1
|
Li Y, Wang H, Jiao Z, Zhang H, Zhang B, Wang X, Xiao C, Yang X. Experimental Spin-Orbit State-Resolved Differential Cross Sections of the S( 1D) + D 2 → SD( 2Π 3/2,1/2) + D Reaction at Collision Energies of 266.2 and 206.5 cm -1. J Phys Chem A 2024; 128:10234-10239. [PMID: 39555804 PMCID: PMC11613649 DOI: 10.1021/acs.jpca.4c06605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
The S(1D) + D2 → SD + D reaction is a prototype insertion chemical reaction that involves spin-orbit interactions in the exit channel. In this work, we report spin-orbit state-resolved differential cross sections (DCSs) of this reaction obtained by crossed beam experiments at collision energies of 266.2 and 206.5 cm-1. The DCSs of specific rovibrational states exhibit a slight preference for forward scattering. When integrated over all rotational quantum states within each spin-orbit manifold, the total angular distributions of the two manifolds show nearly forward-backward symmetry, indicating that the deep well responsible for the long-living complex-forming mechanism predominates the entire reaction dynamics. Moreover, significant spin-orbit preference was observed at rotational quantum number N > 9 in the vibrationally ground state of SD products. It was also observed that SD products in the vibrationally excited state v' = 1 prefer to populate in the 2Π3/2 manifold, with the 2Π3/2/2Π1/2 ratio of 15.8 and 25.2 at collision energies of 266.2 and 206.5 cm-1, respectively. The experimental spin-orbit state-resolved DCSs obtained in this work will be of great importance for developing an accurate diabatic theory that includes spin-orbit interactions for this title reaction.
Collapse
Affiliation(s)
- Yu Li
- State Key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- School of
Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Heilong Wang
- State Key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhirun Jiao
- State Key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- School of
Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Hongtao Zhang
- State Key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Bingbing Zhang
- State Key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Institute
of Advanced Science Facilities, 268 Zhenyuan Road, Shenzhen 518107, China
| | - Xingan Wang
- Hefei
National
Laboratory, Hefei 230088, China
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Chunlei Xiao
- State Key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Hefei
National
Laboratory, Hefei 230088, China
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xueming Yang
- State Key
Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department
of Chemistry, and Center for Advanced Light Source, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute
of Advanced Science Facilities, 268 Zhenyuan Road, Shenzhen 518107, China
- Hefei
National
Laboratory, Hefei 230088, China
| |
Collapse
|
2
|
García-Vázquez RM, Bergeat A, Denis-Alpizar O, Faure A, Stoecklin T, Morales SB. Scattering resonances in the rotational excitation of HDO by Ne and normal-H 2: theory and experiment. Faraday Discuss 2024; 251:205-224. [PMID: 38770695 DOI: 10.1039/d3fd00168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The rotational excitation of a singly deuterated water molecule (HDO) by a heavy atom (Ne) and a light diatomic molecule (H2) is investigated theoretically and experimentally in the near-threshold regime. Crossed-molecular-beam measurements with a variable crossing angle are compared to close-coupling calculations based on high-accuracy potential energy surfaces. The two lowest rotational transitions, 000 → 101 and 000 → 111, are probed in detail and a good agreement between theory and experiment is observed for both transitions in the case of HDO + Ne, where scattering resonances are however blurred out experimentally. In the case of HDO + H2, the predicted theoretical overlapping resonances are faithfully reproduced by experiment for the 000 → 111 transition, while the calculated strong signal for the 000 → 101 transition is not detected. Future work is needed to reconcile this discrepancy.
