1
|
Zhou G, Zhou Z, Feng D, Fan W, Luo Q, Lu X. Rich analytic toolbox for the exploration, characterization, screening, and application studies of ω-transaminases. Biotechnol Adv 2025; 82:108597. [PMID: 40349807 DOI: 10.1016/j.biotechadv.2025.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Omega-transaminases (ωTAs) constitute an important class of biocatalysts in the pharmaceutical, agrochemical, and fine chemical industries, because of their generally good performance in the efficient, enantiospecific, and environment-friendly synthesis of chiral amines that possess diverse chemical structures and biological activities. However, their practical applications are often hindered by unfavorable reaction equilibria, product inhibition, limited robustness, and relatively small accommodation for substrates. Many efforts, including the exploration of novel enzymes from various environments and the targeted engineering of identified enzymes, have been made to develop more specific and efficient ωTA catalysts. A simple, rapid, and accurate evaluation of enzyme activity is important. In addition to the classic chromatography-based methods, to date, at least 18 analytic methods, which are based on cell growth or colorimetry/spectrophotometry, pH, fluorescence and conductivity changes, have been developed and applied in both qualitative and quantitative analyses of ωTAs. These methods differ in terms of their principles, accuracy, throughput, simplicity, and cost-effectiveness. Here, we present a detailed examination of the advantages and drawbacks of these methods. Guidance for method selection from the perspective of practical applications is proposed to assist investigators in choosing appropriate methods according to different research purposes and existing conditions.
Collapse
Affiliation(s)
- Guan Zhou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Zewei Zhou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; School of Biological Science and Technology, University of Jinan, Nanxinzhuang West Road 336, Ji'nan 250022, China
| | - Dandan Feng
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Wenrui Fan
- National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
| | - Quan Luo
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Middle Rd 168, Qingdao 266237, China.
| |
Collapse
|
2
|
Tang K, Dong J, Zheng Z, Zhang T, Pan H, Jia H, Li Y, Wei P. The rapid high-throughput screening of ω-transaminases via a colorimetric method using aliphatic α-diketones as amino acceptors. Anal Bioanal Chem 2023; 415:1733-1740. [PMID: 36840810 DOI: 10.1007/s00216-023-04573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
ω-Transaminases (ω-TAs) are widely available for the production of chiral amines and unnatural amino acids. Herein, a rapid spectrophotometric method was developed for screening ω-TAs based on the colored products that can be generated from transamination reactions between aliphatic α-diketones and amino donors catalyzed by ω-TAs. The possible mechanism of the formation of the colored product was investigated according to LC-Q-TOF-MS analysis. Among seven diketones, 2,3-butanedione was selected as the most suitable amino acceptor for colorimetric screening of ω-TAs with high efficiency, high sensitivity, and low background interference. Meanwhile, the absorbance of the colored product generated by 2,3-butanedione catalyzed by ω-TAs in this method was linearly correlated with the results by HPLC analysis. This method was also confirmed to effectively screen ω-TA mutants with high activity towards isopropylamine.
Collapse
Affiliation(s)
- Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiacheng Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhengheng Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
de Raad M, Koper K, Deng K, Bowen BP, Maeda HA, Northen TR. Mass spectrometry imaging-based assays for aminotransferase activity reveal a broad substrate spectrum for a previously uncharacterized enzyme. J Biol Chem 2023; 299:102939. [PMID: 36702250 PMCID: PMC9957770 DOI: 10.1016/j.jbc.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Aminotransferases (ATs) catalyze pyridoxal 5'-phosphate-dependent transamination reactions between amino donor and keto acceptor substrates and play central roles in nitrogen metabolism of all organisms. ATs are involved in the biosynthesis and degradation of both proteinogenic and nonproteinogenic amino acids and also carry out a wide variety of functions in photorespiration, detoxification, and secondary metabolism. Despite the importance of ATs, their functionality is poorly understood as only a small fraction of putative ATs, predicted from DNA sequences, are associated with experimental data. Even for characterized ATs, the full spectrum of substrate specificity, among many potential substrates, has not been explored in most cases. This is largely due to the lack of suitable high-throughput assays that can screen for AT activity and specificity at scale. Here we present a new high-throughput platform for screening AT activity using bioconjugate chemistry and mass spectrometry imaging-based analysis. Detection of AT reaction products is achieved by forming an oxime linkage between the ketone groups of transaminated amino donors and a probe molecule that facilitates mass spectrometry-based analysis using nanostructure-initiator mass spectrometry or MALDI-mass spectrometry. As a proof-of-principle, we applied the newly established method and found that a previously uncharacterized Arabidopsis thaliana tryptophan AT-related protein 1 is a highly promiscuous enzyme that can utilize 13 amino acid donors and three keto acid acceptors. These results demonstrate that this oxime-mass spectrometry imaging AT assay enables high-throughput discovery and comprehensive characterization of AT enzymes, leading to an accurate understanding of the nitrogen metabolic network.
