1
|
Xia S, Du Z, Su H, Hu L, Zheng J, Wang R, Guo M, Zhu L, Xu W, Ren F. Artificial Riboswitch: Another Engine for a Whole-Cell Sensing System to Develop Biosensors for Heavy Metal Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12105-12119. [PMID: 40331411 DOI: 10.1021/acs.jafc.5c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Whole-cell biosensing systems has attracted increasing research attention as a new approach for on-site heavy metal detection. However, the design and application of whole-cell biosensing systems are limited by the unsatisfactory performance of the core sensing element ─ transcription factors. This paper proposed the development of artificial riboswitches for heavy metal identification based on their high sensitivity, specificity, and ease of modification, which can be used alone or combination with transcription factors to construct more efficient whole-cell biosensors. This article summarized the reported aptamers targeting heavy metals in the last 20 years, and presented methods for screening intracellularly folding aptamers and strategies for constructing and optimizing the performance of artificial riboswitches using these aptamers. Heavy-metal-induced artificial riboswitches can be used in multiple applications, significantly enhancing the design potential of whole-cell sensing systems. Artificial riboswitches can be considered as another "engine," alongside transcription factors, to drive the development and innovation of whole-cell sensing systems.
Collapse
Affiliation(s)
- Shiqi Xia
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business Ministry of Education University), Beijing 100048, China
| | - Zaihui Du
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hongfei Su
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business Ministry of Education University), Beijing 100048, China
| | - Liangshu Hu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business Ministry of Education University), Beijing 100048, China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Ran Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Mingzhang Guo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business Ministry of Education University), Beijing 100048, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Jiang Q, Geng F, Shen J, Zhu P, Lu Z, Lu F, Zhou L. Blue light-mediated gene expression as a promising strategy to reduce antibiotic resistance in Escherichia coli. Biotechnol J 2024; 19:e2400023. [PMID: 38719589 DOI: 10.1002/biot.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 08/21/2024]
Abstract
The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of β-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.
Collapse
Affiliation(s)
- Qingwei Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Feng Geng
- College of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
3
|
Peng H, Latifi B, Müller S, Lupták A, Chen IA. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem Biol 2021; 2:1370-1383. [PMID: 34704043 PMCID: PMC8495972 DOI: 10.1039/d0cb00207k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates. Self-cleaving ribozymes have become important tools of synthetic biology. Here we summarize the substrate specificity and applications of the main classes of these ribozymes.![]()
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| | - Brandon Latifi
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald 17487 Greifswald Germany
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| |
Collapse
|
4
|
Liu X, Deng Q, Zhang L, Sang Y, Dong K, Ren J, Qu X. Elimination of macrophage-entrapped antibiotic-resistant bacteria by a targeted metal-organic framework-based nanoplatform. Chem Commun (Camb) 2021; 57:2903-2906. [PMID: 33616152 DOI: 10.1039/d0cc08340b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel metal-organic framework-based platform was designed and constructed for photosensitizer delivery for the elimination of intracellular antibiotic-resistant bacteria. With the merit of targeting and internalizing ability, the system could kill the stealthy bacteria efficiently under light irradiation.
Collapse
Affiliation(s)
- Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
5
|
Mc Cafferty S, De Temmerman J, Kitada T, Becraft JR, Weiss R, Irvine DJ, Devreese M, De Baere S, Combes F, Sanders NN. In Vivo Validation of a Reversible Small Molecule-Based Switch for Synthetic Self-Amplifying mRNA Regulation. Mol Ther 2020; 29:1164-1173. [PMID: 33186690 DOI: 10.1016/j.ymthe.2020.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/03/2020] [Accepted: 11/05/2020] [Indexed: 12/01/2022] Open
Abstract
Synthetic mRNA therapeutics have the potential to revolutionize healthcare, as they enable patients to produce therapeutic proteins inside their own bodies. However, convenient methods that allow external control over the timing and magnitude of protein production after in vivo delivery of synthetic mRNA are lacking. In this study, we validate the in vivo utility of a synthetic self-amplifying mRNA (RNA replicon) whose expression can be turned off using a genetic switch that responds to oral administration of trimethoprim (TMP), a US Food and Drug Administration (FDA)-approved small-molecule drug. After intramuscular electroporation, the engineered RNA replicon exhibited dose-dependent and reversible expression of its encoded protein upon TMP administration. The TMP serum level needed for maximal downregulation of protein translation was approximately 45-fold below that used in humans for therapeutic purposes. To demonstrate the therapeutic potential of the technology, we injected mice with a TMP-responsive RNA replicon encoding erythropoietin (EPO) and successfully controlled the timing and magnitude of EPO production as well as changes in hematocrit. This work demonstrates the feasibility of controlling mRNA kinetics in vivo, thereby broadly expanding the clinical versatility of mRNA therapeutics.