Collapse
Affiliation(s)
| | | | - Otoniel Denis-Alpizar
- Grupo de Investigación en Física Aplicada, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | | | | | | |
Collapse
|
3
|
Menéndez M, Garcia E, Lara M, Jambrina PG, Aoiz FJ. Li + HF and Li + HCl Reactions Revisited I: QCT Calculations and Simulation of Experimental Results. J Phys Chem A 2023; 127:6924-6944. [PMID: 37579497 PMCID: PMC10461305 DOI: 10.1021/acs.jpca.3c03763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Indexed: 08/16/2023]
Abstract
The Li + HF and Li + HCl reactions share some common features. They have the same kinematics, relatively small barrier heights, bent transition states, and are both exothermic when the zero point energy is considered. Nevertheless, the pioneering crossed beam experiments by Lee and co-workers in the 80s (Becker et al., J. Chem. Phys. 1980, 73, 2833) revealed that the dynamics of the two reactions differ significantly, especially at low collision energies. In this work, we present theoretical simulations of their results in the laboratory frame (LAB), based on quasiclassical trajectories and obtained using accurate potential energy surfaces. The calculated LAB angular distributions and time-of-flight spectra agree well with the raw experimental data, although our simulations do not reproduce the experimentally derived center-of-mass (CM) differential cross section and velocity distributions. The latter were derived by forward convolution fitting under the questionable assumption that the CM recoil velocity and scattering angle distribution were uncoupled, while our results show that the coupling between them is relevant. Some important insights into the reaction mechanism discussed in the article by Becker et al. had not been contrasted with those that can be extracted from the theoretical results. Among them, the correlation between the angular momenta involved in the reactions has also been examined. Given the kinematics of both systems, the reagent orbital angular momentum, l , is almost completely transformed into the rotation of the product diatom, j'. However, contrary to the coplanar mechanism proposed in the original paper, we find that the initial and final relative orbital angular momenta are not necessarily parallel. Both reactions are found to be essentially direct, although about 15% of the LiFH complexes live longer than 200 fs.
Collapse
Affiliation(s)
- Marta Menéndez
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ernesto Garcia
- Departamento
de Química Física, Universidad
del País Vasco (UPV/EHU), 01006 Vitoria, Spain
| | - Manuel Lara
- Departamento
de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28039 Madrid, Spain
| | - Pablo G. Jambrina
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - F. Javier Aoiz
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Lara M, Jambrina PG, Aoiz FJ. Universal behavior in complex-mediated reactions: Dynamics of S(1D) + o-D2 → D + SD at low collision energies. J Chem Phys 2023; 158:2889001. [PMID: 37154275 DOI: 10.1063/5.0147182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Reactive and elastic cross sections and rate coefficients have been calculated for the S(1D) + D2(v = 0, j = 0) reaction using a modified hyperspherical quantum reactive scattering method. The considered collision energy ranges from the ultracold regime, where only one partial wave is open, up to the Langevin regime, where many of them contribute. This work presents the extension of the quantum calculations, which in a previous study were compared with the experimental results, down to energies in the cold and ultracold domains. Results are analyzed and compared with the universal case of the quantum defect theory by Jachymski et al. [Phys. Rev. Lett. 110, 213202 (2013)]. State-to-state integral and differential cross sections are also shown covering the ranges of low-thermal, cold, and ultracold collision energy regimes. It is found that at E/kB < 1 K, there are substantial departures from the expected statistical behavior and that dynamical features become increasingly important with decreasing collision energy, leading to vibrational excitation.
Collapse
Affiliation(s)
- Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P G Jambrina
- Departamento de Química Física, Facultad de Farmacia, Universidad de Salamanca, 37008 Salamanca, Spain
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
5
|
Mao Y, Buren B, Yang Z, Chen M. Time-dependent wave packet dynamics study of the resonances in the H + LiH +( v = 0, j = 0) → Li + + H 2 reaction at low collision energies. Phys Chem Chem Phys 2022; 24:15532-15539. [PMID: 35713276 DOI: 10.1039/d1cp05601h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The depletion process of LiH+ by H collision plays an important role in the evolution of the early universe and astrophysical processes, including the eventual charge-states, abundances of atomic and molecular species and ensuing astrochemistry. Here, a quantum dynamics study on the H + LiH+(v = 0, j = 0) → Li+ + H2 reaction is performed at the low collision energy range from 0.1 meV to 10 meV using the time-dependent wave packet method. A Feshbach resonance peak is observed near 0.8 meV collision energy on the total reaction probability curves. This resonance originates from the coupling with the v = 0, j = 1 energy level of the reactant LiH+, and it is dominated by the contributions of J = 0-4 partial waves. Another partial wave resonance is also found on the total integral cross section at 1.2 meV, which is closely connected to the opening of the J = 7 partial wave. The opening of the J = 7 partial wave generates a notable forward scattering peak, and the Feshbach resonance can promote both the forward and backward scatterings. Moreover, the total and product vibrational state-resolved rate coefficients for the temperature range of 1-100 K are also reported.
