1
|
Pandeswari PB, Chary RN, Kamalanathan AS, Prabhakar S, Sabareesh V. Mimicking LysC Proteolysis by 'Arginine-Modification-cum-Trypsin digestion': Comparison of Bottom-Up & Middle-Down Proteomic Approaches by ESI-QTOF-MS. Protein Pept Lett 2021; 28:1379-1390. [PMID: 34587878 DOI: 10.2174/0929866528666210929163307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/04/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Middle-down (MD) proteomics is an emerging approach for reliable identification of post- translational modifications and isoforms, as this approach focuses on proteolytic peptides containing > 25 - 30 amino acid residues (a.a.r.), which are longer than typical tryptic peptides. Such longer peptides can be obtained by AspN, GluC, LysC proteases. Additionally, some special proteases were developed specifically to effect MD approach, e.g., OmpT, Sap9, etc. However, these proteases are expensive. Herein we report a cost-effective strategy, 'arginine modification-cum trypsin digestion', which can produce longer tryptic peptides resembling LysC peptides derived from proteins. OBJECTIVE To obtain proteolytic peptides that resemble LysC peptides, by using 'trypsin', which is an less expensive protease. METHODS This strategy is based on the simple principle that trypsin cannot act at the C-termini of those arginines in proteins, whose sidechain guanidine groups are modified by 1,2-cyclohexanedione or phenylglyoxal. RESULTS As a proof of concept, we demonstrate this strategy on four models: β-casein (bovine), β- lactoglobulin (bovine), ovalbumin (chick) and transferrin (human), by electrospray ionization-mass spectrometry (ESI-MS) involving hybrid quadrupole time-of-flight. From the ESI-MS of these models, we obtained several arginine modified tryptic peptides, whose lengths are in the range, 30 - 60 a.a.r. The collision-induced dissociation MS/MS characteristics of some of the arginine modified longer tryptic peptides are compared with the unmodified standard tryptic peptides. CONCLUSION The strategy followed in this proof-of-concept study, not only helps in obtaining longer tryptic peptides that mimic LysC proteolytic peptides, but also facilitates in enhancing the probability of missed cleavages by the trypsin. Hence, this method aids in evading the possibility of obtaining very short peptides that are < 5 - 10 a.a.r. Therefore, this is indeed an cost-effective alternative/substitute for LysC proteolysis and in turn, for those MD proteomic studies that utilize LysC. Additionally, this methodology can be fruitful for mass spectrometry based de novo protein and peptide sequencing.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu - 632014. India
| | - R Nagarjuna Chary
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana - 500007. India
| | - A S Kamalanathan
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu - 632014. India
| | - Sripadi Prabhakar
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana - 500007. India
| | - Varatharajan Sabareesh
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu - 632014. India
| |
Collapse
|
2
|
Chien HJ, Xue YT, Chen HC, Wu KY, Lai CC. Proteomic analysis of rat kidney under maleic acid treatment by SWATH-MS technology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8633. [PMID: 31677360 DOI: 10.1002/rcm.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Maleic acid is an industrial-grade chemical that is often used in adhesives, stabilizers, and preservatives. It is unknown whether long-term consumption of maleic acid modified starch is harmful to humans. However, many studies have indicated that maleic acid causes renal tubular damage in animal models, even as the associated pathways remain unclear. Sequential window acquisition of all theoretical fragment ion spectra (SWATH) is the most innovative of the label-free quantitative technologies which have better quantification performance. Therefore, SWATH technology was used to investigate the effect of maleic acid on the rat kidney proteome in this study. METHODS Sprague-Dawley(SD) rats were treated with 0 mg/kg (control), 6 mg/kg (low-dose), 10 mg/kg (medium-dose), and 60 mg/kg (high-dose) of