1
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Aoki K, Otsubo K, Yoshida Y, Kimura Y, Sugimoto K, Kitagawa H. Synthesis and Magnetic Properties of a Dimerized Trinuclear Ni String Complex, [Ni 6Cl 2(dpa) 8](I 5) 2·0.25I 2 (dpa - = 2,2'-Dipyridylamide Anion). Inorg Chem 2021; 60:16029-16034. [PMID: 34665611 DOI: 10.1021/acs.inorgchem.1c02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal string complexes, linearly aligned transition metal arrays coordinated with the multidentate organic ligands, have gained much attention both in unique electronic/structural properties and in potential applications as conductive molecular nanowires. Here we report on a dimerized NiII trinuclear complex, [Ni6Cl2(dpa)8](I5)2·0.25I2 (dpa- = 2,2'-dipyridylamide anion). X-ray structural analysis revealed that two trinuclear moieties are bridged by a Cl anion to form a dimerized string structure. This is the first example of two Ni string complexes that are connected. In the electronic absorption and Raman spectra, characteristic absorption bands and a vibration mode based on the dimer string structure were observed. In the solid state, dimer complexes align in one dimension in an MMMXMMMX (M = metal, X = halogen) manner, leading to the intra- and interdimer antiferromagnetic interactions.
Collapse
Affiliation(s)
- Kentaro Aoki
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuya Otsubo
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yojiro Kimura
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Abstract
The role of deuterium in disentangling key steps of the mechanisms of H2 activation by mimics of hydrogenases is presented. These studies have allowed to a better understanding of the mode of action of the natural enzymes and their mimics.
Collapse
Affiliation(s)
- Mar Gómez-Gallego
- Departamento de Química Orgánica I and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Facultad de Química
- Universidad Complutense
- 28040-Madrid
- Spain
| | - Miguel A. Sierra
- Departamento de Química Orgánica I and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Facultad de Química
- Universidad Complutense
- 28040-Madrid
- Spain
| |
Collapse
|
4
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
5
|
Zhang HT, Zhang MT. The Application of Pincer Ligand in Catalytic Water Splitting. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Tong L, Duan L, Zhou A, Thummel RP. First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213079] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Muraki N, Ishii K, Uchiyama S, Itoh SG, Okumura H, Aono S. Structural characterization of HypX responsible for CO biosynthesis in the maturation of NiFe-hydrogenase. Commun Biol 2019; 2:385. [PMID: 31646188 PMCID: PMC6802093 DOI: 10.1038/s42003-019-0631-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Several accessory proteins are required for the assembly of the metal centers in hydrogenases. In NiFe-hydrogenases, CO and CN- are coordinated to the Fe in the NiFe dinuclear cluster of the active center. Though these diatomic ligands are biosynthesized enzymatically, detail mechanisms of their biosynthesis remain unclear. Here, we report the structural characterization of HypX responsible for CO biosynthesis to assemble the active site of NiFe hydrogenase. CoA is constitutionally bound in HypX. Structural characterization of HypX suggests that the formyl-group transfer will take place from N10-formyl-THF to CoA to form formyl-CoA in the N-terminal domain of HypX, followed by decarbonylation of formyl-CoA to produce CO in the C-terminal domain though the direct experimental results are not available yet. The conformation of CoA accommodated in the continuous cavity connecting the N- and C-terminal domains will interconvert between the extended and the folded conformations for HypX catalysis.
Collapse
Affiliation(s)
- Norifumi Muraki
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Kentaro Ishii
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
| | - Susumu Uchiyama
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Satoru G. Itoh
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Hisashi Okumura
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| | - Shigetoshi Aono
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787 Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki 444-8585 Japan
| |
Collapse
|
8
|
Mohammed A, Abdul-Wahab MF, Hashim M, Omar AH, Md Reba MN, Muhamad Said MF, Soeed K, Alias SA, Smykla J, Abba M, Ibrahim Z. Biohydrogen Production by Antarctic Psychrotolerant Klebsiella sp. ABZ11. Pol J Microbiol 2019; 67:283-290. [PMID: 30451444 PMCID: PMC7255690 DOI: 10.21307/pjm-2018-033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Lower temperature biohydrogen production has always been attractive, due to the lower energy requirements. However, the slow metabolic rate of psychrotolerant biohydrogen-producing bacteria is a common problem that affects their biohydrogen yield. This study reports on the improved substrate synthesis and biohydrogen productivity by the psychrotolerant Klebsiella sp. strain ABZ11, isolated from Antarctic seawater sample. The isolate was screened for biohydrogen production at 30°C, under facultative anaerobic condition. The isolate is able to ferment glucose, fructose and sucrose with biohydrogen production rate and yield of 0.8 mol/l/h and 3.8 mol/g, respectively at 10 g/l glucose concentration. It also showed 74% carbohydrate uptake and 95% oxygen uptake ability, and a wide growth temperature range with optimum at 37°C. Klebsiella sp. ABZ11 has a short biohydrogen production lag phase, fast substrate uptake and is able to tolerate the presence of oxygen in the culture medium. Thus, the isolate has a potential to be used for lower temperature biohydrogen production process.