Collapse
Affiliation(s)
- Ye Mao
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Bayaer Buren
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
6
|
Wu LY, Miossec C, Heazlewood BR. Low-temperature reaction dynamics of paramagnetic species in the gas phase. Chem Commun (Camb) 2022; 58:3240-3254. [PMID: 35188499 PMCID: PMC8902758 DOI: 10.1039/d1cc06394d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Radicals are abundant in a range of important gas-phase environments. They are prevalent in the atmosphere, in interstellar space, and in combustion processes. As such, understanding how radicals react is essential for the development of accurate models of the complex chemistry occurring in these gas-phase environments. By controlling the properties of the colliding reactants, we can also gain insights into how radical reactions occur on a fundamental level. Recent years have seen remarkable advances in the breadth of experimental methods successfully applied to the study of reaction dynamics involving paramagnetic species-from improvements to the well-known crossed molecular beams approach to newer techniques involving magnetically guided and decelerated beams. Coupled with ever-improving theoretical methods, quantum features are being observed and interesting insights into reaction dynamics are being uncovered in an increasingly diverse range of systems. In this highlight article, we explore some of the exciting recent developments in the study of chemical dynamics involving paramagnetic species. We focus on low-energy reactive collisions involving neutral radical species, where the reaction parameters are controlled. We conclude by identifying some of the limitations of current methods and exploring possible new directions for the field.
Collapse
Affiliation(s)
- Lok Yiu Wu
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Chloé Miossec
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Brianna R Heazlewood
- The Oliver Lodge, Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
| |
Collapse
|
7
|
Hickson KM, Larrégaray P, Bonnet L, González-Lezana T. The kinetics of X + H2 reactions (X = C(1D), N(2D), O(1D), S(1D)) at low temperature: recent combined experimental and theoretical investigations. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1976927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kevin M. Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, Talence, France
- CNRS, Institut des Sciences Moléculaires, Talence, France
| | - Pascal Larrégaray
- Université de Bordeaux, Institut des Sciences Moléculaires, Talence, France
- CNRS, Institut des Sciences Moléculaires, Talence, France
| | - Laurent Bonnet
- Université de Bordeaux, Institut des Sciences Moléculaires, Talence, France
- CNRS, Institut des Sciences Moléculaires, Talence, France
| | - Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| |
Collapse
|
8
|
Jambrina PG, Lara M, Aoiz FJ. Signature of shape resonances on the differential cross sections of the S( 1D)+H 2 reaction. J Chem Phys 2021; 154:124304. [PMID: 33810659 DOI: 10.1063/5.0042967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Shape resonances appear when the system is trapped in an internuclear potential well after tunneling through a barrier. They manifest as peaks in the collision energy dependence of the cross section (excitation function), and in many cases, their presence can be observed experimentally. High-resolution crossed-beam experiments on the S(1D) + H2(j = 0) reaction in the 0.81-8.5 meV collision energy range reaction revealed non-monotonic behavior and the presence of oscillations in the reaction cross section as a function of the collision energy, as predicted by quantum mechanical (QM) calculations. In this work, we have analyzed the effect of shape resonances on the differential cross sections for this insertion reaction by performing additional QM calculations. We have found that, in some cases, the resonance gives rise to a large enhancement of extreme backward scattering for specific final states. Our results also show that, in order to yield a significant change in the state-resolved differential cross section, the resonance has to be associated with constructive interference between groups of partial waves, which requires not getting blurred by the participation of many product helicity states.
Collapse
Affiliation(s)
- P G Jambrina
- Departamento de Química Física, Facultad de Química, University of Salamanca, 37008 Salamanca, Spain
| | - Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
9
|
Zhao H, Xie D, Sun Z. Interaction-Asymptotic Region Decomposition Method for an Insertion Reaction: Application to the S( 1D) + H 2 Reaction. J Phys Chem A 2021; 125:2007-2018. [PMID: 33625216 DOI: 10.1021/acs.jpca.1c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With adjusting principal axes hyperspherical (APH) coordinate in the interaction region, and the Jacobi coordinates in the asymptotic regions, an efficient multidomain interaction-asymptotic region decomposition (IARD) method has been developed to solve the "coordinate problem" in a product-state-resolved reactive scattering calculation using the quantum wave packet method. Although the APH coordinate treats with all three channels equally, and is efficient for describing the interaction region for some direct reactions, it is inefficient for describing the insertion-type reaction due to the singularity problem, such as the S(1D) + H2 reaction. To deal with this issue, in this work, the channel-dependent Delves hyperspherical (DH) coordinate is proposed to describe the interaction region using the IARD method. The proposed DH-IARD method was applied to calculate the product-state-resolved reaction probabilities of the H + HD reaction, and the differential and integral cross sections of the typical insertion reaction S(1D) + H2. It is found that the new DH-IARD method is much more efficient than the previous APH-IARD method for dealing with insertion reactions. The partial wave resonance structures were observed in the integral cross section. It is found that at a low collision energy, the position of the initial wave packet has to be put far away. Otherwise, the partial wave resonance structures could not be correctly reproduced due to the reef well arising with a large total angular momentum J.