maleic acid. After kidney protein extraction, 28% SDS-PAGE was used, followed by in-gel digestion and desalting. Next, the samples were analyzed with ultra-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (Q-TOF MS), and data-dependent acquisition (DDA) and SWATH technology were also used. The gene ontology and pathway analysis were accomplished. Ultimately, these protein biomarkers were validated by using scheduled high-resolution multiple reaction monitoring (sMRMHR ). RESULTS Comparisons of the control group with the other three groups revealed that 95, 130, and 103 proteins were expressed at significantly different levels in the control group and in the low-dose, medium-dose, and high-dose groups, respectively. According to the gene ontology analysis, the major processes that these proteins were involved in were metabolic processes, biological regulation, cellular processes, and responses to stimuli; the major functions that these proteins were involved in were binding, hydrolase activity, catalytic activity, and oxidoreductase activity; and the major cellular components hat they were involved in were the cytoplasm, extracellular region, membrane, and mitochondria. According to the KEGG pathway analysis, these proteins were involved in 35 pathways, five of which, the carbohydrate metabolism, folate biosynthesis, renal tubular resorption, amino acid metabolism, and Ras signaling pathways, are discussed in this study. Ultimately, 19 proteins involved in 12 important pathways were validated by sMRMHR . CONCLUSIONS It was demonstrated that maleic acid caused insufficient energy production, which might lead to a decrease in the activity of the sodium-potassium ATP pump and hydrogen ion ATP pump, which could in turn have caused renal tubular resorption and hydrogen ion regulation to be blocked, thus leading to the accumulation of hydrogen ions in the renal tubules, which would then result in renal tubular acidification followed finally by Fanconi syndrome.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Ting Xue
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, ShiuJou Road, Taipei, 10055, Taiwan
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, ShiuJou Road, Taipei, 10055, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, 40447, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40402, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei City, 11490, Taiwan
| |
Collapse
|
3
|
Hempel BF, Damm M, Mrinalini, Göçmen B, Karış M, Nalbantsoy A, Kini RM, Süssmuth RD. Extended Snake Venomics by Top-Down In-Source Decay: Investigating the Newly Discovered Anatolian Meadow Viper Subspecies, Vipera anatolica senliki. J Proteome Res 2020; 19:1731-1749. [PMID: 32073270 DOI: 10.1021/acs.jproteome.9b00869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report on the venom proteome of Vipera anatolica senliki, a recently discovered and hitherto unexplored subspecies of the critically endangered Anatolian meadow viper endemic to the Antalya Province of Turkey. Integrative venomics, including venom gland transcriptomics as well as complementary bottom-up and top-down proteomics analyses, were applied to fully characterize the venom of V. a. senliki. Furthermore, the classical top-down venomics approach was extended to elucidate the venom proteome by an alternative in-source decay (ISD) proteomics workflow using the reducing matrix 1,5-diaminonaphthalene. Top-down ISD proteomics allows for disulfide bond counting and effective de novo sequencing-based identification of high-molecular-weight venom constituents, both of which are difficult to achieve by commonly established top-down approaches. Venom gland transcriptome analysis identified 96 toxin transcript annotations from 18 toxin families. Relative quantitative snake venomics revealed snake venom metalloproteinases (42.9%) as the most abundant protein family, followed by several less dominant toxin families. Online mass profiling and top-down venomics provide a detailed insight into the venom proteome of V. a. senliki and facilitate a comparative analysis of venom variability for the closely related subspecies, Vipera anatolica anatolica.