Collapse
Affiliation(s)
- Abdullahi Mohammed
- Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria ; Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | | | - Mazlan Hashim
- Geoscience and Digital Earth Centre (INSTeG), Universiti Teknologi Malaysia, Johor, Malaysia
| | - Abdul Hafidz Omar
- Sports Innovation Technology Centre (SITC), Universiti Teknologi Malaysia, Johor, Malaysia
| | - Mohd Nadzri Md Reba
- Geoscience and Digital Earth Centre (INSTeG), Universiti Teknologi Malaysia, Johor, Malaysia
| | | | - Kamaruzaman Soeed
- Sports Innovation Technology Centre (SITC), Universiti Teknologi Malaysia, Johor, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia ; National Antarctic Research Centre, Institute of Graduate Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Jerzy Smykla
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, USA ; Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Mustapha Abba
- Department of Microbiology, Bauchi State University Gadau, Bauchi, Nigeria
| | - Zaharah Ibrahim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
9
|
Bortolus M, Costantini P, Doni D, Carbonera D. Overview of the Maturation Machinery of the H-Cluster of [FeFe]-Hydrogenases with a Focus on HydF. Int J Mol Sci 2018; 19:E3118. [PMID: 30314343 PMCID: PMC6212873 DOI: 10.3390/ijms19103118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 01/01/2023] Open
Abstract
Hydrogen production in nature is performed by hydrogenases. Among them, [FeFe]-hydrogenases have a peculiar active site, named H-cluster, that is made of two parts, synthesized in different pathways. The cubane sub-cluster requires the normal iron-sulfur cluster maturation machinery. The [2Fe] sub-cluster instead requires a dedicated set of maturase proteins, HydE, HydF, and HydG that work to assemble the cluster and deliver it to the apo-hydrogenase. In particular, the delivery is performed by HydF. In this review, we will perform an overview of the latest knowledge on the maturation machinery of the H-cluster, focusing in particular on HydF.
Collapse
Affiliation(s)
- Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| | - Paola Costantini
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy.
| | - Davide Doni
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
10
|
Abstract
Obtaining abundant pure hydrogen by reduction of water has an important implication in the development of clean and renewable energy. Hence research focused on the development of non-noble metal based facile and energy efficient catalysts for proton reduction is on the rise. However, for practical utilization, it is necessary that these complexes function unabated in the presence of atmospheric oxygen and other common contaminants in abundant water sources. There has been very little activity towards the development of oxygen-tolerant hydrogen producing catalysts. This article aims to draw attention to this issue of oxygen sensitivity in the HER and highlights the development of a few air-stable HER catalysts (enzymatic as well as artificial) elaborating the challenges involved and the techniques discovered to overcome this significant deterrent to large-scale hydrogen production by electrolysis from abundant water sources.