Collapse
Affiliation(s)
- Hailin Zhao
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center for Advanced Chemical Physics and 2011 Frontier Centre for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
10
|
González-Lezana T, Larrégaray P, Bonnet L. Statistical investigations of the S(1D)+HD reaction in the quantum regime. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Yang T, Huang L, Xiao C, Chen J, Wang T, Dai D, Lique F, Alexander MH, Sun Z, Zhang DH, Yang X, Neumark DM. Enhanced reactivity of fluorine with para-hydrogen in cold interstellar clouds by resonance-induced quantum tunnelling. Nat Chem 2019; 11:744-749. [DOI: 10.1038/s41557-019-0280-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/07/2019] [Indexed: 11/09/2022]
|
12
|
Wang T, Yang T, Xiao C, Sun Z, Zhang D, Yang X, Weichman ML, Neumark DM. Dynamical resonances in chemical reactions. Chem Soc Rev 2018; 47:6744-6763. [DOI: 10.1039/c8cs00041g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition state is a key concept in the field of chemistry and is important in the study of chemical kinetics and reaction dynamics.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Tiangang Yang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | | | - Daniel M. Neumark
- Department of Chemistry
- University of California at Berkeley
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
13
|
Ren Z, Sun Z, Zhang D, Yang X. A review of dynamical resonances in A + BC chemical reactions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026401. [PMID: 28008875 DOI: 10.1088/1361-6633/80/2/026401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The concept of the transition state has played an important role in the field of chemical kinetics and reaction dynamics. Reactive resonances in the transition-state region can dramatically enhance the reaction probability; thus investigation of the reactive resonances has attracted great attention from chemical physicists for many decades. In this review, we mainly focus on the recent progress made in probing the elusive resonance phenomenon in the simple A + BC reaction and understanding its nature, especially in the benchmark F/Cl + H2 and their isotopic variants. The signatures of reactive resonances in the integral cross section, differential cross section (DCS), forward- and backward-scattered DCS, and anion photodetachment spectroscopy are comprehensively presented in individual prototype reactions. The dynamical origins of reactive resonances are also discussed in this review, based on information on the wave function in the transition-state region obtained by time-dependent quantum wave-packet calculations.
Collapse
Affiliation(s)
- Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, People's Republic of China. International Center for Quantum Materials (ICQM) and School of Physics, Peking University, Beijing 100871, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Grozdanov TP, McCarroll R. An Empirical Dynamical Barrier for Statistical Theory of Low-Energy Reactive S( 1D) + HD(j = 0), H 2(j = 0) Collisions. J Phys Chem A 2017; 121:40-44. [PMID: 27958745 DOI: 10.1021/acs.jpca.6b11449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple model potential is proposed to describe the dynamical barrier in the mean interaction potential at small distances between the reactants in S(1D) + HD(1Σ, v = 0, j = 0) reaction. The statistical theory of collision complex formation and complex decay is applied to calculate the total reaction cross sections and the cross sections for SH and SD productions in the range of low collision energies Ec = (0.4-60) meV. The results are compared with measured cross sections and results of hyperspherical close coupling calculations. As a check of consistency the same comparisons are presented for the case of S(1D) + H2(1Σ, v = 0, j = 0) reaction.
