1
|
Dan X, Du J, Zhang S, Seed JA, Perfetti M, Tuna F, Wooles AJ, Liddle ST. Arene-, Chlorido-, and Imido-Uranium Bis- and Tris(boryloxide) Complexes. Inorg Chem 2024; 63:9588-9601. [PMID: 38557081 PMCID: PMC11134490 DOI: 10.1021/acs.inorgchem.3c04275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
We introduce the boryloxide ligand {(HCNDipp)2BO}- (NBODipp, Dipp = 2,6-di-isopropylphenyl) to actinide chemistry. Protonolysis of [U{N(SiMe3)2}3] with 3 equiv of NBODippH produced the uranium(III) tris(boryloxide) complex [U(NBODipp)3] (1). In contrast, treatment of UCl4 with 3 equiv of NBODippK in THF at room temperature or reflux conditions produced only [U(NBODipp)2(Cl)2(THF)2] (2) with 1 equiv of NBODippK remaining unreacted. However, refluxing the mixture of 2 and unreacted NBODippK in toluene instead of THF afforded the target complex [U(NBODipp)3(Cl)(THF)] (3). Two-electron oxidation of 1 with AdN3 (Ad = 1-adamantyl) afforded the uranium(V)-imido complex [U(NBODipp)3(NAd)] (4). The solid-state structure of 1 reveals a uranium-arene bonding motif, and structural, spectroscopic, and DFT calculations all suggest modest uranium-arene δ-back-bonding with approximately equal donation into the arene π4 and π5 δ-symmetry π* molecular orbitals. Complex 4 exhibits a short uranium(V)-imido distance, and computational modeling enabled its electronic structure to be compared to related uranium-imido and uranium-oxo complexes, revealing a substantial 5f-orbital crystal field splitting and extensive mixing of 5f |ml,ms⟩ states and mj projections. Complexes 1-4 have been variously characterized by single-crystal X-ray diffraction, 1H NMR, IR, UV/vis/NIR, and EPR spectroscopies, SQUID magnetometry, elemental analysis, and CONDON, F-shell, DFT, NLMO, and QTAIM crystal field and quantum chemical calculations.
Collapse
Affiliation(s)
- Xuhang Dan
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Jingzhen Du
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Shuhan Zhang
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - John A. Seed
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Mauro Perfetti
- Department
of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Floriana Tuna
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ashley J. Wooles
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stephen T. Liddle
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
2
|
Sheng W, Rajeshkumar T, Zhao Y, Maron L, Zhu C. Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium-Palladium Bonds. J Am Chem Soc 2024; 146:12790-12798. [PMID: 38684067 DOI: 10.1021/jacs.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research on metal-metal bonds involving f-block actinides, such as thorium, lags far behind the well-studied metal-metal bonds of d-block transition metals. The complexes with Th-TM bonds are extremely rare; all previously identified examples have only a single Th-TM bond with the Th center at an invariably +IV oxidation state. Herein, we report a series of Th2Pdn (n = 2, 3, and 6) clusters (complexes 3, 4, and 7) with multiple Th(III)-Pd bonds. Theoretical studies reveal that the Th2Pdn unit allows electronic delocalization and σ aromaticity, leading to unexpected closed-shell singlet structures for these Th(III) species. This electronic delocalization is evident in the highest occupied molecular orbital of Th(III) complexes and facilitates a 2e reduction of alkyne by complex 7, resulting in the formation of 8. Complexes 7 and 8 are distinctive in featuring a Th2Pd6 core with six and eight Th-Pd bonds, respectively, making them the largest known d-f heterometallic clusters exhibiting metal-metal bonding.
Collapse
Affiliation(s)
- Weiming Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Du J, Dollberg K, Seed JA, Wooles AJ, von Hänisch C, Liddle ST. Thorium(IV)-antimony complexes exhibiting single, double, and triple polar covalent metal-metal bonds. Nat Chem 2024; 16:780-790. [PMID: 38378948 DOI: 10.1038/s41557-024-01448-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
There is continued burgeoning interest in metal-metal multiple bonding to further our understanding of chemical bonding across the periodic table. However, although polar covalent metal-metal multiple bonding is well known for the d and p blocks, it is relatively underdeveloped for actinides. Homometallic examples are found in spectroscopic or fullerene-confined species, and heterometallic variants exhibiting a polar covalent σ bond supplemented by up to two dative π bonds are more prevalent. Hence, securing polar covalent actinide double and triple metal-metal bonds under normal experimental conditions has been a fundamental target. Here we exploit the protonolysis and dehydrocoupling chemistry of the parent dihydrogen-antimonide anion, to report one-, two- and three-fold thorium-antimony bonds, thus introducing polar covalent actinide-metal multiple bonding under normal experimental conditions between some of the heaviest ions in the periodic table with little or no bulky-substituent protection at the antimony centre. This provides fundamental insights into heavy element multiple bonding, in particular the tension between orbital-energy-driven and overlap-driven covalency for the actinides in a relativistic regime.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Kevin Dollberg
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany.