Collapse
Affiliation(s)
- Sean Mc Cafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Joyca De Temmerman
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; Department of Pathology, Bacteriology and Poultry diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | | | | | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mathias Devreese
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Wrist A, Sun W, Summers RM. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research. ACS Synth Biol 2020; 9:682-697. [PMID: 32142605 DOI: 10.1021/acssynbio.9b00475] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The theophylline aptamer was isolated from an oligonucleotide library in 1994. Since that time, the aptamer has found wide utility, particularly in synthetic biology, cellular engineering, and diagnostic applications. The primary application of the theophylline aptamer is in the construction and characterization of synthetic riboswitches for regulation of gene expression. These riboswitches have been used to control cellular motility, regulate carbon metabolism, construct logic gates, screen for mutant enzymes, and control apoptosis. Other applications of the theophylline aptamer in cellular engineering include regulation of RNA interference and genome editing through CRISPR systems. Here we describe the uses of the theophylline aptamer for cellular engineering over the past 25 years. In so doing, we also highlight important synthetic biology applications to control gene expression in a ligand-dependent manner.
Collapse
Affiliation(s)
- Alexandra Wrist
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Wanqi Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
7
|
Nshogozabahizi J, Aubrey K, Ross J, Thakor N. Applications and limitations of regulatory
RNA
elements in synthetic biology and biotechnology. J Appl Microbiol 2019; 127:968-984. [DOI: 10.1111/jam.14270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/09/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- J.C. Nshogozabahizi
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - K.L. Aubrey
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - J.A. Ross
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - N. Thakor
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| |
Collapse
|
8
|
Patel S, Panchasara H, Braddick D, Gohil N, Singh V. Synthetic small RNAs: Current status, challenges, and opportunities. J Cell Biochem 2018; 119:9619-9639. [DOI: 10.1002/jcb.27252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Shreya Patel
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Happy Panchasara
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | | | - Nisarg Gohil
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| | - Vijai Singh
- Department of Microbiology, Synthetic Biology Laboratory School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area Gandhinagar India
| |
Collapse
|
9
|
Wurmthaler LA, Klauser B, Hartig JS. Highly motif- and organism-dependent effects of naturally occurring hammerhead ribozyme sequences on gene expression. RNA Biol 2017; 15:231-241. [PMID: 29106331 DOI: 10.1080/15476286.2017.1397870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent bioinformatics studies have demonstrated a wide-spread occurrence of the hammerhead ribozyme (HHR) and similar small endonucleolytic RNA motifs in all domains of life. It is becoming increasingly evident that such ribozyme motifs participate in important genetic processes in diverse organisms. Although the HHR motif has been studied for more than three decades, only little is known about the consequences of ribozyme activity on gene expression. In the present study we analysed eight different naturally occurring HHR sequences in diverse genetic and organismal contexts. We investigated the influence of active ribozymes incorporated into mRNAs in mammalian, yeast and bacterial expression systems. The experiments show an unexpectedly high degree of organism-specific variability of ribozyme-mediated effects on gene expression. The presented findings demonstrate that ribozyme cleavage profoundly affect gene expression. However, the extent of this effect varies and depends strongly on the respective genetic context. The fast-cleaving type 3 HHRs [CChMVd(-) and sLTSV(-)] generally tended to cause the strongest effects on intracellular gene expression. The presented results are important in order to address potential functions of naturally occurring ribozymes in RNA processing and post-transcriptional regulation of gene expression. Additionally, our results are of interest for biotechnology and synthetic biology approaches that aim at the utilisation of self-cleaving ribozymes as widely applicable tools for controlling genetic processes.
