1
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
2
|
Nishiura M, Hori Y, Umeno M, Kikuchi K. Visualization of multiple localizations of GLUT4 by fluorescent probes of PYP-tag with designed unnatural warhead. Chem Sci 2023; 14:5925-5935. [PMID: 37293637 PMCID: PMC10246691 DOI: 10.1039/d3sc00724c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Within a cell, multiple copies of the same protein coexist in different pathways and behave differently. Being able to individually analyze the constant actions of proteins in a cell is crucial to know the pathways through which they pass and which physiological functions they are deeply involved in. However, until now, it has been difficult to distinguish protein copies with distinct translocation properties by fluorescence labeling with different colors in living cells. In this study, we have created an unnatural ligand with an unprecedented protein-tag labeling property in living cells and overcome the above-mentioned problem. Of special interest is that some fluorescent probes with the ligand can selectively and efficiently label intracellular proteins without binding to cell-surface proteins, even if the proteins are present on the cell membrane. We also developed a cell-membrane impermeable fluorescent probe that selectively labels cell-surface proteins without labeling of intracellular proteins. These localization-selective properties enabled us to visually discriminate two kinetically distinct glucose transporter 4 (GLUT4) molecules that show different multiple subcellular localization and translocation dynamics in live cells. Taking advantage of the probes, we revealed that N-glycosylation of GLUT4 influences intracellular localization. Furthermore, we were able to visually distinguish active GLUT4 molecules that underwent membrane translocation at least twice within an hour from those that remained intracellularly, discovering previously unrecognized dynamic behaviors of GLUT4. This technology provides not only a valuable tool for study on multiple localization and dynamics of proteins but also important information on diseases caused by protein translocation dysfunction.
Collapse
Affiliation(s)
- Miyako Nishiura
- Department of Applied Chemistry, Graduate School of Engineering, and Division of Applied Chemistry, Osaka University Suita Osaka 565-0871 Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University Fukuoka Fukuoka 819-0395 Japan
| | - Maho Umeno
- Department of Applied Chemistry, Graduate School of Engineering, and Division of Applied Chemistry, Osaka University Suita Osaka 565-0871 Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, and Division of Applied Chemistry, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
- Quantum Information and Quantum Biology Division, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
3
|
Cole MS, Hegde PV, Aldrich CC. β-Lactamase-Mediated Fragmentation: Historical Perspectives and Recent Advances in Diagnostics, Imaging, and Antibacterial Design. ACS Infect Dis 2022; 8:1992-2018. [PMID: 36048623 DOI: 10.1021/acsinfecdis.2c00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of β-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of β-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health. Nonetheless, researchers have developed strategies that take advantage of this defense mechanism, exploiting BLase activity in the creation of probes, diagnostic tools, and even novel antibiotics selective for resistant organisms. Early discoveries in the 1960s and 1970s demonstrating that certain BLs expel a leaving group upon BLase cleavage have spawned an entire field dedicated to employing this selective release mechanism, termed BLase-mediated fragmentation. Chemical probes have been developed for imaging and studying BLase-expressing organisms in the laboratory and diagnosing BL-resistant infections in the clinic. Perhaps most promising, new antibiotics have been developed that use BLase-mediated fragmentation to selectively release cytotoxic chemical "warheads" at the site of infection, reducing off-target effects and allowing for the repurposing of putative antibiotics against resistant organisms. This Review will provide some historical background to the emergence of this field and highlight some exciting recent reports that demonstrate the promise of this unique release mechanism.