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Chi XW, Wu QY, Wang CZ, Yu JP, Liu K, Chi RA, Chai ZF, Shi WQ. A Theoretical Study of Unsupported Uranium–Ruthenium Bonds Based on Tripodal Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao-Wang Chi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Resource & Safety Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ru-An Chi
- School of Resource & Safety Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Selective hydroboration of terminal alkynes catalyzed by heterometallic clusters with uranium–metal triple bonds. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Li AL, Zhang NX, Wu QY, Wang CZ, Lan JH, Nie CM, Chai ZF, Shi WQ. Theoretical Insights into the Actinide–Silicon Bonding Nature and Stability of a Series of Actinide Complexes with Different Oxidation States. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ai-Lin Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Nai-Xin Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Synthesis and Characterisation of Molecular Polarised-Covalent Thorium-Rhenium and -Ruthenium Bonds. INORGANICS 2021. [DOI: 10.3390/inorganics9050030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Separate reactions of [Th{N(CH2CH2NSiMe2But)2(CH2CH2NSi(Me)(But)(μ-CH2)]2 (1) with [Re(η5-C5H5)2(H)] (2) or [Ru(η5-C5H5)(H)(CO)2] (3) produced, by alkane elimination, [Th(TrenDMBS)Re(η5-C5H5)2] (ThRe, TrenDMBS = {N(CH2CH2NSiMe2But)3}3-), and [Th(TrenDMBS)Ru(η5-C5H5)(CO)2] (ThRu), which were isolated in crystalline yields of 71% and 62%, respectively. Complex ThRe is the first example of a molecular Th-Re bond to be structurally characterised, and ThRu is only the second example of a structurally authenticated Th-Ru bond. By comparison to isostructural U-analogues, quantum chemical calculations, which are validated by IR and Raman spectroscopic data, suggest that the Th-Re and Th-Ru bonds reported here are more ionic than the corresponding U-Re and U-Ru bonds.
Collapse
|
8
|
Liu K, Yu JP, Wu QY, Tao XB, Kong XH, Mei L, Hu KQ, Yuan LY, Chai ZF, Shi WQ. Rational Design of a Tripodal Ligand for U(IV): Synthesis and Characterization of a U–Cl Species and Insights into Its Reactivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s
Republic of China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xue-Bing Tao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Xiang-He Kong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
9
|
Ostrowski JPA, Atkinson BE, Doyle LR, Wooles AJ, Kaltsoyannis N, Liddle ST. The ditungsten decacarbonyl dianion. Dalton Trans 2020; 49:9330-9335. [PMID: 32582890 DOI: 10.1039/d0dt01921f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and structural authentication of the ditungsten decarbonyl dianion in [(OC)5W-W(CO)5][K(18-crown-6)(THF)2]2 (1), completing the group 6 dianion triad over half a century since the area began. The W-W bond is long [3.2419(8) Å] and, surprisingly, in the solid-state the dianion adopts a D4h eclipsed rather than D4d staggered geometry, the latter of which dominates the structural chemistry of binary homobimetallic carbonyls. Computational studies at levels of theory from DFT to CCSD(T) confirm that the D4d geometry is energetically preferred in the gas-phase, being ∼18 kJ mol-1 more stable than the D4h form, since slight destabilisation of the degenerate W-CO π 5dxz and 5dyz orbitals is outweighed by greater stabilisation of the W-W σ-bond orbital. The gas-phase D4h structure displays a single imaginary vibrational mode, intrinsic reaction coordinate analysis of which links the D4h isomer directly to the D4d forms, which are produced by rotation around the W-W bond by ±45°. It is therefore concluded that the gas-phase transition state becomes a minimum on the potential energy surface when subjected to crystal packing in the solid-state.
Collapse
Affiliation(s)
- Joseph P A Ostrowski
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Feng G, McCabe KN, Wang S, Maron L, Zhu C. Construction of heterometallic clusters with multiple uranium-metal bonds by using dianionic nitrogen-phosphorus ligands. Chem Sci 2020; 11:7585-7592. [PMID: 34094135 PMCID: PMC8152682 DOI: 10.1039/d0sc00389a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Compared with the prevalent metal–metal bond in transition metals, examples of the actinide–metal bond in heterometallic clusters are rare. Herein, a series of heterometallic clusters with multiple uranium–metal bonds has been prepared based on two newly synthesized nitrogen–phosphorus ligands L1 {O[(CH2)2NHP(iPr)2]2} and L2 {[CH2O(CH2)2NHP(iPr)2]2}. Different P–P distances, 6.069 and 4.464 Å, are observed in the corresponding uranium complexes 1 {O[(CH2)2NP(iPr)2]2UCl2} and 2 {[CH2O(CH2)2NP(iPr)2]2UCl2}, respectively, and lead to the different coordination modes with transition metals. The reactions of zero-valent group 10 metal compounds with complex 1 generate heterometallic clusters (3-U2Ni2 and 4-U2Pd2) featuring four uranium–metal bonds; whereas reactions with 2 afford one-dimensional metal-chain 5-(UNi)n, bimetallic species 6-UPd, and a tri-platinum bridged diuranium molecular cluster 7-U2Pt3. Complex 5-(UNi)n represents the first infinite chain containing the U–M bond and 7-U2Pt3 is the first species with multiple U–Pt bonds. This study further highlights the important role of ligands in the construction of multiple uranium–metal bonds and may allow the synthesis of novel d–f heterometallic clusters and the investigation of their applications in catalysis and small-molecule activation. Compared with the prevalent metal–metal bond in transition metals, examples of the actinide–metal bond in heterometallic clusters are rare.![]()
Collapse
Affiliation(s)
- Genfeng Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing China
| | - Karl N McCabe
- LPCNO, CNRS & INSA, Université Paul Sabatier 135 Avenue de Rangueil Toulouse France