Collapse
Affiliation(s)
- Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Mrinalini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Bayram Göçmen
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, 35100 Izmir, Turkey
| | - Mert Karış
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, 35100 Izmir, Turkey
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Bornova, Turkey
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16, Medical Drive, Singapore 117600
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
4
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
5
|
Fagerquist CK, Zaragoza WJ. Proteolytic Surface-Shaving and Serotype-Dependent Expression of SPI-1 Invasion Proteins in Salmonella enterica Subspecies enterica. Front Nutr 2018; 5:124. [PMID: 30619870 PMCID: PMC6295468 DOI: 10.3389/fnut.2018.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
We performed proteolytic surface-shaving with trypsin on three strains/sevovars of Salmonella enterica enterica (SEE): Newport, Kentucky, and Thompson. Surfaced-exposed proteins of live bacterial cells were digested for 15 min. A separate 20 h re-digestion was also performed on the supernatant of each shaving experiment to more completely digest protein fragments into detectable peptides for proteomic analysis by nano-liquid chromatography-electrospray ionization-Orbitrap mass spectrometry. Control samples (i.e., no trypsin during surface-shaving step) were also performed in parallel. We detected peptides of flagella proteins: FliC (filament), FliD (cap), and FlgL (hook-filament junction) as well as peptides of FlgM (anti-σ28 factor), i.e., the negative regulator of flagella synthesis. For SEE Newport and Thompson, we detected Salmonella pathogenicity island 1 (SPI-1) secreted effector/invasion proteins: SipA, SipB, SipC, and SipD, whereas no Sip proteins were detected in control samples. No Sip proteins were detected for SEE Kentucky (or its control) although sip genes were confirmed to be present. Our results may suggest a biological response (<15 min) to proteolysis of live cells for these SEE strains and, in the case of Newport and Thompson, a possible invasion response.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - William J Zaragoza
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| |
Collapse
|
6
|
Vincent D, Mertens D, Rochfort S. Optimisation of Milk Protein Top-Down Sequencing Using In-Source Collision-Induced Dissociation in the Maxis Quadrupole Time-of-Flight Mass Spectrometer. Molecules 2018; 23:molecules23112777. [PMID: 30373172 PMCID: PMC6278275 DOI: 10.3390/molecules23112777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/25/2022] Open
Abstract
Top-down sequencing in proteomics has come of age owing to continuous progress in LC-MS. With their high resolution and broad mass range, Quadrupole Time-of-Flight (Q-ToF) hybrid mass spectrometers equipped with electrospray ionisation source and tandem MS capability by collision-induced dissociation (CID) can be employed to analyse intact proteins and retrieve primary sequence information. To our knowledge, top-down proteomics methods with Q-ToF have only been evaluated using samples of relatively low complexity. Furthermore, the in-source CID (IS-CID) capability of Q-ToF instruments has been under-utilised. This study aimed at optimising top-down sequencing of intact milk proteins to achieve the greatest sequence coverage possible from samples of increasing complexity, assessed using nine known proteins. Eleven MS/MS methods varying in their IS-CID and conventional CID parameters were tested on individual and mixed protein standards as well as raw milk samples. Top-down sequencing results from the nine most abundant proteoforms of caseins, alpha-lactalbumin and beta-lactoglubulins were compared. Nine MS/MS methods achieved more than 70% sequence coverage overall to distinguish between allelic proteoforms, varying only by one or two amino acids. The optimal methods utilised IS-CID at low energy. This experiment demonstrates the utility of Q-ToF systems for top-down proteomics and that IS-CID could be more frequently employed.
Collapse
Affiliation(s)
- Delphine Vincent
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, Bundoora, Victoria 3083, Australia.
| | | | - Simone Rochfort
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, Bundoora, Victoria 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
7
|
Ariza-Sáenz M, Espina M, Calpena A, Gómara MJ, Pérez-Pomeda I, Haro I, García ML. Design, Characterization, and Biopharmaceutical Behavior of Nanoparticles Loaded with an HIV-1 Fusion Inhibitor Peptide. Mol Pharm 2018; 15:5005-5018. [PMID: 30226777 DOI: 10.1021/acs.molpharmaceut.8b00609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
New therapeutic alternatives to fight against the spread of HIV-1 are based on peptides designed to inhibit the early steps of HIV-1 fusion in target cells. However, drawbacks, such as bioavailability, short half-life, rapid clearance, and poor ability to cross the physiological barriers, make such peptides unattractive for the pharmaceutical industry. Here we developed, optimized, and characterized polymeric nanoparticles (NPs) coated with glycol chitosan to incorporate and release an HIV-1 fusion inhibitor peptide (E1) inside the vaginal mucosa. The NPs were prepared by a modified double emulsion method, and optimization was carried out by a factorial design. In vitro, ex vivo, and in vivo studies were carried out to evaluate the optimized formulation. The results indicate that the physicochemical features of these NPs enable them to incorporate and release HIV fusion inhibitor peptides to the vaginal mucosa before the fusion step takes place.