Collapse
Affiliation(s)
- Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Development of an effective protein-labeling system based on smart fluorogenic probes. J Biol Inorg Chem 2019; 24:443-455. [PMID: 31152238 DOI: 10.1007/s00775-019-01669-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022]
Abstract
Proteins are an important component of living systems and play a crucial role in various physiological functions. Fluorescence imaging of proteins is a powerful tool for monitoring protein dynamics. Fluorescent protein (FP)-based labeling methods are frequently used to monitor the movement and interaction of cellular proteins. However, alternative methods have also been developed that allow the use of synthetic fluorescent probes to target a protein of interest (POI). Synthetic fluorescent probes have various advantages over FP-based labeling methods. They are smaller in size than the fluorescent proteins, offer a wide variety of colors and have improved photochemical properties. There are various chemical recognition-based labeling techniques that can be used for labeling a POI with a synthetic probe. In this review, we focus on the development of protein-labeling systems, particularly the SNAP-tag, BL-tag, and PYP-tag systems, and understanding the fluorescence behavior of the fluorescently labeled target protein in these systems. We also discuss the smart fluorogenic probes for these protein-labeling systems and their applications. The fluorogenic protein labeling will be a useful tool to investigate complex biological phenomena in future work on cell biology.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Hori
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Sunbul M, Arora A, Jäschke A. Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers. Methods Mol Biol 2018; 1649:289-304. [PMID: 29130205 DOI: 10.1007/978-1-4939-7213-5_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To elucidate the roles, dynamics, and regulation of RNAs, it is vital to be able to visualize the RNA of interest (ROI) in living cells noninvasively. Here, we describe a novel live-cell RNA imaging method using fluorophore- and quencher-binding aptamers, which can be genetically fused to the ROI. In this method, new membrane permeable and nonfluorescent fluorophore-quencher conjugates were utilized, and we showed that their fluorescence increases dramatically upon binding to fluorophore- or quencher-binding aptamers. This phenomenon allowed for labeling the ROI with many different colored fluorophores and also dual-color imaging of two distinct RNAs in live bacteria. Our approach uses small RNA tags and small molecule fluorophores for labeling, thereby minimal perturbation on the function and dynamics of the RNA of interest is expected.
Collapse
Affiliation(s)
- Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - Ankita Arora
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany.
| |
Collapse
|
6
|
van Rooden EJ, Kohsiek M, Kreekel R, van Esbroeck ACM, van den Nieuwendijk AMCH, Janssen APA, van den Berg RJBHN, Overkleeft HS, van der Stelt M. Design and Synthesis of Quenched Activity-based Probes for Diacylglycerol Lipase and α,β-Hydrolase Domain Containing Protein 6. Chem Asian J 2018; 13:3491-3500. [PMID: 29901868 DOI: 10.1002/asia.201800452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/16/2018] [Indexed: 11/08/2022]
Abstract
Diacylglycerol lipases (DAGL) are responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol. The fluorescent activity-based probes DH379 and HT-01 have been previously shown to label DAGLs and to cross-react with the serine hydrolase ABHD6. Here, we report the synthesis and characterization of two new quenched activity-based probes 1 and 2, the design of which was based on the structures of DH379 and HT-01, respectively. Probe 1 contains a BODIPY-FL and a 2,4-dinitroaniline moiety as a fluorophore-quencher pair, whereas probe 2 employs a Cy5-fluorophore and a cAB40-quencher. The fluorescence of both probes was quenched with relative quantum yields of 0.34 and 0.0081, respectively. The probes showed target inhibition as characterized in activity-based protein profiling assays using human cell- and mouse brain lysates, but were unfortunately not active in living cells, presumably due to limited cell permeability.