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier 135 Avenue de Rangueil Toulouse France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing China
| |
Collapse
|
11
|
Ayres AJ, Wooles AJ, Zegke M, Tuna F, Liddle ST. Preparation of Heterobimetallic Ketimido-Actinide-Molybdenum Complexes. Inorg Chem 2019; 58:13077-13089. [PMID: 31532645 DOI: 10.1021/acs.inorgchem.9b01993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During our attempts to prepare paddlewheel actinide-molybdenum complexes of the type [(X)An(MesNPR2)3Mo(CO)3] (Mes= 2,4,6-trimethylphenyl; X = Cl or I; An = U or Th; R = iPr or Ph) we have found that under certain conditions acetonitrile insertion reactions occur to give the heterobimetallic bridging ketimido species [ClAn(μ-MesNPiPr2)2(μ-MesNPiPr2{μ-NCMe})Mo(CO)3] (An = U, 1; Th, 2), [ClAn(μ-MesNPPh2)2(μ-MesNPPh2{μ-NCMe})Mo(CO)3] (An = U, 3; An = Th, 4), and [IAn(η2-MesNPiPr2)(μ-MesNPiPr2){μ-NC(Me)N(Mes)PiPr2}Mo(CO)3] (An = U, 5; Th, 6). Structural and spectroscopic data confirm the assignment of a ketimido ligand bridging An(IV) and Mo(0) centers. The isolation of 1-6 is in contrast to our previously reported preparations of [(X)An(MesNPPh2)3Mo(CO)3] (An = U or Th; X= Cl or I; Chem. Commun. 2018, 54, 13515-13518) with the difference in reactivity being attributable to a combination of ancillary phosphino-amide, reaction solvent, and temperature variation. Complexes 1-5 represent the first examples of structurally characterized ketimido-bridged actinide-transition metal linkages and demonstrate the profound differences in reaction outcomes that can occur from relatively minor experimental changes.
Collapse
Affiliation(s)
- Alexander J Ayres
- School of Chemistry , The University of Nottingham , University Park , Nottingham , NG7 2RD , United Kingdom
| | - Ashley J Wooles
- Department of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| | - Markus Zegke
- Department of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute , The University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| | - Stephen T Liddle
- Department of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| |
Collapse
|
12
|
Hu SX, Lu E, Liddle ST. Prediction of high bond-order metal-metal multiple-bonds in heterobimetallic 3d-4f/5f complexes [TM-M{N(o-[NCH 2P(CH 3) 2]C 6H 4) 3}] (TM = Cr, Mn, Fe; M = U, Np, Pu, and Nd). Dalton Trans 2019; 48:12867-12879. [PMID: 31389454 DOI: 10.1039/c9dt03086g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite continuing and burgeoning interest in f-block complexes and their bonding chemistry in recent years, investigations of the electronic structures and oxidation states of heterobimetallic complexes, and their bonding features between transition-metals (TMs) and f-elements remain relatively less explored. Here, we report a quantum chemical computational study on the series of TM-actinide and -neodymium complexes [TMAn(L)] and [TMNd(L)] [An = U, Np, Pu; TM = Cr, Mn, Fe; L = {N(o-[NCH2P(CH3)2]C6H4)3}3-] in order to explore periodic trend, generalities and differences in the electronic structure and metal-metal bonding between f-block and d-block elements. Based on the calculations, we find up to five-fold covalent multiple bonding between actinide and transition metal ions, which is in sharp contrast with a single bond between neodymium and transition metals. From a comparative study, a general trend of strength of the An-TM interaction emerges in accordance with the atomic number of the actinide metal, which relates to the nature, energy level, and spatial arrangement of their frontier orbitals. The trend presents a valuable insight for future experimental endeavour searching for isolable complexes with strong and multiple An-TM bonding interactions, especially for the experimentally challenging transuranic elements that require targeted research due to their radioactive nature.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China. and Beijing Computational Science Research Center, Beijing 100193, China
| | - Erli Lu
- School of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Stephen T Liddle
- School of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
13
|
Bacha RUS, Bi YT, Xuan LC, Pan QJ. Inverse Trans Influence in Low-Valence Actinide-Group 10 Metal Complexes of Phosphinoaryl Oxides: A Theoretical Study via Tuning Metals and Donor Ligands. Inorg Chem 2019; 58:10028-10037. [PMID: 31298034 DOI: 10.1021/acs.inorgchem.9b01193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recognition and in-depth understanding of inverse trans influence (ITI) have successfully guided the synthesis of novel actinide complexes and enriched actinide chemistry. Those complexes, however, are mainly limited to the involvement of high-valence actinide and/or metal-ligand multiple bonds. Examples containing both low oxidation state actinide and metal-metal single bond remain rare. Herein, more than 20 actinide-transition metal (An-TM) complexes of phosphinoaryl oxide ligands have been designed in accordance with several experimentally known analogs, by changing the metal atoms (An = Th, Pa, U, Np, and Pu; and TM = Ni, Pd, and Pt), actinide oxidation states (IV and III) and metal-metal axial donor ligands (X = Me3SiO, F, Cl, Br, and I). The relativistic density functional theory study of structural (trans-An-X and cis-An-O toward An-TM), bonding (topological electron/energy density), and electronic properties reveals the order of the ITI stabilizing actinide-metal bond. Computed electron affinity (EA) values, related to the electrochemical reduction, linearly correlate with experimentally measured reduction potentials. Although the same ITI order for the ligand donors was shown as in a previous study, the correlation between electrochemical reduction and the ITI was found to be weak when the actinide atoms were changed. For most complexes, the reduction is primarily of an actinide-based mechanism with minor participation of transition metal and phosphinoaryl oxide, whereas that of thorium-nickel complexes is different.