Collapse
Affiliation(s)
- Biswajit Mondal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | | |
Collapse
|
11
|
Shi J, Shang S, Hu B, Chen D. Ruthenium NNN complexes with a 2‐hydroxypyridylmethylene fragment for transfer hydrogenation of ketones. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Shu Shang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
12
|
Shi J, Hu B, Chen X, Shang S, Deng D, Sun Y, Shi W, Yang X, Chen D. Synthesis, Reactivity, and Catalytic Transfer Hydrogenation Activity of Ruthenium Complexes Bearing NNN Tridentate Ligands: Influence of the Secondary Coordination Sphere. ACS OMEGA 2017; 2:3406-3416. [PMID: 31457662 PMCID: PMC6641270 DOI: 10.1021/acsomega.7b00410] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/03/2017] [Indexed: 05/14/2023]
Abstract
By the introduction of -OH group(s) into different position(s) of 6-(pyridin-2-ylmethyl)-2,2'-bipyridine, several NNN-type ligands were synthesized and then introduced to ruthenium (Ru) centers by reactions with RuCl2(PPh3)3. In the presence of PPh3 or CO, these ruthenium complexes reacted with NH4PF6 in CH2Cl2 or CH3OH to give a series of ionic products 5-9. The reaction of Ru(L2)(PPh3)Cl2 (2) with CO generated a neutral complex [Ru(L2)(CO)Cl2] (10). In the presence of CH3ONa, 10 was further converted into complex [Ru(L2)(HOCH3)(CO)Cl] (11), in which there was a methanol molecule coordinating with ruthenium, as suggested by density functional theory calculations. The catalytic transfer hydrogenation activity of all of these new bifunctional metal-ligand complexes was tested. Dichloride complex 2 exhibits best activity, whereas carbonyl complexes 10 and 11 are efficient for selectively reducing 5-hexen-2-one, suggesting different hydrogenation mechanisms. The results reveal the dramatic influence for the reactivity and catalytic activity of the secondary coordination sphere in transition metal complexes.
Collapse
Affiliation(s)
- Jing Shi
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bowen Hu
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiangyang Chen
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- Institute
of Chemistry, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shu Shang
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Danfeng Deng
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanan Sun
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Weiwei Shi
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinzheng Yang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Dafa Chen
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Hatazawa M, Yoshie N, Seino H. Reversible Hydride Transfer to N,N'-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase. Inorg Chem 2017; 56:8087-8099. [PMID: 28654277 DOI: 10.1021/acs.inorgchem.7b00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[Fe]-hydrogenase is a key enzyme involved in methanogenesis and facilitates reversible hydride transfer from H2 to N5,N10-methenyltetrahydromethanopterin (CH-H4MPT+). In this study, a reaction system was developed to model the enzymatic function of [Fe]-hydrogenase by using N,N'-diphenylimidazolinium cation (1+) as a structurally related alternative to CH-H4MPT+. In connection with the enzymatic mechanism via heterolytic cleavage of H2 at the single metal active site, several transition metal complex catalysts capable of such activation were utilized in the model system. Reduction of 1[BF4] to N,N'-diphenylimidazolidine (2) was achieved under 1 atm H2 at ambient temperature in the presence of an equimolar amount of NEt3 as a proton acceptor. The proposed catalytic pathways involved the generation of active hydride complexes and subsequent intermolecular hydride transfer to 1+. The reverse reaction was accomplished by treatment of 2 with HNMe2Ph+ as the proton source, where [(η5-C5Me5)Ir{(p-MeC6H4SO2)NCHPhCHPhNH}] was found to catalyze the formation of 1+ and H2 with high efficiency. These results are consistent with the fact that use of 2,6-lutidine in the forward reaction or 2,6-lutidinium in the reverse reaction resulted in incomplete conversion. By combining these reactions using the above Ir amido catalyst, the reversible hydride transfer interconverting 1+/H2 and 2/H+ was performed successfully. This system demonstrated the hydride-accepting and hydride-donating modes of biologically relevant N-heterocycles coupled with proton concentration. The influence of substituents on the forward and reverse reactivities was examined for the derivatives of 1+ and 2 bearing one para-substituted N-phenyl group.
