9 3FJ, United Kingdom
| | - M. Lourdes Soria-Gila
- Department of Medicinal and Organic Chemistry, University of Granada, School of Pharmacy, Campus Cartuja s/n – 18071, Granada, Spain
| | - Emma R. Marsden
- School of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black building, West Mains Road, Edinburgh EH9 3FJ, United Kingdom
| | - Annamaria Lilienkampf
- School of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black building, West Mains Road, Edinburgh EH9 3FJ, United Kingdom
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black building, West Mains Road, Edinburgh EH9 3FJ, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Jong T, Pérez-López AM, Johansson EMV, Lilienkampf A, Bradley M. Flow and Microwave-Assisted Synthesis of N-(Triethylene glycol)glycine Oligomers and Their Remarkable Cellular Transporter Activities. Bioconjug Chem 2015; 26:1759-65. [PMID: 26155805 DOI: 10.1021/acs.bioconjchem.5b00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- ThingSoon Jong
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Ana M. Pérez-López
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Emma M. V. Johansson
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Annamaria Lilienkampf
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Mark Bradley
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
4
|
Weiss JT, Fraser C, Rubio-Ruiz B, Myers SH, Crispin R, Dawson JC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A. N-alkynyl derivatives of 5-fluorouracil: susceptibility to palladium-mediated dealkylation and toxigenicity in cancer cell culture. Front Chem 2014; 2:56. [PMID: 25121087 PMCID: PMC4114543 DOI: 10.3389/fchem.2014.00056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 01/23/2023] Open
Abstract
Palladium-activated prodrug therapy is an experimental therapeutic approach that relies on the unique chemical properties and biocompatibility of heterogeneous palladium catalysis to enable the spatially-controlled in vivo conversion of a biochemically-stable prodrug into its active form. This strategy, which would allow inducing local activation of systemically administered drug precursors by mediation of an implantable activating device made of Pd0, has been proposed by our group as a way to reach therapeutic levels of the active drug in the affected tissue/organ while reducing its systemic toxicity. In the seminal study of such an approach, we reported that propargylation of the N1 position of 5-fluorouracil suppressed the drug's cytotoxic properties, showed high stability in cell culture and facilitated the bioorthogonal restoration of the drug's pharmacological activity in the presence of extracellular Pd0-functionalized resins. To provide additional insight on the properties of this system, we have investigated different N1-alkynyl derivatives of 5-fluorouracil and shown that the presence of substituents near the triple bond influence negatively on its sensitivity to palladium catalysis under biocompatible conditions. Comparative studies of the N1- vs. the N3-propargyl derivatives of 5-fluorouracil revealed that masking each or both positions equally led to inactive derivatives (>200-fold reduction of cytotoxicity relative to the unmodified drug), whereas the depropargylation process occurred faster at the N1 position than at the N3, thus resulting in greater toxigenic properties in cancer cell culture.
Collapse
Affiliation(s)
- Jason T Weiss
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - Craig Fraser
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - Belén Rubio-Ruiz
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - Samuel H Myers
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - Richard Crispin
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK ; MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - John C Dawson
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - E Elizabeth Patton
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK ; MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh, UK
| |
Collapse
|
5
|
Weiss JT, Dawson JC, Fraser C, Rybski W, Torres-Sánchez C, Bradley M, Patton EE, Carragher NO, Unciti-Broceta A. Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J Med Chem 2014; 57:5395-404. [PMID: 24867590 PMCID: PMC4078945 DOI: 10.1021/jm500531z] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Bioorthogonal
chemistry has become one of the main driving forces
in current chemical biology, inspiring the search for novel biocompatible
chemospecific reactions for the past decade. Alongside the well-established
labeling strategies that originated the bioorthogonal paradigm, we
have recently proposed the use of heterogeneous palladium chemistry
and bioorthogonal Pd0-labile prodrugs to develop spatially
targeted therapies. Herein, we report the generation of biologically
inert precursors of cytotoxic gemcitabine by introducing Pd0-cleavable groups in positions that are mechanistically relevant
for gemcitabine’s pharmacological activity. Cell viability
studies in pancreatic cancer cells showed that carbamate functionalization
of the 4-amino group of gemcitabine significantly reduced (>23-fold)
the prodrugs’ cytotoxicity. The N-propargyloxycarbonyl
(N-Poc) promoiety displayed the highest sensitivity
to heterogeneous palladium catalysis under biocompatible conditions,
with a reaction half-life of less than 6 h. Zebrafish studies with
allyl, propargyl, and benzyl carbamate-protected rhodamines confirmed N-Poc as the most suitable masking group for implementing in vivo bioorthogonal organometallic chemistry.