Collapse
Affiliation(s)
- E J van Rooden
- Molecular Physiology, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - M Kohsiek
- Molecular Physiology, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - R Kreekel
- Molecular Physiology, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - A C M van Esbroeck
- Molecular Physiology, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | - A P A Janssen
- Molecular Physiology, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - R J B H N van den Berg
- Bio-organic Synthesis, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - H S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - M van der Stelt
- Molecular Physiology, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
7
|
Hori Y, Hirayama S, Kikuchi K. Development of cyanine probes with dinitrobenzene quencher for rapid fluorogenic protein labelling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0018. [PMID: 29038376 PMCID: PMC5647265 DOI: 10.1098/rsta.2017.0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
A multicolour protein labelling technique using a protein tag and fluorogenic probes is a powerful approach for spatio-temporal analyses of proteins in living cells. Since cyanine fluorophores have attractive properties for multicolour imaging of proteins, there is a huge demand to develop fluorogenic cyanine probes for specific protein labelling in living cells. Herein, we develop fluorogenic cyanine probes for labelling a protein tag by using a dinitrobenzene fluorescence quencher. The probes enhanced fluorescence intensity upon labelling reactions and emitted orange or far-red fluorescence. Intramolecular interactions between the cyanine fluorophores and the dinitrobenzene quencher led not only to fluorescence quenching of the probes in the free state but also to promotion of labelling reactions. Furthermore, the probes successfully imaged cell-surface proteins without a washing process. These findings offer valuable information on the design of fluorogenic cyanine probes and indicate that the probes are useful as novel live-cell imaging tools.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Yuichiro Hori
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Hirayama
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Targetable fluorescent sensors for advanced cell function analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Gao F, Gao T, Zhou K, Zeng W. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging. Molecules 2016; 21:molecules21091163. [PMID: 27589715 PMCID: PMC6273459 DOI: 10.3390/molecules21091163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag), by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.
Collapse
Affiliation(s)
- Feng Gao
- Powder Metallurgy Research Institute of Central South University, Changsha 410013, China.
- The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Tang Gao
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Kechao Zhou
- Powder Metallurgy Research Institute of Central South University, Changsha 410013, China.
| | - Wenbin Zeng
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
10
|
Fluorogenic probes reveal a role of GLUT4 N-glycosylation in intracellular trafficking. Nat Chem Biol 2016; 12:853-9. [PMID: 27547921 DOI: 10.1038/nchembio.2156] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/03/2016] [Indexed: 02/04/2023]
Abstract
Glucose transporter 4 (GLUT4) is an N-glycosylated protein that maintains glucose homeostasis by regulating the protein translocation. To date, it has been unclear whether the N-glycan of GLUT4 contributes to its intracellular trafficking. Here, to clarify the role of the N-glycan, we developed fluorogenic probes that label cytoplasmic and plasma-membrane proteins for multicolor imaging of GLUT4 translocation. One of the probes, which is cell impermeant, selectively detected exocytosed GLUT4. Using this probe, we verified the 'log' of the trafficking, in which N-glycan-deficient GLUT4 was transiently translocated to the cell membrane upon insulin stimulation and was rapidly internalized without retention on the cell membrane. The results strongly suggest that the N-glycan functions in the retention of GLUT4 on the cell membrane. This study showed the utility of the fluorogenic probes and indicated that this imaging tool will be applicable for research on various membrane proteins that show dynamic changes in localization.
Collapse
|
11
|
Sadhu KK, Lindberg E, Winssinger N. In cellulo protein labelling with Ru-conjugate for luminescence imaging and bioorthogonal photocatalysis. Chem Commun (Camb) 2015; 51:16664-6. [PMID: 26426098 DOI: 10.1039/c5cc05405b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Labelling of proteins with a luminescent ruthenium complex enables the direct visualization and photocatalytic reduction of aryl azide in live cells. The confinement of catalysis to the labeled proteins was visualized using an azide-based immolative linker releasing a precipitating dye.