Collapse
Affiliation(s)
- Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Yan-Ting Bi
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Li-Chun Xuan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| |
Collapse
|
14
|
Sharma P, Pahls DR, Ramirez BL, Lu CC, Gagliardi L. Multiple Bonds in Uranium-Transition Metal Complexes. Inorg Chem 2019; 58:10139-10147. [PMID: 31329432 DOI: 10.1021/acs.inorgchem.9b01264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel heterobimetallic complexes featuring a uranium atom paired with a first-row transition metal have been computationally predicted and analyzed using density functional theory and multireference wave function based methods. The synthetically inspired metalloligands U{(iPr2PCH2NAr)3tacn} (1) and U(iPr2PCH2NPh)3 (2) are explored in this study. We report the presence of multiple bonds between uranium and chromium, uranium and manganese, and uranium and iron. The calculations predict a 5-fold bonding between uranium and manganese in the UMn(iPr2PCH2NPh)3 complex, which is unprecedented in the literature.
Collapse
|
15
|
Chi XW, Wu QY, Lan JH, Wang CZ, Zhang Q, Chai ZF, Shi WQ. A Theoretical Study on Divalent Heavier Group 14 Complexes as Promising Donor Ligands for Building Uranium–Metal Bonds. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao-Wang Chi
- College of Mining, Guizhou University, Guiyang, 550025, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Zhang
- College of Mining, Guizhou University, Guiyang, 550025, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nat Chem 2019; 11:248-253. [DOI: 10.1038/s41557-018-0195-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/22/2018] [Indexed: 11/08/2022]
|
17
|
Bi YT, Li L, Guo YR, Pan QJ. Heterobimetallic Uranium–Nickel/Palladium/Platinum Complexes of Phosphinoaryl Oxide Ligands: A Theoretical Probe for Metal–Metal Bonding and Electronic Spectroscopy. Inorg Chem 2019; 58:1290-1300. [DOI: 10.1021/acs.inorgchem.8b02787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan-Ting Bi
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
18
|
Ayres AJ, Zegke M, Ostrowski JPA, Tuna F, McInnes EJL, Wooles AJ, Liddle ST. Actinide-transition metal bonding in heterobimetallic uranium- and thorium-molybdenum paddlewheel complexes. Chem Commun (Camb) 2018; 54:13515-13518. [PMID: 30431026 DOI: 10.1039/c8cc05268a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the preparation of four heterobimetallic uranium- and thorium-molybdenum paddlewheel complexes. The characterisation data suggest the presence of Mo → An σ-interactions in all cases. These complexes represent unprecedented actinide-group 6 metal-metal bonds, where before heterobimetallic uranium-metal bonds were restricted to group 7-11 metals.
Collapse
Affiliation(s)
- Alexander J Ayres
- School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Chi XW, Wu QY, Hao Q, Lan JH, Wang CZ, Zhang Q, Chai ZF, Shi WQ. Theoretical Study on Unsupported Uranium–Metal Bonding in Uranium–Group 8 Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiao-Wang Chi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Mining, Guizhou University, Guiyang, 550025, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Hao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Zhang
- College of Mining, Guizhou University, Guiyang, 550025, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
|
21
|
Lu E, Wooles AJ, Gregson M, Cobb PJ, Liddle ST. A Very Short Uranium(IV)-Rhodium(I) Bond with Net Double-Dative Bonding Character. Angew Chem Int Ed Engl 2018; 57:6587-6591. [PMID: 29665209 PMCID: PMC6055764 DOI: 10.1002/anie.201803493] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 11/08/2022]
Abstract
Reaction of [U{C(SiMe3 )(PPh2 )}(BIPM)(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5 ]2 (BIPM=C(PPh2 NSiMe3 )2 ; TMEDA=Me2 NCH2 CH2 NMe2 ) with [Rh(μ-Cl)(COD)]2 (COD=cyclooctadiene) affords the heterotrimetallic UIV -RhI2 complex [U(Cl)2 {C(PPh2 NSiMe3 )(PPh[C6 H4 ]NSiMe3 )}{Rh(COD)}{Rh(CH(SiMe3 )(PPh2 )}]. This complex has a very short uranium-rhodium distance, the shortest uranium-rhodium bond on record and the shortest actinide-transition metal bond in terms of formal shortness ratio. Quantum-chemical calculations reveal a remarkable RhI→→ UIV net double dative bond interaction, involving RhI 4dz2 - and 4dxy/xz -type donation into vacant UIV 5f orbitals, resulting in a Wiberg/Nalewajski-Mrozek U-Rh bond order of 1.30/1.44, respectively. Despite being, formally, purely dative, the uranium-rhodium bonding interaction is the most substantial actinide-metal multiple bond yet prepared under conventional experimental conditions, as confirmed by structural, magnetic, and computational analyses.