Collapse
Affiliation(s)
- Markus de Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Kaan Koper
- Department of Botany, University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Kai Deng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA; Sandia National Laboratories, Livermore, California, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA; Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
4
|
Visible spectrophotometric assay for characterization of ω-transaminases. Anal Biochem 2022; 658:114933. [DOI: 10.1016/j.ab.2022.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022]
|
5
|
Heinks T, Paulus J, Koopmeiners S, Beuel T, Sewald N, Höhne M, Bornscheuer UT, Fischer von Mollard G. Recombinant L-Amino Acid Oxidase with broad substrate spectrum for Co-Substrate Recycling in (S)-Selective Transaminase-Catalyzed Kinetic Resolutions. Chembiochem 2022; 23:e202200329. [PMID: 35713203 PMCID: PMC9543090 DOI: 10.1002/cbic.202200329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Chiral and enantiopure amines can be produced by enantioselective transaminases via kinetic resolution of amine racemates. This transamination reaction requires stoichiometric amounts of co-substrate. A dual-enzyme recycling system overcomes this limitation: L-amino acid oxidases (LAAO) recycle the accumulating co-product of ( S )-selective transaminases in the kinetic resolution of racemic amines to produce pure ( R )-amines. However, availability of suitable LAAOs is limited. Here we use the heterologously produced, highly active fungal hcLAAO4 with broad substrate spectrum. H 2 O 2 as by-product of hcLAAO4 is detoxified by a catalase. The final system allows using sub-stoichiometric amounts of 1 mol% of the transaminase co-substrate as well as the initial application of L-amino acids instead of α-keto acids. With an optimized protocol, synthetic potential of this kinetic resolution cascade was proven at the preparative scale (>90 mg) by the synthesis of highly enantiomerically pure ( R )-methylbenzylamine (>99 %ee) at complete conversion (50 %).
Collapse
Affiliation(s)
- Tobias Heinks
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Jannik Paulus
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Organic and Bioorganic Chemistry, GERMANY
| | - Simon Koopmeiners
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Tobias Beuel
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Norbert Sewald
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Organic and Bioorganic Chemistry, GERMANY
| | - Matthias Höhne
- University of Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Uwe T Bornscheuer
- University of Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Gabriele Fischer von Mollard
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, Universitätsstr. 25, 33615, Bielefeld, GERMANY
| |
Collapse
|
6
|
Gourbeyre L, Heuson E, Charmantray F, Hélaine V, Debard A, Petit JL, de Berardinis V, Gefflaut T. Biocatalysed synthesis of chiral amines: continuous colorimetric assays for mining amine-transaminases. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02070b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Versatile and sensitive continuous colorimetric assays were developed for the high throughput screening of a large collection of amine-TAs from biodiversity, and allowed the discovery of a set of diverse biocatalysts with high synthetic potential.