Collapse
Affiliation(s)
- Lena A Wurmthaler
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| | - Benedikt Klauser
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| | - Jörg S Hartig
- a Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , Konstanz , Germany
| |
Collapse
|
10
|
Felletti M, Bieber A, Hartig JS. The 3'-untranslated region of mRNAs as a site for ribozyme cleavage-dependent processing and control in bacteria. RNA Biol 2017; 14:1522-1533. [PMID: 27690736 DOI: 10.1080/15476286.2016.1240141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Besides its primary informational role, the sequence of the mRNA (mRNA) including its 5'- and 3'- untranslated regions (UTRs), contains important features that are relevant for post-transcriptional and translational regulation of gene expression. In this work a number of bacterial twister motifs are characterized both in vitro and in vivo. The analysis of their genetic contexts shows that these motifs have the potential of being transcribed as part of polycistronic mRNAs, thus we suggest the involvement of bacterial twister motifs in the processing of mRNA. Our data show that the ribozyme-mediated cleavage of the bacterial 3'-UTR has major effects on gene expression. While the observed effects correlate weakly with the kinetic parameters of the ribozymes, they show dependence on motif-specific structural features and on mRNA stabilization properties of the secondary structures that remain on the 3'-UTR after ribozyme cleavage. Using these principles, novel artificial twister-based riboswitches are developed that exert their activity via ligand-dependent cleavage of the 3'-UTR and the removal of the protective intrinsic terminator. Our results provide insights into possible biological functions of these recently discovered and widespread catalytic RNA motifs and offer new tools for applications in biotechnology, synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Michele Felletti
- a Department of Chemistry , University of Konstanz , Konstanz , Germany.,b Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz Konstanz , Germany
| | - Anna Bieber
- a Department of Chemistry , University of Konstanz , Konstanz , Germany
| | - Jörg S Hartig
- a Department of Chemistry , University of Konstanz , Konstanz , Germany.,b Konstanz Research School Chemical Biology (Kors-CB), University of Konstanz Konstanz , Germany
| |
Collapse
|
11
|
Felletti M, Hartig JS. Ligand-dependent ribozymes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27687155 DOI: 10.1002/wrna.1395] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
The discovery of catalytic RNA (ribozymes) more than 30 years ago significantly widened the horizon of RNA-based functions in natural systems. Similarly to the activity of protein enzymes that are often modulated by the presence of an interaction partner, some examples of naturally occurring ribozymes are influenced by ligands that can either act as cofactors or allosteric modulators. Recent discoveries of new and widespread ribozyme motifs in many different genetic contexts point toward the existence of further ligand-dependent RNA catalysts. In addition to the presence of ligand-dependent ribozymes in nature, researchers have engineered ligand dependency into natural and artificial ribozymes. Because RNA functions can often be assembled in a truly modular way, many different systems have been obtained utilizing different ligand-sensing domains and ribozyme activities in diverse applications. We summarize the occurrence of ligand-dependent ribozymes in nature and the many examples realized by researchers that engineered ligand-dependent catalytic RNA motifs. We will also highlight methods for obtaining ligand dependency as well as discuss the many interesting applications of ligand-controlled catalytic RNAs. WIREs RNA 2017, 8:e1395. doi: 10.1002/wrna.1395 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michele Felletti
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Engineered riboswitch as a gene-regulatory platform for reducing antibiotic resistance. Methods Mol Biol 2014; 1111:251-8. [PMID: 24549625 DOI: 10.1007/978-1-62703-755-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Antibiotic resistance (AR), the ability of a microorganism to withstand the effects of antibiotics, is a growing and increasingly serious global public health problem. Enzymatic activation of antibiotics though the production of β-lactamase is one of the main mechanisms causing AR. Synthetic riboswitch containing aptazyme is constructed in E. coli to regulate the expression of β-lactamase through small molecule-aptamer interactions, which sharply reduces the antibiotic resistance of the engineered bacteria.
Collapse
|
13
|
Hong W, Zeng J, Xie J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 2014; 4:258-65. [PMID: 26579393 PMCID: PMC4629089 DOI: 10.1016/j.apsb.2014.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/04/2014] [Accepted: 06/20/2014] [Indexed: 10/26/2022] Open
Abstract
RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.
Collapse
Affiliation(s)
| | | | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Urata S, Miyahata T, Matsuura H, Kitamura Y, Ihara T. Alteration of DNAzyme Activity by Silver Ion. CHEM LETT 2014. [DOI: 10.1246/cl.140197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shoma Urata
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University
| | - Takaaki Miyahata
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University
| | - Hirotaka Matsuura
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University
| | - Yusuke Kitamura
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University
- CREST, Japan Science and Technology Agency
| | - Toshihiro Ihara
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University
- CREST, Japan Science and Technology Agency
| |
Collapse
|
15
|
Özalp VC, Bilecen K, Kavruk M, Öktem HA. Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. Future Microbiol 2013; 8:387-401. [PMID: 23464374 DOI: 10.2217/fmb.12.149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discovery of alternative sources of antimicrobial agents are essential in the ongoing battle against microbial pathogens. Legislative and scientific challenges considerably hinder the discovery and use of new antimicrobial drugs, and new approaches are in urgent demand. On the other hand, rapid, specific and sensitive detection of airborne pathogens is becoming increasingly critical for public health. In this respect affinity oligonucleotides, aptamers, provide unique opportunities for the development of nanotechnological solutions for such medical applications. In recent years, aptamers specifically recognizing microbial cells and viruses showed great potential in a range of analytical and therapeutic applications. This article describes the significant advances in the development of aptamers targeting specific pathogens. Therapeutic application of aptamers as neutralizing agents demonstrates great potential as a future source of antimicrobial agent.