Collapse
Affiliation(s)
- Tasko P Grozdanov
- Institute of Physics, University of Belgrade , Pregrevica 118, 11080 Belgrade, Serbia
| | - Ronald McCarroll
- Laboratoire de Chimie Physique-Matière et Rayonnement, (UMR 7614 du CNRS), Sorbonne Universités, Université Pierre et Marie Curie , 75231 Paris Cedex 05, France
| |
Collapse
|
15
|
Wu H, Duan ZX, Yin SH, Zhao GJ. State-resolved dynamics study of the H + HS reaction on the 3A′ and 3A″ states with time-dependent quantum wave packet method. J Chem Phys 2016; 145:124305. [DOI: 10.1063/1.4962543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hui Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi-Xin Duan
- School of Science, Dalian Jiao Tong University, Dalian 116023, China
| | - Shu-Hui Yin
- Department of Physics, Dalian Maritime University, Dalian 116023, China
| | - Guang-Jiu Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
16
|
Lara M, Chefdeville S, Larregaray P, Bonnet L, Launay JM, Costes M, Naulin C, Bergeat A. S(1D) + ortho-D2 Reaction Dynamics at Low Collision Energies: Complementary Crossed Molecular Beam Experiments and Theoretical Investigations. J Phys Chem A 2016; 120:5274-81. [DOI: 10.1021/acs.jpca.6b01182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Lara
- Departamento
de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Simon Chefdeville
- Univ. Bordeaux,
ISM, UMR 5255, F-33400 Talence, France
- CNRS, ISM, UMR 5255, F-33400 Talence, France
| | - Pascal Larregaray
- Univ. Bordeaux,
ISM, UMR 5255, F-33400 Talence, France
- CNRS, ISM, UMR 5255, F-33400 Talence, France
| | - Laurent Bonnet
- Univ. Bordeaux,
ISM, UMR 5255, F-33400 Talence, France
- CNRS, ISM, UMR 5255, F-33400 Talence, France
| | - Jean-Michel Launay
- Institut
de Physique
de Rennes, UMR CNRS 6251, Université de Rennes I, F-35042 Rennes, France
| | - Michel Costes
- Univ. Bordeaux,
ISM, UMR 5255, F-33400 Talence, France
- CNRS, ISM, UMR 5255, F-33400 Talence, France
| | - Christian Naulin
- Univ. Bordeaux,
ISM, UMR 5255, F-33400 Talence, France
- CNRS, ISM, UMR 5255, F-33400 Talence, France
| | - Astrid Bergeat
- Univ. Bordeaux,
ISM, UMR 5255, F-33400 Talence, France
- CNRS, ISM, UMR 5255, F-33400 Talence, France
| |
Collapse
|
17
|
Larrégaray P, Bonnet L. Quantum state-resolved differential cross sections for complex-forming chemical reactions: Asymmetry is the rule, symmetry the exception. J Chem Phys 2015; 143:144113. [DOI: 10.1063/1.4933009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Wu H, Liang D, Zhang PY. Time-dependent wave packet state-to-state quantum dynamics study of the abstraction reaction S(3P)+H2(v=0, j=0) on 13A″ electronic state. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Naulin C, Costes M. Experimental search for scattering resonances in near cold molecular collisions. INT REV PHYS CHEM 2014. [DOI: 10.1080/0144235x.2014.957565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Gao S, Song Y, Meng Q. Effect of reagent vibrational excitation on reaction S(3P)+D2 in 3A″ and 3A′ states. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
JI LINBO, XIE TINGXIAN, WANG HONGYAN. INVESTIGATION OF THE EXCHANGE REACTION H + H′S → HS + H′ ON THE 1A ′ STATE POTENTIAL ENERGY SURFACE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613500302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The quantum time dependent wave packet (TDWP) and quasiclassical trajectory (QCT) calculations were carried out to study the exchange reaction H(2S) + H′S(2Π) → HS(2Π) + H′(2S) on the 1A′ potential energy surface (PES). The integral cross sections of the H + H′S (v = j = 0) → HS + H′ reaction calculated by the two methods were presented. The results reveal that the integral cross sections (ICS) decrease with the collision energy increasing. The result of the QCT calculations is reasonably consistent with the time-dependent wave packet. Moreover, the differential cross sections (DCS) were calculated by the QCT method at the four different collision energies, which display a forward–backward symmetry. A long-lifetime H2S intermediate complex of the exchange reaction was found according to the trajectories. In the stereodynamics investigation, the polar and dihedral angle distribution functions were calculated, which have the distinct oscillations. The oscillations could be attributed to the deep well on the 1A′ PES. However, based on the polar-angle and dihedral angle distribution functions, it could be predicted that the main product rotational angular momentum preferentially point to the positive or negative direction of y-axes.