Collapse
Affiliation(s)
- Kalyan K Sadhu
- University of Geneva, School of Chemistry and Biochemsitry, NCCR Chemical Biology, 30 quai Ernest Ansermet, Geneva, Switzerland.
| | | | | |
Collapse
|
12
|
Arora A, Sunbul M, Jäschke A. Dual-colour imaging of RNAs using quencher- and fluorophore-binding aptamers. Nucleic Acids Res 2015; 43:e144. [PMID: 26175046 PMCID: PMC4666381 DOI: 10.1093/nar/gkv718] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/02/2015] [Indexed: 01/12/2023] Open
Abstract
In order to gain deeper insight into the functions and dynamics of RNA in cells, the development of methods for imaging multiple RNAs simultaneously is of paramount importance. Here, we describe a modular approach to image RNA in living cells using an RNA aptamer that binds to dinitroaniline, an efficient general contact quencher. Dinitroaniline quenches the fluorescence of different fluorophores when directly conjugated to them via ethylene glycol linkers by forming a non-fluorescent intramolecular complex. Since the binding of the RNA aptamer to the quencher destroys the fluorophore-quencher complex, fluorescence increases dramatically upon binding. Using this principle, a series of fluorophores were turned into fluorescent turn-on probes by conjugating them to dinitroaniline. These probes ranged from fluorescein-dinitroaniline (green) to TexasRed-dinitroaniline (red) spanning across the visible spectrum. The dinitroaniline-binding aptamer (DNB) was generated by in vitro selection, and was found to bind all probes, leading to fluorescence increase in vitro and in living cells. When expressed in E. coli, the DNB aptamer could be labelled and visualized with different-coloured fluorophores and therefore it can be used as a genetically encoded tag to image target RNAs. Furthermore, combining contact-quenched fluorogenic probes with orthogonal DNB (the quencher-binding RNA aptamer) and SRB-2 aptamers (a fluorophore-binding RNA aptamer) allowed dual-colour imaging of two different fluorescence-enhancing RNA tags in living cells, opening new avenues for studying RNA co-localization and trafficking.
Collapse
Affiliation(s)
- Ankita Arora
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| |
Collapse
|
13
|
Yoshimura A, Mizukami S, Mori Y, Yoshioka Y, Kikuchi K. 1H MRI Detection of Gene Expression in Living Cells by Using Protein Tag and Biotinylation Probe. CHEM LETT 2014. [DOI: 10.1246/cl.130942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Shin Mizukami
- Graduate School of Engineering, Osaka University
- Immunology Frontier Research Center (IFReC), Osaka University
| | - Yuki Mori
- Immunology Frontier Research Center (IFReC), Osaka University
- High Performance Bioimaging Research Facility, Graduate School of Frontier Biosciences, Osaka University
| | - Yoshichika Yoshioka
- Immunology Frontier Research Center (IFReC), Osaka University
- High Performance Bioimaging Research Facility, Graduate School of Frontier Biosciences, Osaka University
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University
- Immunology Frontier Research Center (IFReC), Osaka University
| |
Collapse
|
14
|
Mizukami S, Hori Y, Kikuchi K. Small-molecule-based protein-labeling technology in live cell studies: probe-design concepts and applications. Acc Chem Res 2014; 47:247-56. [PMID: 23927788 DOI: 10.1021/ar400135f] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of genetic engineering techniques allows researchers to combine functional proteins with fluorescent proteins (FPs) to produce fusion proteins that can be visualized in living cells, tissues, and animals. However, several limitations of FPs, such as slow maturation kinetics or issues with photostability under laser illumination, have led researchers to examine new technologies beyond FP-based imaging. Recently, new protein-labeling technologies using protein/peptide tags and tag-specific probes have attracted increasing attention. Although several protein-labeling systems are com mercially available, researchers continue to work on addressing some of the limitations of this technology. To reduce the level of background fluorescence from unlabeled probes, researchers have pursued fluorogenic labeling, in which the labeling probes do not fluoresce until the target proteins are labeled. In this Account, we review two different fluorogenic protein-labeling systems that we have recently developed. First we give a brief history of protein labeling technologies and describe the challenges involved in protein labeling. In the second section, we discuss a fluorogenic labeling system based on a noncatalytic mutant of β-lactamase, which forms specific covalent bonds with β-lactam antibiotics such as ampicillin or cephalosporin. Based on fluorescence (or Förster) resonance energy transfer and other physicochemical principles, we have developed several types of fluorogenic labeling probes. To extend the utility of this labeling system, we took advantage of a hydrophobic β-lactam prodrug structure to achieve intracellular protein labeling. We also describe a small protein tag, photoactive yellow protein (PYP)-tag, and its probes. By utilizing a quenching mechanism based on close intramolecular contact, we incorporated a turn-on switch into the probes for fluorogenic protein labeling. One of these probes allowed us to rapidly image a protein while avoiding washout. In the future, we expect that protein-labeling systems with finely designed probes will lead to novel methodologies that allow researchers to image biomolecules and to perturb protein functions.