Collapse
Affiliation(s)
- Masahiro Hatazawa
- Institute of Industrial Science, The University of Tokyo , Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo , Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hidetake Seino
- Faculty of Education and Human Studies, Akita University , Tegata-Gakuenmachi, Akita 010-8502, Japan
| |
Collapse
|
14
|
Hu B, Chen X, Gong D, Cui W, Yang X, Chen D. Reversible CO Dissociation of Tricarbonyl Iodide [Fe]-Hydrogenase Models Ligating Acylmethylpyridyl Ligands. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bowen Hu
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Xiangyang Chen
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Dawei Gong
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Wen Cui
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Xinzheng Yang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Dafa Chen
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| |
Collapse
|
15
|
Song LC, Xu KK, Han XF, Zhang JW. Synthetic and Structural Studies of 2-Acylmethyl-6-R-Difunctionalized Pyridine Ligand-Containing Iron Complexes Related to [Fe]-Hydrogenase. Inorg Chem 2016; 55:1258-69. [PMID: 26756374 DOI: 10.1021/acs.inorgchem.5b02490] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As active site models of [Fe]-hydrogenase, tridentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing complexes η(3)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(L1) (4, L1 = I; 5, SCN; 6, PhCS2) were prepared via the following multistep reactions: (i) etherification of 2-MeO2C-6-HOC5H3N with ClCH2OMe to give 2-MeO2C-6-MeOCH2OC5H3N (1), (ii) reduction of 1 with NaBH4 to give 2-HOCH2-6-MeOCH2OC5H3N (2), (iii) esterification of 2 with 4-toluenesulfonyl chloride to give 2-TsOCH2-6-MeOCH2OC5H3N (3), (iv) nucleophilic substitution of 3 with Na2Fe(CO)4 followed by treatment of the resulting Fe(0) intermediate Na[(2-CH2-6-MeOCH2OC5H3N)Fe(CO)4] (M1) with I2 to give complex 4, and (v) condensation of 4 with KSCN and PhCS2K to give complexes 5 and 6, respectively. In contrast to the preparation of complexes 4-6, bidentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing model complexes η(2)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(I)(L2) (7, L2 = PPh3; 8, Cy-C6H11NC) and η(2)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(L3) (9, L3 = 2-SC5H4N; 10, 8-SC9H6N) were prepared by ligand exchange reactions of 4 with PPh3, Cy-C6H11NC, 2-KSC5H4N, and 8-KSC9H6N, respectively. Particularly interesting is that the tridentate 2,6-bis(acylmethyl)pyridine- and 2-acylmethyl-6-arylthiomethylpyridine-containing model complexes η(3)-[2,6-(COCH2)2C5H3N]Fe(CO)2(L4) (11, L4 = PPh3; 12, CO) and η(3)-2-(COCH2-6-ArSCH2C5H3N)Fe(CO)2(ArS) (13, ArS = PhS; 14, 2-S-5-MeC4H2O) were obtained, unexpectedly, when 2,6-(TsOCH2)2C5H3N reacted with Na2Fe(CO)4 followed by treatment of the resulting mixture with ligands PPh3 and CO or disulfides (PhS)2 and (2-S-5-MeC4H2O)2. Reactions of ligand precursors 3 and 2,6-(TsOCH2)2C5H3N with Na2Fe(CO)4 were monitored by in situ IR spectroscopy, and the possible pathways for producing complexes 4 and 11-14 via intermediates Na[(2-CH2-6-MeOCH2OC5H3N)Fe(CO)4] (M1), Na[(2-CH2-6-TsOCH2C5H3N)Fe(CO)4] (M2), and (2-COCH2-6-CH2C5H3N)Fe(CO)3 (M3) are suggested. New compounds 1-14 were characterized by elemental analysis, spectroscopy, and, for some of them, X-ray crystallography.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Kai-Kai Xu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Xiao-Feng Han
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Ji-Wei Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| |
Collapse
|
16
|
Paul B, Chakrabarti K, Kundu S. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments. Dalton Trans 2016; 45:11162-71. [DOI: 10.1039/c6dt01961g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rare example of a highly active bifunctional Ru(ii) catalyst containing only one 2-hydroxypyridine (2-HP) unit is presented which exhibited exceptionally high catalytic activity in transfer hydrogenation of ketones and nitriles.
Collapse
Affiliation(s)
- Bhaskar Paul
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Kaushik Chakrabarti
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sabuj Kundu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
17
|
Shi J, Hu B, Gong D, Shang S, Hou G, Chen D. Ruthenium complexes bearing an unsymmetrical pincer ligand with a 2-hydroxypyridylmethylene fragment: active catalysts for transfer hydrogenation of ketones. Dalton Trans 2016; 45:4828-34. [DOI: 10.1039/c6dt00034g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis, reactivity and catalytic transfer hydrogenation activity of three metal–ligand cooperative ruthenium(ii) complexes (3–5) with a 2-hydroxypyridylmethylene fragment are reported.