Collapse
Affiliation(s)
- Erli Lu
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Philip J. Cobb
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
22
|
Lu E, Wooles AJ, Gregson M, Cobb PJ, Liddle ST. A Very Short Uranium(IV)–Rhodium(I) Bond with Net Double‐Dative Bonding Character. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J. Cobb
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
23
|
Hlina JA, Wells JAL, Pankhurst JR, Love JB, Arnold PL. Uranium rhodium bonding in heterometallic complexes. Dalton Trans 2018; 46:5540-5545. [PMID: 28154865 PMCID: PMC5436036 DOI: 10.1039/c6dt04570g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UIV–RhI intermetallic distances in the U2Rh2 complex (left, 2.7601(5) Å) and URh complex (right, 2.7630(5) Å) are very short and almost identical in the solid state even though solution electrochemistry suggests very different metal-based reduction processes.
The heterotetra- and bimetallic uranium(iv)–rhodium(i) complexes [UIVI2(μ-OArP-1κ1O,2κ1P)2RhI(μ-I)]2 (2) (ArPO– = 2-(diphenylphosphino)-6-tert-butyl-4-methylphenoxide) and UIVI(μ-I)(μ-OArP-1κ1O,2κ1P)3RhI (3) were prepared by treatment of UIVI(OArP-κ2O,P)3 (1) with rhodium(i) iodide olefin complexes. The reaction of 1 with the monodentate cyclooctene (coe) rhodium(i) precursor [(coe)2RhII]2 gives only the bimetallic complex [UIVRhI] 3, and with the diene [(cod)RhII]2 (5) (cod = 1,5-cyclooctadiene), mixtures of [UIVRhI]2 complex 2 and [UIVRhI] 3 along with (cod)RhIOArP-κ2O,P (4), a RhI side-product from the formation of 2. The complexes were characterised by single crystal X-ray diffraction, NMR and UV-vis-NIR spectroscopy, and electrochemistry. The UIV–RhI intermetallic distances in 2 (2.7601(5) Å) and 3 (2.7630(5) Å) are among the shortest between f-elements and transition metals reported to date. Despite almost identical U–Rh bond lengths in the solid state, in solution only weak, and very different interactions between the metal centres are found.
Collapse
Affiliation(s)
- J A Hlina
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, Edinburgh EH9 3FJ, UK.
| | | | | | | | | |
Collapse
|
24
|
Camp C, Toniolo D, Andrez J, Pécaut J, Mazzanti M. A versatile route to homo- and hetero-bimetallic 5f-5f and 3d-5f complexes supported by a redox active ligand framework. Dalton Trans 2018. [PMID: 28650052 DOI: 10.1039/c7dt01993a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The salt-elimination reaction of the complex [Na2U(bis-salophen)] with metal halides provides an entry to the synthesis of well-defined homobimetallic uranium-uranium and rare heterobimetallic uranium-cobalt and uranium-nickel complexes supported by a redox-active dinucleating ligand.
Collapse
Affiliation(s)
- Clément Camp
- Univ. Grenoble Alpes, INAC-SyMMES, F-38000 Grenoble, France
| | | | | | | | | |
Collapse
|
25
|
Cantero-López P, Páez-Hernández D, Arratia-Pérez R. Tuning the molecular antenna effect using donor and acceptor substituents on the optical properties of the [(C5F5)2ThMCp2]2+ and [(C5F5)2ThMCpL2]+ complexes, where M = Fe, Ru and Os and L = CO and C5H5N. NEW J CHEM 2018. [DOI: 10.1039/c8nj00179k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the present work, a theoretical methodology based on DFT is used to establish the effects of the electron rearrangements on the optical properties in a series of Th-Transtion metal complexes.