Collapse
Affiliation(s)
- Shin Mizukami
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Hori
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, JST, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Meeuwissen SA, Bruekers SMC, Chen Y, Pochan DJ, van Hest JCM. Spontaneous shape changes in polymersomes via polymer/polymer segregation. Polym Chem 2014. [DOI: 10.1039/c3py00906h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Sunbul M, Jäschke A. Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. Angew Chem Int Ed Engl 2013; 52:13401-4. [PMID: 24133044 DOI: 10.1002/anie.201306622] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/05/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Murat Sunbul
- Institut für Pharmazie und Molekulare Biotechnologie, Universität Heidelberg, 69120 Heidelberg (Germany) http://www.jaeschke.uni-hd.de
| | | |
Collapse
|
17
|
Sunbul M, Jäschke A. Contact-Mediated Quenching for RNA Imaging in Bacteria with a Fluorophore-Binding Aptamer. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Protein labeling with fluorogenic probes for no-wash live-cell imaging of proteins. Curr Opin Chem Biol 2013; 17:644-50. [DOI: 10.1016/j.cbpa.2013.05.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
|
19
|
Hori Y, Nakaki K, Sato M, Mizukami S, Kikuchi K. Development of Protein-Labeling Probes with a Redesigned Fluorogenic Switch Based on Intramolecular Association for No-Wash Live-Cell Imaging. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Hori Y, Nakaki K, Sato M, Mizukami S, Kikuchi K. Development of Protein-Labeling Probes with a Redesigned Fluorogenic Switch Based on Intramolecular Association for No-Wash Live-Cell Imaging. Angew Chem Int Ed Engl 2012; 51:5611-4. [DOI: 10.1002/anie.201200867] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Indexed: 01/28/2023]
|
21
|
Mizukami S. Development of molecular imaging tools to investigate protein functions by chemical probe design. Chem Pharm Bull (Tokyo) 2012; 59:1435-46. [PMID: 22130363 DOI: 10.1248/cpb.59.1435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular imaging technologies, which enable the visualization of the behaviors or functions of biomolecules in living systems, have received considerable attention from life scientists. Novel imaging technologies that overcome the limitations of current imaging techniques are desired. In this review, two independent technologies that were recently developed by the authors are described. The first technology is for smart (19)F magnetic resonance imaging (MRI) probes that were developed for in vivo applications. These probes were developed by exploiting paramagnetic relaxation enhancement in order to detect hydrolase activity. With respect to cellular applications, gene expression in cells was visualized using one of the (19)F MRI probes. It was confirmed that this probe design principle is effective for various hydrolases, and broad applications are expected. The second technology is for practical protein labeling. This labeling method is based on a mutant β-lactamase and its specific labeling probes. Since the probe is fluorescence resonance energy transfer (FRET)-based, this labeling method achieves both specific and fluorogenic labeling of target proteins. In addition, derivatization of the probe enabled the labeling of intracellular proteins and the modification of various functional molecules.