Collapse
Affiliation(s)
- Martha Ariza-Sáenz
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry , University of Barcelona , Av. Joan XXIII, 27-31 , Barcelona 08028 , Spain.,Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry , IQAC-CSIC , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry , University of Barcelona , Av. Joan XXIII, 27-31 , Barcelona 08028 , Spain
| | - Ana Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry , University of Barcelona , Av. Joan XXIII, 27-31 , Barcelona 08028 , Spain
| | - María J Gómara
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry , IQAC-CSIC , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Ignacio Pérez-Pomeda
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry , IQAC-CSIC , Jordi Girona 18 , 08034 Barcelona , Spain
| | - Isabel Haro
- Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry , IQAC-CSIC , Jordi Girona 18 , 08034 Barcelona , Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry , University of Barcelona , Av. Joan XXIII, 27-31 , Barcelona 08028 , Spain
| |
Collapse
|
8
|
Shliaha PV, Gibb S, Gorshkov V, Jespersen MS, Andersen GR, Bailey D, Schwartz J, Eliuk S, Schwämmle V, Jensen ON. Maximizing Sequence Coverage in Top-Down Proteomics By Automated Multimodal Gas-Phase Protein Fragmentation. Anal Chem 2018; 90:12519-12526. [DOI: 10.1021/acs.analchem.8b02344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sebastian Gibb
- Department of Anesthesiology and Intensive Care, University Medicine Greifswald, Greifswald 17489, Germany
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Malena Schack Jespersen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gregers R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Derek Bailey
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Jacob Schwartz
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Shannon Eliuk
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
9
|
Morrison LJ, Rosenberg JA, Singleton JP, Brodbelt JS. Statistical Examination of the a and a + 1 Fragment Ions from 193 nm Ultraviolet Photodissociation Reveals Local Hydrogen Bonding Interactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1443-53. [PMID: 27206509 PMCID: PMC4974117 DOI: 10.1007/s13361-016-1418-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/01/2016] [Accepted: 05/06/2016] [Indexed: 05/11/2023]
Abstract
Dissociation of proteins and peptides by 193 nm ultraviolet photodissociation (UVPD) has gained momentum in proteomic studies because of the diversity of backbone fragments that are produced and subsequent unrivaled sequence coverage obtained by the approach. The pathways that form the basis for the production of particular ion types are not completely understood. In this study, a statistical approach is used to probe hydrogen atom elimination from a + 1 radical ions, and different extents of elimination are found to vary as a function of the identity of the C-terminal residue of the a product ions and the presence or absence of hydrogen bonds to the cleaved residue. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Jake A Rosenberg
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | | | | |
Collapse
|
10
|
Cotham VC, McGee WM, Brodbelt JS. Modulation of Phosphopeptide Fragmentation via Dual Spray Ion/Ion Reactions Using a Sulfonate-Incorporating Reagent. Anal Chem 2016; 88:8158-65. [PMID: 27467576 DOI: 10.1021/acs.analchem.6b01901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The labile nature of phosphoryl groups has presented a long-standing challenge for the characterization of protein phosphorylation via conventional mass spectrometry-based bottom-up proteomics methods. Collision-induced dissociation (CID) causes preferential cleavage of the phospho-ester bond of peptides, particularly under conditions of low proton mobility, and results in the suppression of sequence-informative fragmentation that often prohibits phosphosite determination. In the present study, the fragmentation patterns of phosphopeptides are improved through ion/ion-mediated peptide derivatization with 4-formyl-1,3-benezenedisulfonic acid (FBDSA) anions using a dual spray reactor. This approach exploits the strong electrostatic interactions between the sulfonate moieties of FBDSA and basic sites to facilitate gas-phase bioconjugation and to reduce charge sequestration and increase the yield of phosphate-retaining sequence ions upon CID. Moreover, comparative CID fragmentation analysis between unmodified phosphopeptides and those modified online with FBDSA or in solution via carbamylation and 4-sulfophenyl isothiocyanate (SPITC) provided evidence for sulfonate interference with charge-directed mechanisms that result in preferential phosphate elimination. Our results indicate the prominence of charge-directed neighboring group participation reactions involved in phosphate neutral loss, and the implementation of ion/ion reactions in a dual spray reactor setup provides a means to disrupt the interactions by competing hydrogen-bonding interactions between sulfonate groups and the side chains of basic residues.