Collapse
Affiliation(s)
- Léa Gourbeyre
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Egon Heuson
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Franck Charmantray
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Virgil Hélaine
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Adrien Debard
- Génomique métabolique
- Genoscope
- Institut François Jacob
- CEA
- CNRS
| | | | | | - Thierry Gefflaut
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| |
Collapse
|
7
|
Zhang J, Zhao Y, Li C, Song H. Multi-enzyme pyruvate removal system to enhance ( R)-selective reductive amination of ketones. RSC Adv 2020; 10:28984-28991. [PMID: 35520080 PMCID: PMC9055928 DOI: 10.1039/d0ra06140a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023] Open
Abstract
Biocatalytic transamination is widely used in industrial production of chiral chemicals. Here, we constructed a novel multi-enzyme system to promote the conversion of the amination reaction. Firstly, we constructed the ArR-ωTA/TdcE/FDH/LDH multi-enzyme system, by combination of (R)-selective ω-transaminase derived from Arthrobacter sp. (ArR-ωTA), formate dehydrogenase (FDH) derived from Candida boidinii, formate acetyltransferase (TdcE) and lactate dehydrogenase (LDH) derived from E. coli MG1655. This multi-enzyme system was used to efficiently remove the by-product pyruvate by TdcE and LDH to facilitate the transamination reaction. The TdcE/FDH pathway was found to dominate the by-product pyruvate removal in the transamination reaction. Secondly, we optimized the reaction conditions, including d-alanine, DMSO, and pyridoxal phosphate (PLP) with different concentration of 2-pentanone (as a model substrate). Thirdly, by using the ArR-ωTA/TdcE/FDH/LDH system, the conversions of 2-pentanone, 4-phenyl-2-butanone and cyclohexanone were 84.5%, 98.2% and 79.3%, respectively. The ArR-ωTA/TdcE/FDH/LDH system is an efficient system for increasing the conversion in the transamination reaction.![]()
Collapse
Affiliation(s)
- Jinhua Zhang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Yanshu Zhao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Chao Li
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Hao Song
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| |
Collapse
|
8
|
Li T, Cui X, Cui Y, Sun J, Chen Y, Zhu T, Li C, Li R, Wu B. Exploration of Transaminase Diversity for the Oxidative Conversion of Natural Amino Acids into 2-Ketoacids and High-Value Chemicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xuexian Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jinyuan Sun
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yanchun Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chuijian Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
9
|
Fluorescence-based high-throughput screening system for R-ω-transaminase engineering and its substrate scope extension. Appl Microbiol Biotechnol 2020; 104:2999-3009. [DOI: 10.1007/s00253-020-10444-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
|
10
|
d-Phenylglycine aminotransferase ( d-PhgAT) – substrate scope and structural insights of a stereo-inverting biocatalyst used in the preparation of aromatic amino acids. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the crystal structure and substrate scope of a versatile aminotransferase biocatalyst.
Collapse
|
11
|
Cairns R, Gomm A, Peel C, Sharkey M, O'Reilly E. A Comprehensive Quantitative Assay for Amine Transaminases. ChemCatChem 2019. [DOI: 10.1002/cctc.201901430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryan Cairns
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Andrew Gomm
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Christopher Peel
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Michael Sharkey
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Elaine O'Reilly
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
- Current address: School of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
12
|
Han S, Shin J. Rapid and Quantitative Profiling of Substrate Specificity of ω‐Transaminases for Ketones. ChemCatChem 2019. [DOI: 10.1002/cctc.201900399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sang‐Woo Han
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| | - Jong‐Shik Shin
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| |
Collapse
|
13
|
Pawar SV, Hallam SJ, Yadav VG. Metagenomic discovery of a novel transaminase for valorization of monoaromatic compounds. RSC Adv 2018; 8:22490-22497. [PMID: 35539725 PMCID: PMC9081488 DOI: 10.1039/c8ra02764a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/12/2018] [Indexed: 11/21/2022] Open