Collapse
Affiliation(s)
- Shin Mizukami
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
22
|
Sadhu KK, Mizukami S, Lanam CR, Kikuchi K. Fluorogenic Protein Labeling through Photoinduced Electron Transfer-Based BL-Tag Technology. Chem Asian J 2011; 7:272-6. [DOI: 10.1002/asia.201100647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Indexed: 11/09/2022]
|
23
|
Mizukami S, Yamamoto T, Yoshimura A, Watanabe S, Kikuchi K. Covalent protein labeling with a lanthanide complex and its application to photoluminescence lifetime-based multicolor bioimaging. Angew Chem Int Ed Engl 2011; 50:8750-2. [PMID: 21793145 DOI: 10.1002/anie.201103775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Shin Mizukami
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
24
|
Mizukami S, Yamamoto T, Yoshimura A, Watanabe S, Kikuchi K. Covalent Protein Labeling with a Lanthanide Complex and Its Application to Photoluminescence Lifetime-Based Multicolor Bioimaging. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Watanabe S, Mizukami S, Akimoto Y, Hori Y, Kikuchi K. Intracellular protein labeling with prodrug-like probes using a mutant β-lactamase tag. Chemistry 2011; 17:8342-9. [PMID: 21656862 DOI: 10.1002/chem.201100973] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Indexed: 01/15/2023]
Abstract
Intracellular protein labeling with small molecular probes that do not require a washing step for the removal of excess probe is greatly desired for real-time investigation of protein dynamics in living cells. Successful labeling of proteins on the cell membrane has been performed using mutant β-lactamase tag (BL-tag) technology. In the present study, intracellular protein labeling with novel cell membrane permeable probes based on β-lactam prodrugs is described. The prodrug-based probes quickly permeated the plasma membranes of living mammalian cells, and efficiently labeled intracellular proteins at low probe concentrations. Because these cell-permeable probes were activated only inside cells, simultaneous discriminative labeling of intracellular and cell surface BL-tag fusion proteins was attained by using cell-permeable and impermeable probes. Thus, this technology enables adequate discrimination of the location of proteins labeled with the same protein tag, in conjunction with different color probes, by dual-color fluorescence. Moreover, the combination of BL-tag technology and the prodrug-based probes enabled the labeling of target proteins without requiring a washing step, owing to the efficient entry of probes into cells and the fast covalent labeling achieved with BL-tag technology after bioactivation. This prodrug-based probe design strategy for BL-tags provides a simple experimental procedure with application to cellular studies with the additional advantage of reduced stress to living cells.
Collapse
Affiliation(s)
- Shuji Watanabe
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
26
|
Sadhu KK, Mizukami S, Hori Y, Kikuchi K. Switching Modulation for Protein Labeling with Activatable Fluorescent Probes. Chembiochem 2011; 12:1299-308. [DOI: 10.1002/cbic.201100137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Indexed: 12/14/2022]
|
27
|
Wang B, Gao Y, Li HW, Hu ZP, Wu Y. The switch-on luminescence sensing of histidine-rich proteins in solution: a further application of a Cu2+ ligand. Org Biomol Chem 2011; 9:4032-4. [PMID: 21541431 DOI: 10.1039/c1ob05372h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new probe/Cu(2+) complex for the detection of his-tagged protein has been developed, based on an improved probe, Dansyl-Gly-Py (1), by closely mimicing the structure of a peptide, ATCUN. In aqueous solution, 1/Cu(2+) has good selectivity to histidine and cysteine, and further can detect histidine-rich protein by releasing the quenched fluorescence of 1.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China
| | | | | | | | | |
Collapse
|
28
|
Yoshimura A, Mizukami S, Hori Y, Watanabe S, Kikuchi K. Cell-Surface Protein Labeling with Luminescent Nanoparticles through Biotinylation by Using Mutant β-Lactamase-Tag Technology. Chembiochem 2011; 12:1031-4. [DOI: 10.1002/cbic.201100021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Indexed: 11/12/2022]
|
29
|
Sadhu KK, Mizukami S, Watanabe S, Kikuchi K. Sequential ordering among multicolor fluorophores for protein labeling facility via aggregation-elimination based β-lactam probes. MOLECULAR BIOSYSTEMS 2011; 7:1766-72. [DOI: 10.1039/c1mb05013c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|