Collapse
Affiliation(s)
- Victoria C Cotham
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - William M McGee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
11
|
Rathore D, Aboufazeli F, Dodds ED. Obtaining complementary polypeptide sequence information from a single precursor ion packet via sequential ion mobility-resolved electron transfer and vibrational activation. Analyst 2016; 140:7175-83. [PMID: 26357706 DOI: 10.1039/c5an01225b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tandem mass spectrometry (MS/MS) is now well-known as a powerful tool for characterizing the primary structures of peptides and proteins; however, in many cases the use of but a single dissociation method provides only a partial view of the amino acid sequences and post-translational modification patterns of polypeptides. While the application of multiple fragmentation methods can be more informative, this introduces the burden of acquiring multiple MS/MS spectra per analyte, thus reducing the effective duty cycle of such methods. In this work, initial proof-of-concept is provided for a method designed to overcome these barriers. This method relies on the complementary fragmentation information that can be provided by performing collision-induced dissociation (CID) and electron transfer dissociation (ETD) in concert, while also taking advantage of an ion mobility (IM) dimension to temporally resolve the occurrence of CID and ETD when applied to a single accumulated packet of precursor ions. In this way, the significant proportion of the precursor ion population that remains unreacted in ETD experiments is subjected to CID rather than being fruitlessly discarded. In addition, the two distinct fragmentation spectra can be extracted from their corresponding IM domains to render readily interpretable individual fragmentation spectra. This scheme was demonstrated for several polypeptides ranging from 1.3 to 8.6 kDa in molecular weight. In each case, IM-resolved CID and ETD events resulted in b/y and c/z ions, respectively, which each covered both unique and overlapping sequence information. These findings demonstrate that the combination of CID and ETD can be achieved with greater utilization of the available ion population and little or no loss of duty cycle.
Collapse
Affiliation(s)
- Deepali Rathore
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | | | |
Collapse
|
12
|
Cammarata MB, Brodbelt JS. Characterization of Intra- and Intermolecular Protein Crosslinking by Top Down Ultraviolet Photodissociation Mass Spectrometry. ChemistrySelect 2016. [DOI: 10.1002/slct.201600140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Chen B, Lietz CB, OuYang C, Zhong X, Xu M, Li L. Matrix-assisted ionization vacuum for protein detection, fragmentation and PTM analysis on a high resolution linear ion trap-orbitrap platform. Anal Chim Acta 2016; 916:52-9. [PMID: 27016438 DOI: 10.1016/j.aca.2016.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/12/2016] [Indexed: 11/28/2022]
Abstract
Matrix-assisted ionization vacuum (MAIV) is a novel ionization technique that generates multiply charged ions in vacuum without the use of laser ablation or high voltage. MAIV can be achieved in intermediate-vacuum and high-vacuum matrix-assisted laser desorption/ionization (MALDI) sources and electrospray ionization (ESI) sources without instrument modification. Herein, we adapt MAIV onto the MALDI-LTQ-Orbitrap XL platform for biomolecule analysis. As an attractive alternative to MALDI for in solution and in situ analysis of biomolecules, MAIV coupling to high resolution and accurate mass (HRAM) MS instrument has successfully expanded the mass detection range and improved the fragmentation efficiency due to the generation of multiply charged ions. Additionally, the softness of MAIV enables potential application in labile post-translational modification (PTM) analysis. In this study, proteins as large as 18.7 kDa were detected with up to 18 charges; intact peptides with labile PTM were well preserved during the ionization process and characterized MS/MS; peptides and proteins in complex tissue samples were detected and identified both in liquid extracts and in situ. Moreover, we demonstrated that this method facilitates MS/MS analysis with improved fragmentation efficiency compared to MALDI-MS/MS.
Collapse
Affiliation(s)
- Bingming Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Christopher B Lietz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Chuanzi OuYang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Xuefei Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Meng Xu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, United States.
| |
Collapse
|
14
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
15
|
Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci 2015; 24:1193-209. [PMID: 25970732 PMCID: PMC4534171 DOI: 10.1002/pro.2696] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.