Collapse
Affiliation(s)
- Plinio Cantero-López
- Relativistic Molecular Physics Group (ReMoPh)
- PhD program in Molecular Physical Chemistry
- Facultad de Ciencias Exactas
- Universidad Andrés Bello
- Santiago
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics Group (ReMoPh)
- PhD program in Molecular Physical Chemistry
- Facultad de Ciencias Exactas
- Universidad Andrés Bello
- Santiago
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics Group (ReMoPh)
- PhD program in Molecular Physical Chemistry
- Facultad de Ciencias Exactas
- Universidad Andrés Bello
- Santiago
| |
Collapse
|
26
|
Kias F, Talbi F, Elkechai A, Boucekkine A, Hauchard D, Berthet JC, Ephritikhine M. Redox Properties of Monocyclooctatetraenyl Uranium(IV) and (V) Complexes: Experimental and Relativistic DFT Studies. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Farida Kias
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Fatiha Talbi
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Aziz Elkechai
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | - Abdou Boucekkine
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, Rennes CEDEX 35042, France
| | - Didier Hauchard
- Ecole
Nationale Supérieure de Chimie de Rennes, ISCR, UMR 6226 CNRS, 11 allée de Beaulieu, CS 50837, Rennes CEDEX 35708, France
| | - Jean-Claude Berthet
- NIMBE,
CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Michel Ephritikhine
- NIMBE,
CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
27
|
Fortier S, Aguilar-Calderón JR, Vlaisavljevich B, Metta-Magaña AJ, Goos AG, Botez CE. An N-Tethered Uranium(III) Arene Complex and the Synthesis of an Unsupported U–Fe Bond. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00429] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Bess Vlaisavljevich
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | | | | | | |
Collapse
|
28
|
Chi C, Wang JQ, Qu H, Li WL, Meng L, Luo M, Li J, Zhou M. Preparation and Characterization of Uranium-Iron Triple-Bonded UFe(CO)3
−
and OUFe(CO)3
−
Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences; State Key Laboratory Breeding Base of Nuclear Resources and Environment; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Jia-Qi Wang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Hui Qu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Wan-Lu Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences; State Key Laboratory Breeding Base of Nuclear Resources and Environment; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences; State Key Laboratory Breeding Base of Nuclear Resources and Environment; East China University of Technology; Nanchang Jiangxi Province 330013 China
| | - Jun Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; Fudan University; Shanghai 200433 China
| |
Collapse
|
29
|
Chi C, Wang JQ, Qu H, Li WL, Meng L, Luo M, Li J, Zhou M. Preparation and Characterization of Uranium-Iron Triple-Bonded UFe(CO) 3- and OUFe(CO) 3- Complexes. Angew Chem Int Ed Engl 2017; 56:6932-6936. [PMID: 28485836 DOI: 10.1002/anie.201703525] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 11/07/2022]
Abstract
We report the preparation of UFe(CO)3- and OUFe(CO)3- complexes using a laser-vaporization supersonic ion source in the gas phase. These compounds were mass-selected and characterized by infrared photodissociation spectroscopy and state-of-the-art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe-to-U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(-II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df-d multiple-bonded f-element-transition-metal compounds that have not been fully recognized to date.
Collapse
Affiliation(s)
- Chaoxian Chi
- School of Chemistry, Biological and Materials Sciences, State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Jia-Qi Wang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Hui Qu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Wan-Lu Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Luyan Meng
- School of Chemistry, Biological and Materials Sciences, State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Mingbiao Luo
- School of Chemistry, Biological and Materials Sciences, State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
| | - Jun Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
30
|
Qu N, Su DM, Wu QY, Shi WQ, Pan QJ. Metal-metal multiple bond in low-valent diuranium porphyrazines and its correlation with metal oxidation state: A relativistic DFT study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Birchall C, Moxey GJ, McMaster J, Blake AJ, Lewis W, Kays DL. A monomeric, heterobimetallic complex with an unsupported Mg–Fe bond. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Wildman EP, Ostrowski JP, King DM, Lewis W, Liddle ST. Uranium–halide and –azide derivatives of the sterically demanding triamidoamine ligand TrenTPS [TrenTPS= {N(CH2CH2NSiPh3)3}3−]. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Yang P, Zhou E, Hou G, Zi G, Ding W, Walter MD. Experimental and Computational Studies on the Formation of Thorium-Copper Heterobimetallics. Chemistry 2016; 22:13845-13849. [DOI: 10.1002/chem.201603519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Pikun Yang
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Enwei Zhou
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Guohua Hou
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Guofu Zi
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Wanjian Ding
- Department of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
34
|
Hlina JA, Pankhurst JR, Kaltsoyannis N, Arnold PL. Metal-Metal Bonding in Uranium-Group 10 Complexes. J Am Chem Soc 2016; 138:3333-45. [PMID: 26942560 PMCID: PMC4796865 DOI: 10.1021/jacs.5b10698] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Heterobimetallic
complexes containing short uranium–group
10 metal bonds have been prepared from monometallic IUIV(OArP-κ2O,P)3 (2) {[ArPO]− = 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenolate}.