Abstract
The profitability of next-generation biorefineries is acutely contingent on the discovery and utilization of biocatalysts that can valorize lignin. To this end, the metabolic catalogues of diverse microbiota have been mined previously using functional metagenomics in order to identify biocatalysts that can selectively degrade lignin into monoaromatic compounds. Herein, we have further improved the valorization factor of biorefining by deploying functional metagenomics toward the identification of a novel transaminase that can selectively functionalize lignin-derived monoaromatics to produce value-added feedstocks for pharmaceutical synthesis. We implemented a high-throughput colorimetric assay using o-xylylenediamine as the amino donor and successfully identified a transaminase that utilizes the canonical cofactor, pyridoxal 5'-phosphate, to aminate as many as 14 monoaromatic aldehydes and ketones. We subsequently identified the optimal conditions for enzyme activity towards the most favoured amino acceptor, benzaldehyde, including temperature, pH and choice of co-solvent. We also evaluated the specificity of the enzyme towards a variety of amino donors, as well as the optimal concentration of the most favoured amino donor. Significantly, the novel enzyme is markedly smaller than typical transaminases, and it is stably expressed in E. coli without any modifications to its amino acid sequence. Finally, we developed and implemented a computational methodology to assess the activity of the novel transaminase. The methodology is generalizable for assessing any transaminase and facilitates in silico screening of enzyme-substrate combinations in order to develop efficient biocatalytic routes to value-added amines. The computational pipeline is an ideal complement to metagenomics and opens new possibilities for biocatalyst discovery.
Collapse
Affiliation(s)
- Sandip V Pawar
- Department of Chemical & Biological Engineering, The University of British Columbia Vancouver BC Canada
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh Punjab India
| | - Steven J Hallam
- Department of Microbiology and Immunology, The University of British Columbia Vancouver BC Canada
| | - Vikramaditya G Yadav
- Department of Chemical & Biological Engineering, The University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering, The University of British Columbia Vancouver BC Canada
| |
Collapse
|
14
|
Slabu I, Galman JL, Lloyd RC, Turner NJ. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02686] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Iustina Slabu
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - James L. Galman
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Richard C. Lloyd
- Dr.
Reddy’s Laboratories, Chirotech Technology Centre, CB4 0PE Cambridge, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| |
Collapse
|
15
|
Zhang JD, Wu HL, Meng T, Zhang CF, Fan XJ, Chang HH, Wei WL. A high-throughput microtiter plate assay for the discovery of active and enantioselective amino alcohol-specific transaminases. Anal Biochem 2017; 518:94-101. [DOI: 10.1016/j.ab.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
|
16
|
López-Iglesias M, González-Martínez D, Rodríguez-Mata M, Gotor V, Busto E, Kroutil W, Gotor-Fernández V. Asymmetric Biocatalytic Synthesis of Fluorinated Pyridines through Transesterification or Transamination: Computational Insights into the Reactivity of Transaminases. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- María López-Iglesias
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstraβe 28 8010 Graz Austria
| | - Daniel González-Martínez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - María Rodríguez-Mata
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - Eduardo Busto
- Departamento de Química Orgánica I, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Wolfgang Kroutil
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstraβe 28 8010 Graz Austria
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
17
|
Willies SC, Galman JL, Slabu I, Turner NJ. A stereospecific solid-phase screening assay for colonies expressing both (R)- and (S)-selective ω-aminotransferases. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0084. [PMID: 26755753 DOI: 10.1098/rsta.2015.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
A novel solid-phase screening assay was developed for colonies expressing both (R)- and (S)-selective ω-aminotransferases. This high-throughput assay can be used to screen rapidly large variant libraries with enhanced substrate selectivity and enantioselectivities.