Collapse
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-WittenbergD-06120, Halle, Germany
| | - Dror Chorev
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, 76100, Israel
| |
Collapse
|
16
|
Licker V, Burkhard PR. Proteomics as a new paradigm to tackle Parkinson’s disease research challenges. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
17
|
Recent developments and applications of electron transfer dissociation mass spectrometry in proteomics. Amino Acids 2014; 46:1625-34. [PMID: 24687149 DOI: 10.1007/s00726-014-1726-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 03/07/2014] [Indexed: 12/30/2022]
Abstract
Electron transfer dissociation (ETD) has been developed recently as an efficient ion fragmentation technique in mass spectrometry (MS), being presently considered a step forward in proteomics with real perspectives for improvement, upgrade and application. Available also on affordable ion trap mass spectrometers, ETD induces specific N-Cα bond cleavages of the peptide backbone with the preservation of the post-translational modifications and generation of product ions that are diagnostic for the modification site(s). In addition, in the last few years ETD contributed significantly to the development of top-down approaches which enable tandem MS of intact protein ions. The present review, covering the last 5 years highlights concisely the major achievements and the current applications of ETD fragmentation technique in proteomics. An ample part of the review is dedicated to ETD contribution in the elucidation of the most common posttranslational modifications, such as phosphorylation and glycosylation. Further, a brief section is devoted to top-down by ETD method applied to intact proteins. As the last few years have witnessed a major expansion of the microfluidics systems, a few considerations on ETD in combination with chip-based nanoelectrospray (nanoESI) as a platform for high throughput top-down proteomics are also presented.
Collapse
|
18
|
Zhang Z, Wu S, Stenoien DL, Paša-Tolić L. High-throughput proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:427-454. [PMID: 25014346 DOI: 10.1146/annurev-anchem-071213-020216] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.
Collapse
|
19
|
Marshall DL, Hansen CS, Trevitt AJ, Oh HB, Blanksby SJ. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules. Phys Chem Chem Phys 2014; 16:4871-9. [DOI: 10.1039/c3cp54825b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Abstract
Proteins provide the verbs to biology, and proteomics provides the nouns for their analytical and discovery-driven studies. The term proteomics was coined in the 1990s and deals with the protein complement of the genome-the proteome. Following the classical proteomics era, the development of new mass spectrometric methods for peptide analysis permitted the identification of proteins in peptide mixtures obtained by proteolytic digestion of complex samples, e.g., shotgun proteomics. Since its introduction, shotgun proteomics became the standard technique for the analysis of protein hydrolyzates in a high-throughput way. In this chapter, we provide a survey in shotgun proteomics highlighting instruments and techniques used in modern second and third proteomics generation.
Collapse
Affiliation(s)
- Fabio Cesar Sousa Nogueira
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av Athos da Silveira Ramos, 149 Bloco A - sala 542 Cidade Universitária, 21941-909, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
21
|
Frey BL, Ladror DT, Sondalle SB, Krusemark CJ, Jue AL, Coon JJ, Smith LM. Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1710-21. [PMID: 23918461 PMCID: PMC3827969 DOI: 10.1007/s13361-013-0701-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/01/2013] [Accepted: 07/06/2013] [Indexed: 05/11/2023]
Abstract
The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups-aspartic and glutamic acid side-chains as well as C-termini-were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z > 2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.
Collapse
Affiliation(s)
- Brian L. Frey
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - Daniel T. Ladror
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - Samuel B. Sondalle
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - Casey J. Krusemark
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - April L. Jue
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, 420 Henry Mall, Madison, WI 53706
- Genome Center of Wisconsin, University of Wisconsin—Madison, 425G Henry Mall, Madison, WI 53706
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
- Genome Center of Wisconsin, University of Wisconsin—Madison, 425G Henry Mall, Madison, WI 53706
| |
Collapse
|
22
|
Xie LQ, Shen CP, Liu MB, Chen ZD, Du RY, Yan GQ, Lu HJ, Yang PY. Improved proteomic analysis pipeline for LC-ETD-MS/MS using charge enhancing methods. MOLECULAR BIOSYSTEMS 2013; 8:2692-8. [PMID: 22814712 DOI: 10.1039/c2mb25106j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Electron transfer dissociation (ETD) is a useful and complementary activation method for peptide fragmentation in mass spectrometry. However, ETD spectra typically receive a relatively low score in the identifications of 2+ ions. To overcome this challenge, we, for the first time, systematically interrogated the benefits of combining ion charge enhancing methods (dimethylation, guanidination, m-nitrobenzyl alcohol (m-NBA) or Lys-C digestion) and differential search algorithms (Mascot, Sequest, OMSSA, pFind and X!Tandem). A simple sample (BSA) and a complex sample (AMJ2 cell lysate) were selected in benchmark tests. Clearly distinct outcomes were observed through different experimental protocol. In the analysis of AMJ2 cell lines, X!Tandem and pFind revealed 92.65% of identified spectra; m-NBA adduction led to a 5-10% increase in average charge state and the most significant increase in the number of successful identifications, and Lys-C treatment generated peptides carrying mostly triple charges. Based on the complementary identification results, we suggest that a combination of m-NBA and Lys-C strategies accompanied by X!Tandem and pFind can greatly improve ETD identification.