The U–M bond in IUIV(μ-OArP-1κ1O,2κ1P)3M0, M = Ni (3–Ni), Pd (3–Pd), and Pt (3–Pt), has been
investigated by experimental and DFT computational methods. Comparisons
of 3–Ni with two further U–Ni complexes
XUIV(μ-OArP-1κ1O,2κ1P)3Ni0, X = Me3SiO (4) and F (5), was also possible via iodide substitution. All complexes were
characterized by variable-temperature NMR spectroscopy, electrochemistry,
and single crystal X-ray diffraction. The U–M bonds are significantly
shorter than any other crystallographically characterized d–f-block
bimetallic, even though the ligand flexes to allow a variable U–M
separation. Excellent agreement is found between the experimental
and computed structures for 3–Ni and 3–Pd. Natural population analysis and natural localized molecular orbital
(NLMO) compositions indicate that U employs both 5f and 6d orbitals
in covalent bonding to a significant extent. Quantum theory of atoms-in-molecules
analysis reveals U–M bond critical point properties typical
of metallic bonding and a larger delocalization index (bond order)
for the less polar U–Ni bond than U–Pd. Electrochemical
studies agree with the computational analyses and the X-ray structural
data for the U–X adducts 3–Ni, 4, and 5. The data show a trend in uranium–metal
bond strength that decreases from 3–Ni down to 3–Pt and suggest that exchanging the iodide for a fluoride
strengthens the metal–metal bond. Despite short U–TM
(transition metal) distances, four other computational approaches
also suggest low U–TM bond orders, reflecting highly transition
metal localized valence NLMOs. These are more so for 3–Pd than 3–Ni, consistent with slightly larger U–TM
bond orders in the latter. Computational studies of the model systems
(PH3)3MU(OH)3I (M = Ni, Pd) reveal
longer and weaker unsupported U–TM bonds vs 3.
Collapse
Affiliation(s)
- Johann A Hlina
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, The King's Buildings, Edinburgh EH9 3FJ, U.K
| | - James R Pankhurst
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, The King's Buildings, Edinburgh EH9 3FJ, U.K
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, U.K.,School of Chemistry, University of Manchester , Oxford Road, Manchester, M13 9PL, U.K
| | - Polly L Arnold
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, The King's Buildings, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
35
|
Liddle ST. The Renaissance of Non-Aqueous Uranium Chemistry. Angew Chem Int Ed Engl 2015; 54:8604-41. [PMID: 26079536 DOI: 10.1002/anie.201412168] [Citation(s) in RCA: 370] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Prior to the year 2000, non-aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small-molecule activation, and magnetism have been reported. This Review 1) introduces the reader to some of the specialist theories of the area, 2) covers all-important starting materials, 3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, 4) describes advances in the area of single-molecule magnetism, and 5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes.
Collapse
Affiliation(s)
- Stephen T Liddle
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK).
| |
Collapse
|
36
|
|
37
|
Abstract
Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes.
Collapse
Affiliation(s)
- Benedict M Gardner
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | |
Collapse
|
38
|
Gardner BM, Lewis W, Blake AJ, Liddle ST. Thorium Triamidoamine Complexes: Synthesis of an Unusual Dinuclear Tuck-in–Tuck-over Thorium Metallacycle Featuring the Longest Known Thorium−σ-Alkyl Bond. Organometallics 2015. [DOI: 10.1021/om501177s] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Benedict M. Gardner
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Alexander J. Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Stephen T. Liddle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
39
|
Cantero-López P, Le Bras L, Páez-Hernández D, Arratia-Pérez R. The role of the [CpM(CO)2]− chromophore in the optical properties of the [Cp2ThMCp(CO)2]+ complexes, where M = Fe, Ru and Os. A theoretical view. Dalton Trans 2015; 44:20004-10. [DOI: 10.1039/c5dt03121d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SO-TDDFT calculations shows that transition metals sensitize the emission of Th ion in the present unsupported complexes.
Collapse
Affiliation(s)
- Plinio Cantero-López
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | - Laura Le Bras
- Institut des Sciences Chimiques de Rennes UMR CNRS 6226
- 35042 Rennes
- France
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| |
Collapse
|
40
|
Patel D, Wooles A, Cornish AD, Steven L, Davies ES, Evans DJ, McMaster J, Lewis W, Blake AJ, Liddle ST. Synthesis and characterisation of halide, separated ion pair, and hydride cyclopentadienyl iron bis(diphenylphosphino)ethane derivatives. Dalton Trans 2015; 44:14159-77. [DOI: 10.1039/c5dt00704f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis and structures of 25 halide, separated ion pair, and hydride cyclopentadienyl iron bis(diphenylphosphino)ethane complexes are described.
Collapse
Affiliation(s)
- Dipti Patel
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Ashley Wooles
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Andrew D. Cornish
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Lindsey Steven
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - E. Stephen Davies
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | | | - Jonathan McMaster
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - William Lewis
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | | | - Stephen T. Liddle
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
41
|
Affiliation(s)
- Douglas R Kindra
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | | |
Collapse
|
42
|
|
43
|
Ward AL, Lukens WW, Lu CC, Arnold J. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes. J Am Chem Soc 2014; 136:3647-54. [PMID: 24498862 DOI: 10.1021/ja413192m] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium, and cobalt. Complexes incorporating the binucleating ligand N[ο-(NHCH2P(i)Pr2)C6H4]3 with either Th(IV) (4) or U(IV) (5) and a carbonyl bridged [Co(CO)4](-) unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the resulting isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively unusual class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl and formation of the metal-metal bond is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) Å and 3.0319(7) Å for the thorium and uranium complexes, respectively, were observed. The solution-state behavior of the thorium complexes was evaluated using (1)H, (1)H-(1)H COSY, (31)P, and variable-temperature NMR spectroscopy. IR, UV-vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.