Collapse
Affiliation(s)
- Simon C Willies
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - James L Galman
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Iustina Slabu
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
18
|
Slabu I, Galman JL, Weise NJ, Lloyd RC, Turner NJ. Putrescine Transaminases for the Synthesis of Saturated Nitrogen Heterocycles from Polyamines. ChemCatChem 2016. [DOI: 10.1002/cctc.201600075] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Iustina Slabu
- School of Chemistry; University of Manchester, Manchester Institute of Biotechnology; 131 Princess Street Manchester M1 7DN UK
| | - James L. Galman
- School of Chemistry; University of Manchester, Manchester Institute of Biotechnology; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Weise
- School of Chemistry; University of Manchester, Manchester Institute of Biotechnology; 131 Princess Street Manchester M1 7DN UK
| | - Richard C. Lloyd
- Dr. Reddy's Laboratories; Chirotech Technology Centre; 410, Cambridge Science Park, Milton Road Cambridge CB4 0PE UK
| | - Nicholas J. Turner
- School of Chemistry; University of Manchester, Manchester Institute of Biotechnology; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
19
|
Continuous colorimetric screening assays for the detection of specific l- or d-α-amino acid transaminases in enzyme libraries. Appl Microbiol Biotechnol 2015; 100:397-408. [DOI: 10.1007/s00253-015-6988-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 11/28/2022]
|
20
|
Baud D, Ladkau N, Moody TS, Ward JM, Hailes HC. A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase. Chem Commun (Camb) 2015; 51:17225-8. [DOI: 10.1039/c5cc06817g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Red light for transaminases. A highly sensitive colorimetric assay using an inexpensive amine donor has been established for use in high-throughput transaminase screens.
Collapse
Affiliation(s)
- D. Baud
- Department of Chemistry
- University College London
- UK
| | - N. Ladkau
- Department of Chemistry
- University College London
- UK
| | - T. S. Moody
- Almac
- Department of Biocatalysis and Isotope Chemistry
- Craivagon
- UK
| | - J. M. Ward
- Department of Biochemical Engineering
- University College London
- UK
| | - H. C. Hailes
- Department of Chemistry
- University College London
- UK
| |
Collapse
|
21
|
Weiß MS, Pavlidis IV, Vickers C, Höhne M, Bornscheuer UT. Glycine Oxidase Based High-Throughput Solid-Phase Assay for Substrate Profiling and Directed Evolution of (R)- and (S)-Selective Amine Transaminases. Anal Chem 2014; 86:11847-53. [DOI: 10.1021/ac503445y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin S. Weiß
- Institute of Biochemistry,
Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Ioannis V. Pavlidis
- Institute of Biochemistry,
Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Clare Vickers
- Institute of Biochemistry,
Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Matthias Höhne
- Institute of Biochemistry,
Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry,
Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany
| |
Collapse
|
22
|
Barber JE, Damry AM, Calderini GF, Walton CJ, Chica RA. Continuous colorimetric screening assay for detection of d-amino acid aminotransferase mutants displaying altered substrate specificity. Anal Biochem 2014; 463:23-30. [DOI: 10.1016/j.ab.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/26/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
23
|
Sayer C, Martinez-Torres RJ, Richter N, Isupov MN, Hailes HC, Littlechild JA, Ward JM. The substrate specificity, enantioselectivity and structure of the (R)-selective amine : pyruvate transaminase from Nectria haematococca. FEBS J 2014; 281:2240-53. [PMID: 24618038 PMCID: PMC4255305 DOI: 10.1111/febs.12778] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 11/30/2022]
Abstract
During the last decade the use of transaminases for the production of pharmaceutical and fine chemical intermediates has attracted a great deal of attention. Transaminases are versatile biocatalysts for the efficient production of amine intermediates and many have (S)-enantiospecificity. Transaminases with (R)-specificity are needed to expand the applications of these enzymes in biocatalysis. In this work we have identified a fungal putative (R)-specific transaminase from the Eurotiomycetes Nectria haematococca, cloned a synthetic version of this gene, demonstrated (R)-selective deamination of several substrates including (R)-α-methylbenzylamine, as well as production of (R)-amines, and determined its crystal structure. The crystal structures of the holoenzyme and the complex with an inhibitor gabaculine offer the first detailed insight into the structural basis for substrate specificity and enantioselectivity of the industrially important class of (R)-selective amine : pyruvate transaminases.