Collapse
Affiliation(s)
- Veli Cengiz Özalp
- Nanobiz Ltd, MetuTechnopolis, Galium block, 2nd Floor, No. 18, 06800 Ankara, Turkey
| | | | | | | |
Collapse
|
16
|
Ceres P, Garst AD, Marcano-Velázquez JG, Batey RT. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. ACS Synth Biol 2013; 2:463-72. [PMID: 23654267 DOI: 10.1021/sb4000096] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-based biosensors and regulatory devices have received significant attention for their potential in a broad array of synthetic biology applications. One of the primary difficulties in engineering these molecules is the lack of facile methods to link sensory modules, or aptamers, to readout domains. Such efforts typically require extensive screening or selection of sequences that facilitate interdomain communication. Bacteria have evolved a widespread form of gene regulation known as riboswitches that perform this task with sufficient fidelity to control expression of biosynthetic and transport proteins essential for normal cellular homeostasis. In this work, we demonstrate that select riboswitch readout domains, called expression platforms, are modular in that they can host a variety of natural and synthetic aptamers to create novel chimeric RNAs that regulate transcription both in vitro and in vivo. Importantly, this technique does not require selection of device-specific "communication modules" required to transmit ligand binding to the regulatory domain, enabling rapid engineering of novel functional RNAs.
Collapse
Affiliation(s)
- Pablo Ceres
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596,
Boulder, Colorado 80309-0596, United States
| | - Andrew D. Garst
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596,
Boulder, Colorado 80309-0596, United States
| | - Joan G. Marcano-Velázquez
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596,
Boulder, Colorado 80309-0596, United States
| | - Robert T. Batey
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596,
Boulder, Colorado 80309-0596, United States
| |
Collapse
|
17
|
Cao A, Tang Y, Liu Y. Novel fluorescent biosensor for α-glucosidase inhibitor screening based on cationic conjugated polymers. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3773-3778. [PMID: 22823570 DOI: 10.1021/am3010913] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new fluorescent biosensor has been designed to screen α-glucosidase inhibitors (AGIs) sensitively by utilizing signal amplification effect of conjugated polymers. The fluorescence of cationic poly(fluorenylene phenylene) (PFP) was quenched in the presence of para-nitrophenyl-α-d-glucopyranoside and α-glucosidase, and turned on upon addition of AGIs. Thus, a new method was developed for AGIs screening based on the fluorescence turn-off/turn-on. The IC(50) values obtained for inhibitors were compared with that reported using absorption spectroscopy. All results present the new method is more sensitive and promising in screening AGIs and inhibitors of other enzymes whose hydrolysis product is 4-nitrophenol.
Collapse
|
18
|
Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. Anal Chem 2011; 83:7418-23. [PMID: 21853985 DOI: 10.1021/ac201491p] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sensitivity of aptamer-based electrochemical sensors is often limited by restricted target accessibility and surface-induced perturbation of the aptamer structure, which arise from imperfect packing of probes on the heterogeneous and locally crowded surface. In this study, we have developed an ultrasensitive and highly selective electrochemical aptamer-based cocaine sensor (EACS), based on a DNA nanotechnology-based sensing platform. We have found that the electrode surface decorated with an aptamer probe-pendant tetrahedral DNA nanostructure greatly facilitates cocaine-induced fusion of the split anticocaine aptamer. This novel design leads to a sensitive cocaine sensor with a remarkably low detection limit of 33 nM. It is also important that the tetrahedra-decorated surface is protein-resistant, which not only suits the enzyme-based signal amplification scheme employed in this work, but ensures high selectivity of this sensor when deployed in sera or other adulterated samples.
Collapse
Affiliation(s)
- Yanli Wen
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Planson AG, Carbonell P, Grigoras I, Faulon JL. Engineering antibiotic production and overcoming bacterial resistance. Biotechnol J 2011; 6:812-25. [PMID: 21661120 DOI: 10.1002/biot.201100085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/21/2023]
Abstract
Progress in DNA technology, analytical methods and computational tools is leading to new developments in synthetic biology and metabolic engineering, enabling new ways to produce molecules of industrial and therapeutic interest. Here, we review recent progress in both antibiotic production and strategies to counteract bacterial resistance to antibiotics. Advances in sequencing and cloning are increasingly enabling the characterization of antibiotic biosynthesis pathways, and new systematic methods for de novo biosynthetic pathway prediction are allowing the exploration of the metabolic chemical space beyond metabolic engineering. Moreover, we survey the computer-assisted design of modular assembly lines in polyketide synthases and non-ribosomal peptide synthases for the development of tailor-made antibiotics. Nowadays, production of novel antibiotic can be tranferred into any chosen chassis by optimizing a host factory through specific strain modifications. These advances in metabolic engineering and synthetic biology are leading to novel strategies for engineering antimicrobial agents with desired specificities.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Esonne, 5 rue Henri Desbruères, Evry, France
| | | | | | | |
Collapse
|