Collapse
Affiliation(s)
- Ashleigh L Ward
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
44
|
Gardner BM, Cleaves PA, Kefalidis CE, Fang J, Maron L, Lewis W, Blake AJ, Liddle ST. The role of 5f-orbital participation in unexpected inversion of the σ-bond metathesis reactivity trend of triamidoamine thorium(iv) and uranium(iv) alkyls. Chem Sci 2014. [DOI: 10.1039/c4sc00182f] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Napoline JW, Kraft SJ, Matson EM, Fanwick PE, Bart SC, Thomas CM. Tris(phosphinoamide)-supported uranium-cobalt heterobimetallic complexes featuring Co → U dative interactions. Inorg Chem 2013; 52:12170-7. [PMID: 24111545 DOI: 10.1021/ic402343q] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of tris- and tetrakis(phosphinoamide) U/Co complexes has been synthesized. The uranium precursors, (η(2)-Ph2PN(i)Pr)4U (1), (η(2)-(i)Pr2PNMes)4U (2), (η(2)-Ph2PN(i)Pr)3UCl (3), and (η(2)-(i)Pr2PNMes)3UI (4), were easily accessed via addition of the appropriate stoichiometric equivalents of [Ph2PN(i)Pr]K or [(i)Pr2PNMes]K to UCl4 or UI4(dioxane)2. Although the phosphinoamide ligands in 1 and 4 have been shown to coordinate to U in an η(2)-fashion in the solid state, the phosphines are sufficiently labile in solution to coordinate cobalt upon addition of CoI2, generating the heterobimetallic Co/U complexes ICo(Ph2PN(i)Pr)3U[η(2)-Ph2PN(i)Pr] (5), ICo((i)Pr2PNMes)3U[η(2)-((i)Pr2PNMes)] (6), ICo(Ph2PN(i)Pr)3UI (7), and ICo((i)Pr2PNMes)3UI (8). Structural characterization of complexes 5 and 7 reveals reasonably short Co-U interatomic distances, with 7 exhibiting the shortest transition metal-uranium distance ever reported (2.874(3) Å). Complexes 7 and 8 were studied by cyclic voltammetry to examine the influence of the metal-metal interaction on the redox properties compared with both monometallic Co and heterobimetallic Co/Zr complexes. Theoretical studies are used to further elucidate the nature of the transition metal-actinide interaction.
Collapse
Affiliation(s)
- J Wesley Napoline
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, United States
| | | | | | | | | | | |
Collapse
|
46
|
King DM, Tuna F, McMaster J, Lewis W, Blake AJ, McInnes EJL, Liddle ST. Single-Molecule Magnetism in a Single-Ion Triamidoamine Uranium(V) Terminal Mono-Oxo Complex. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
King DM, Tuna F, McMaster J, Lewis W, Blake AJ, McInnes EJL, Liddle ST. Single-Molecule Magnetism in a Single-Ion Triamidoamine Uranium(V) Terminal Mono-Oxo Complex. Angew Chem Int Ed Engl 2013; 52:4921-4. [DOI: 10.1002/anie.201301007] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 11/06/2022]
|
48
|
Jones MB, Gaunt AJ. Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. Chem Rev 2012; 113:1137-98. [PMID: 23130707 DOI: 10.1021/cr300198m] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew B Jones
- Inorganic, Isotope, and Actinide Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
49
|
Oelkers B, Butovskii MV, Kempe R. f-Element-Metal Bonding and the Use of the Bond Polarity To Build Molecular Intermetalloids. Chemistry 2012; 18:13566-79. [DOI: 10.1002/chem.201200783] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Elkechai A, Mani Y, Boucekkine A, Ephritikhine M. Density functional theory investigation of the redox properties of tricyclopentadienyl- and phospholyluranium(IV) chloride complexes. Inorg Chem 2012; 51:6943-52. [PMID: 22668342 DOI: 10.1021/ic300811m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The redox behavior of tricyclopentadienyl- and phospholyluranium(IV) chloride complexes L(3)UCl with L = C(5)H(5) (Cp), C(5)H(4)Me (MeCp), C(5)H(4)SiMe(3) (TMSCp), C(5)H(4)(t)Bu ((t)BuCp), C(5)Me(5) (Cp*), and C(4)Me(4)P (tmp), has been investigated using relativistic density functional theory calculations, with the solvent being taken into account using the conductor-like screening model. A very good linear correlation (r(2) = 0.99) has been obtained between the computed electron affinities of the L(3)UCl complexes and the experimental half-wave reduction potentials E(1/2) related to the U(IV)/U(III) redox systems. From a computational point of view, our study confirms the crucial importance of spin-orbit coupling and solvent corrections and the use of an extended basis set in order to achieve the best experiment-theory agreement. Considering oxidation of the uranium(IV) complexes, the instability of the uranium(V) derivatives [L(3)UCl](+) is revealed, in agreement with experimental electrochemical findings. The driving roles of both the electron-donating ability of the L ligand and the U 5f orbitals on the redox properties of the complexes are brought to light. Interestingly, we found and explained the excellent correlation between variations of the uranium Hirschfeld charges following U(IV)/U(III) electron capture and E(1/2). In addition, this work allowed one to estimate theoretically the half-wave reduction potential of [Cp*(3)UCl].
Collapse
Affiliation(s)
- Aziz Elkechai
- Laboratoire de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
| | | | | | | |
Collapse
|