Collapse
Affiliation(s)
- Christopher Sayer
- Henry Wellcome Building for Biocatalysis, College of Life and Environmental Sciences, University of Exeter, EX4 4QD, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
O'Reilly E, Iglesias C, Turner NJ. Monoamine Oxidase-ω-Transaminase Cascade for the Deracemisation and Dealkylation of Amines. ChemCatChem 2014. [DOI: 10.1002/cctc.201300990] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Walton CJ, Chica RA. A high-throughput assay for screening l- or d-amino acid specific aminotransferase mutant libraries. Anal Biochem 2013; 441:190-8. [DOI: 10.1016/j.ab.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
26
|
|
27
|
Simon RC, Fuchs CS, Lechner H, Zepeck F, Kroutil W. Concise Chemoenzymatic Three Step Total Synthesis of Isosolenopsin Through Medium Engineering. European J Org Chem 2013; 2013:3397-3402. [PMID: 25191103 PMCID: PMC4151137 DOI: 10.1002/ejoc.201300157] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A short and efficient total synthesis of the alkaloid isosolenopsin and its enantiomer has been achieved. The key step was a ω-transaminase-catalysed regioselective monoamination of the diketone pentadecane-2,6-dione, which was obtained in a single step through the application of a Grignard reaction. Initial low conversions in the biotransformation could be overcome by optimisation of the reaction conditions employing suitable cosolvents. In the presence of 20 vol.-% N,N-dimethylformamide (DMF) or n-heptane the best results were obtained by employing two enantiocomplementary ω-transaminases originating from Arthrobacter at 30–40 °C; under these conditions, conversions of more than 99 % and perfect stereocontrol (ee > 99 %) were achieved. Diastereoselective chemical reduction (H2/Pd/C) of the biocatalytic product gave the target compound. The linear three-step synthesis provided the natural product isosolenopsin in diastereomerically pure form (ee > 99 %, dr = 99:1) with an overall yield of 64 %.
Collapse
Affiliation(s)
| | | | - Horst Lechner
- Institute of Chemistry, Organic and Bioorganic Chemistry, Heinrichstraße 28, Karl-Franzens University, 8010-Graz, Austria
| | - Ferdinand Zepeck
- Sandoz GmbH, Biocatalysis Lab, Biochemiestraße 10, 6250-Kundl / Tirol, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, Organic and Bioorganic Chemistry, Heinrichstraße 28, Karl-Franzens University, 8010-Graz, Austria
| |
Collapse
|
28
|
|
29
|
Wang B, Land H, Berglund P. An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by ω-transaminase. Chem Commun (Camb) 2012; 49:161-3. [PMID: 23169388 DOI: 10.1039/c2cc37232k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient single-enzymatic cascade approach for the asymmetric synthesis of chiral amines has been developed, which applies the amino donor 3-aminocyclohexa-1,5-dienecarboxylic acid spontaneously tautomerizing to reach reaction completion with excellent ee values.
Collapse
Affiliation(s)
- Bo Wang
- KTH Royal Institute of Technology, Division of Biochemistry, School of Biotechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
30
|
|
31
|
TTC-based screening assay for ω-transaminases: A rapid method to detect reduction of 2-hydroxy ketones. J Biotechnol 2012; 159:188-94. [DOI: 10.1016/j.jbiotec.2011.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/15/2022]
|
32
|
Mathew S, Yun H. ω-Transaminases for the Production of Optically Pure Amines and Unnatural Amino Acids. ACS Catal 2012. [DOI: 10.1021/cs300116n] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sam Mathew
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749, Korea
| | - Hyungdon Yun
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749, Korea
| |
Collapse
|
33
|
Rudat J, Brucher BR, Syldatk C. Transaminases for the synthesis of enantiopure beta-amino acids. AMB Express 2012; 2:11. [PMID: 22293122 PMCID: PMC3281772 DOI: 10.1186/2191-0855-2-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 11/29/2022] Open
Abstract
Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening.
Collapse
|
34
|
|
35
|
Ricca E, Brucher B, Schrittwieser JH. Multi-Enzymatic Cascade Reactions: Overview and Perspectives. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100256] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Affiliation(s)
- Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|