Collapse
Affiliation(s)
- Li-Qi Xie
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lanucara F, Eyers CE. Top-down mass spectrometry for the analysis of combinatorial post-translational modifications. MASS SPECTROMETRY REVIEWS 2013; 32:27-42. [PMID: 22718314 DOI: 10.1002/mas.21348] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 06/01/2023]
Abstract
Protein post-translational modifications (PTMs) are critically important in regulating both protein structure and function, often in a rapid and reversible manner. Due to its sensitivity and vast applicability, mass spectrometry (MS) has become the technique of choice for analyzing PTMs. Whilst the "bottom-up' analytical approach, in which proteins are proteolyzed generating peptides for analysis by MS, is routinely applied and offers some advantages in terms of ease of analysis and lower limit of detection, "top-down" MS, describing the analysis of intact proteins, yields unique and highly valuable information on the connectivity and therefore combinatorial effect of multiple PTMs in the same polypeptide chain. In this review, the state of the art in top-down MS will be discussed, covering the main instrumental platforms and ion activation techniques. Moreover, the way that this approach can be used to gain insights on the combinatorial effect of multiple post-translational modifications and how this information can assist in studying physiologically relevant systems at the molecular level will also be addressed.
Collapse
Affiliation(s)
- Francesco Lanucara
- Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, Manchester M1 7DN, UK
| | | |
Collapse
|
24
|
Madian AG, Rochelle NS, Regnier FE. Mass-linked immuno-selective assays in targeted proteomics. Anal Chem 2012; 85:737-48. [PMID: 22950521 DOI: 10.1021/ac302071k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ashraf G Madian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
25
|
Scionti V, Wesdemiotis C. Electron transfer dissociation versus collisionally activated dissociation of cationized biodegradable polyesters. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1442-1449. [PMID: 23147820 DOI: 10.1002/jms.3097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biodegradable polyesters were ionized by electrospray ionization and characterized by tandem mass spectrometry using collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) as activation methods. The compounds studied include one homopolymer, polylactide and two copolymers, poly(ethylene adipate) and poly(butylene adipate). CAD of [M+2Na](2+) ions from these polyesters proceeds via charge-remote 1,5-H rearrangements over the ester groups, leading to cleavages at the (CO)O-alkyl bonds. ETD of the same precursor ions creates a radical anion at the site of electron attachment, which fragments by radical-induced cleavage of the (CO)O-alkyl bonds and by intramolecular nucleophilic substitution at the (CO)-O bonds. In contrast to CAD, ETD produces fragments in one charge state only and does not cause consecutive fragmentations, which simplifies spectral interpretation and permits conclusive identification of the correct end groups. The radical-site reactions occurring during ETD are very similar with those reported for ETD of protonated peptides. Unlike multiply protonated species, multiply sodiated precursors form ion pairs (salt bridges) after electron transfer, thereby promoting dissociations via nucleophilic displacement in addition to the radical-site dissociations typical in ETD.
Collapse
|
26
|
Abstract
Selected reaction monitoring (SRM) has a long history of use in the area of quantitative MS. In recent years, the approach has seen increased application to quantitative proteomics, facilitating multiplexed relative and absolute quantification studies in a variety of organisms. This article discusses SRM, after introducing the context of quantitative proteomics (specifically primarily absolute quantification) where it finds most application, and considers topics such as the theory and advantages of SRM, the selection of peptide surrogates for protein quantification, the design of optimal SRM co-ordinates and the handling of SRM data. A number of published studies are also discussed to demonstrate the impact that SRM has had on the field of quantitative proteomics.
Collapse
|
27
|
Wang X, Zhang A, Sun H, Wu G, Sun W, Yan G. Network generation enhances interpretation of proteomics data sets by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Analyst 2012; 137:4703-11. [DOI: 10.1039/c2an35891c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|