Collapse
Affiliation(s)
- Jason T Weiss
- Edinburgh Cancer Research UK Centre, and ‡MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh , Crewe Road South, Edinburgh EH4 2XR, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nagel D, Behrendt JM, Chimonides GF, Torr EE, Devitt A, Sutherland AJ, Hine AV. Polymeric microspheres as protein transduction reagents. Mol Cell Proteomics 2014; 13:1543-51. [PMID: 24692642 PMCID: PMC4047473 DOI: 10.1074/mcp.o113.034900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Discovering the function of an unknown protein, particularly one with neither structural nor functional correlates, is a daunting task. Interaction analyses determine binding partners, whereas DNA transfection, either transient or stable, leads to intracellular expression, though not necessarily at physiologically relevant levels. In theory, direct intracellular protein delivery (protein transduction) provides a conceptually simpler alternative, but in practice the approach is problematic. Domains such as HIV TAT protein are valuable, but their effectiveness is protein specific. Similarly, the delivery of intact proteins via endocytic pathways (e.g. using liposomes) is problematic for functional analysis because of the potential for protein degradation in the endosomes/lysosomes. Consequently, recent reports that microspheres can deliver bio-cargoes into cells via a non-endocytic, energy-independent pathway offer an exciting and promising alternative for in vitro delivery of functional protein. In order for such promise to be fully exploited, microspheres are required that (i) are stably linked to proteins, (ii) can deliver those proteins with good efficiency, (iii) release functional protein once inside the cells, and (iv) permit concomitant tracking. Herein, we report the application of microspheres to successfully address all of these criteria simultaneously, for the first time. After cellular uptake, protein release was autocatalyzed by the reducing cytoplasmic environment. Outside of cells, the covalent microsphere–protein linkage was stable for ≥90 h at 37 °C. Using conservative methods of estimation, 74.3% ± 5.6% of cells were shown to take up these microspheres after 24 h of incubation, with the whole process of delivery and intracellular protein release occurring within 36 h. Intended for in vitro functional protein research, this approach will enable study of the consequences of protein delivery at physiologically relevant levels, without recourse to nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake.
Collapse
Affiliation(s)
- David Nagel
- From the ‡School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan M Behrendt
- §School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Gwen F Chimonides
- §School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Elizabeth E Torr
- From the ‡School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Andrew Devitt
- From the ‡School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK; ‖Aston Research Centre for Healthy Aging, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Andrew J Sutherland
- §School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Anna V Hine
- From the ‡School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK;
| |
Collapse
|
7
|
Thielbeer F, Chankeshwara SV, Johansson EMV, Norouzi N, Bradley M. Palladium-mediated bioorthogonal conjugation of dual-functionalised nanoparticles and their cellular delivery. Chem Sci 2013. [DOI: 10.1039/c2sc20706k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
8
|
Yusop RM, Unciti-Broceta A, Bradley M. A highly sensitive fluorescent viscosity sensor. Bioorg Med Chem Lett 2012; 22:5780-3. [DOI: 10.1016/j.bmcl.2012.07.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 02/05/2023]
|
9
|
Unciti-Broceta A, Díaz-Mochón JJ, Sánchez-Martín RM, Bradley M. The use of solid supports to generate nucleic acid carriers. Acc Chem Res 2012; 45:1140-52. [PMID: 22390230 DOI: 10.1021/ar200263c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nucleic acids are the foundation stone of all cellular processes. Consequently, the use of DNA or RNA to treat genetic and acquired disorders (so called gene therapy) offers enormous potential benefits. The restitution of defective genes or the suppression of malignant genes could target a range of diseases, including cancers, inherited diseases (cystic fibrosis, muscular dystrophy, etc.), and viral infections. However, this strategy has a major barrier: the size and charge of nucleic acids largely restricts their transit into eukaryotic cells. Potential strategies to solve this problem include the use of a variety of natural and synthetic nucleic acid carriers. Driven by the aim and ambition of translating this promising therapeutic approach into the clinic, researchers have been actively developing advanced delivery systems for nucleic acids for more than 20 years. A decade ago we began our investigations of solid-phase techniques to construct families of novel nucleic acid carriers for transfection. We envisaged that the solid-phase synthesis of polycationic dendrimers and derivatized polyamimes would offer distinct advantages over solution phase techniques. Notably in solid phase synthesis we could take advantage of mass action and streamlined purification procedures, while simplifying the handling of compounds with high polarities and plurality of functional groups. Parallel synthesis methods would also allow rapid access to libraries of compounds with improved purities and yields over comparable solution methodologies and facilitate the development of structure activity relationships. We also twisted the concept of the solid-phase support on its head: we devised miniaturized solid supports that provided an innovative cell delivery vehicle in their own right, carrying covalently conjugated cargos (biomolecules) into cells. In this Account, we summarize the main outcomes of this series of chemically related projects.
Collapse
Affiliation(s)
- Asier Unciti-Broceta
- Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
- Deliverics Ltd, Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
| | - Juan José Díaz-Mochón
- Facultad de Farmacia, Universidad de Granada, Campus de la Cartuja s/n, 18071 Granada, Spain
| | | | - Mark Bradley
- School of Chemistry, University of Edinburgh, West Mains Road, EH9 3JJ Edinburgh, United Kingdom
| |
Collapse
|
10
|
Dhaliwal K, Escher G, Unciti-Broceta A, McDonald N, Simpson AJ, Haslett C, Bradley M. Far red and NIR dye-peptoid conjugates for efficient immune cell labelling and tracking in preclinical models. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00171j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Cardenas-Maestre JM, Panadero-Fajardo S, Perez-Lopez AM, Sanchez-Martin RM. Sulfhydryl reactive microspheres for the efficient delivery of thiolated bioactive cargoes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11948f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
|