Collapse
Affiliation(s)
- LIN-BO JI
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| | - TING-XIAN XIE
- School of Science, Dalian Jiaotong University, Dalian 116028, China
| | - HONG-YAN WANG
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
22
|
Jambrina PG, Lara M, Menéndez M, Launay JM, Aoiz FJ. Rate coefficients from quantum and quasi-classical cumulative reaction probabilities for the S(1D) + H2 reaction. J Chem Phys 2013; 137:164314. [PMID: 23126717 DOI: 10.1063/1.4761894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S((1)D) + H(2) → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002)] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009)]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S((1)D).
Collapse
Affiliation(s)
- P G Jambrina
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Lara M, Chefdeville S, Hickson KM, Bergeat A, Naulin C, Launay JM, Costes M. Dynamics of the S(1D2)+HD(j=0) reaction at collision energies approaching the cold regime: a stringent test for theory. PHYSICAL REVIEW LETTERS 2012; 109:133201. [PMID: 23030086 DOI: 10.1103/physrevlett.109.133201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Indexed: 06/01/2023]
Abstract
We report integral cross sections for the S(1D2)+HD(j=0)→DS+H and HS+D reaction channels obtained through crossed-beam experiments reaching collision energies as low as 0.46 meV and from adiabatic time-independent quantum-mechanical calculations. While good overall agreement with experiment at energies above 10 meV is observed, neither the product channel branching ratio nor the low-energy resonancelike features in the HS+D channel can be theoretically reproduced. A nonadiabatic treatment employing highly accurate singlet and triplet potential energy surfaces is clearly needed to resolve the complex nature of the reaction dynamics.
Collapse
Affiliation(s)
- Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Hickson KM, Bergeat A. Low temperature kinetics of unstable radical reactions. Phys Chem Chem Phys 2012; 14:12057-69. [PMID: 22864404 DOI: 10.1039/c2cp41885a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in Earth and satellite based observations of molecules in interstellar environments and in planetary atmospheres have highlighted the lack of information regarding many important gas-phase formation mechanisms involving neutral species at low temperatures. Whilst significant progress has been made towards a better understanding of radical-molecule reactions in these regions, the inherent difficulties involved in the investigation of reactions between two unstable radical species have hindered progress in this area. This perspective article provides a brief review of the most common techniques applied to study radical-radical reactions below room temperature, before outlining the developments in our laboratory that have allowed us to extend such measurements to temperatures relevant to astrochemical environments. These developments will be discussed with particular emphasis on our recent investigations of the reactions of atomic nitrogen with diatomic radicals.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | | |
Collapse
|
25
|
Chefdeville S, Stoecklin T, Bergeat A, Hickson KM, Naulin C, Costes M. Appearance of low energy resonances in CO-para-H2 inelastic collisions. PHYSICAL REVIEW LETTERS 2012; 109:023201. [PMID: 23030157 DOI: 10.1103/physrevlett.109.023201] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 06/01/2023]
Abstract
We report on crossed-beam experiments and quantum-mechanical calculations performed on the CO(j=0) + H2(j=0) → CO(j=1) + H2(j=0) system. The experimental cross sections determined in the threshold region of the CO(j=0 → j=1) transition at 3.85 cm(-1) show resonance structures in good qualitative agreement with the theoretical ones. These results suggest that the potential energy surface which describes the CO-H2 van der Waals interaction should be reinvestigated for good quantitative agreement.
Collapse
Affiliation(s)
- Simon Chefdeville
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
| | | | | | | | | | | |
Collapse
|
26
|
Rationalizing the S(1D)+H2→SH(X2Π)+H reaction dynamics through a semi-classical capture model. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
|
28
|
Lara M, Jambrina PG, Varandas AJC, Launay JM, Aoiz FJ. On the role of dynamical barriers in barrierless reactions at low energies: S(1D) + H2. J Chem Phys 2011; 135:134313. [DOI: 10.1063/1.3644337] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Hankel M, Smith SC, Varandas AJC. Anatomy of the S(1D) + H2 reaction: the dynamics on two new potential energy surfaces from quantum dynamics calculations. Phys Chem Chem Phys 2011; 13:13645-55. [DOI: 10.1039/c1cp20127a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|