Collapse
Affiliation(s)
- Jing Shi
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
| | - Bowen Hu
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
| | - Dawei Gong
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
| | - Shu Shang
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
| | - Guangfeng Hou
- Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
| | - Dafa Chen
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
- State Key Laboratory of Elemento-organic Chemistry
| |
Collapse
|
18
|
Liu YC, Yen TH, Chu KT, Chiang MH. Utilization of Non-Innocent Redox Ligands in [FeFe] Hydrogenase Modeling for Hydrogen Production. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1115397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
|
20
|
Zhao DW, Xu Y, Guo YW, Song HB, Tang LF. Synthesis and reactivity of (pyrazol-1-yl)acyl iron complexes. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Li C, Fu Z, Zhang X, Liu Y, Wang Y. Theoretical study of iron acyl complexes modeling the active site of [Fe]-hydrogenase: Solvation effects play a significant role. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Liu J, Zorin NA, Chen M, Qian DJ. Pd(II)-Directed Encapsulation of Hydrogenase within the Layer-by-Layer Multilayers of Carbon Nanotube Polyelectrolyte Used as a Heterogeneous Catalyst for Oxidation of Hydrogen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6546-6553. [PMID: 26010012 DOI: 10.1021/acs.langmuir.5b01376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A metal-directed assembling approach has been developed to encapsulate hydrogenase (H2ase) within a layer-by-layer (LBL) multilayer of carbon nanotube polyelectrolyte (MWNT-PVPMe), which showed efficient biocatalytic oxidation of H2 gas. The MWNT-PVPMe was prepared via a diazonium process and addition reactions with poly(4-vinylpyridine) (PVP) and methyl iodide (MeI). The covalently attached polymers and organic substituents in the polyelectrolyte comprised 60-70% of the total weight. The polyelectrolyte was then used as a substrate for H2ase binding to produce MWNT-PVPMe@H2ase bionanocomposites. X-ray photoelectron spectra revealed that the bionanocomposites included the elements of Br, S, C, N, O, I, Fe, and Ni, which confirmed that they were composed of MWNT-PVPMe and H2ase. Field emission transmission electron microscope images revealed that the H2ase was adsorbed on the surface of MWNT-PVPMe with the domains ranging from 20 to 40 nm. Further, with the use of the bionanocomposites as nanolinkers and Na2PdCl4 as connectors, the (Pd/MWNT-PVPMe@H2ase)n multilayers were constructed on the quartz and gold substrate surfaces by the Pd(II)-directed LBL assembling technique. Finally, the as-prepared LBL multilayers were used as heterogeneous catalysts for hydrogen oxidation with methyl viologen (MV(2+)) as an electron carrier. The dynamic processes for the reversible color change between blue-colored MV(+) and colorless MV(2+) (catalyzed by the LBL multilayers) were video recorded, which confirmed that the H2ase encapsulated within the present LBL multilayers was of much stronger stability and higher biocatalytic activity of H2 oxidation resulting in potential applications for the development of H2 biosensors and fuel cells.
Collapse
Affiliation(s)
- Jiang Liu
- †Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Nikolay A Zorin
- ‡Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Meng Chen
- †Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Dong-Jin Qian
- †Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
23
|
|
24
|
McSkimming A, Chan B, Bhadbhade MM, Ball GE, Colbran SB. Bio-Inspired Transition Metal-Organic Hydride Conjugates for Catalysis of Transfer Hydrogenation: Experiment and Theory. Chemistry 2014; 21:2821-34. [DOI: 10.1002/chem.201405129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 11/07/2022]
|
25
|
Kalz KF, Brinkmeier A, Dechert S, Mata RA, Meyer F. Functional Model for the [Fe] Hydrogenase Inspired by the Frustrated Lewis Pair Concept. J Am Chem Soc 2014; 136:16626-34. [DOI: 10.1021/ja509186d] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kai F. Kalz
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Alexander Brinkmeier
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute
of Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse
6, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys 2014; 544:142-52. [PMID: 24036122 PMCID: PMC3946514 DOI: 10.1016/j.abb.2013.09.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
This review describes the functions, structures, and mechanisms of nine nickel-containing enzymes: glyoxalase I, acireductone dioxygenase, urease, superoxide dismutase, [NiFe]-hydrogenase, carbon monoxide dehydrogenase, acetyl-coenzyme A synthase/decarbonylase, methyl-coenzyme M reductase, and lactate racemase. These enzymes catalyze their various chemistries by using metallocenters of diverse structures, including mononuclear nickel, dinuclear nickel, nickel-iron heterodinuclear sites, more complex nickel-containing clusters, and nickel-tetrapyrroles. Selected other enzymes are active with nickel, but the physiological relevance of this metal specificity is unclear. Additional nickel-containing proteins of undefined function have been identified.
Collapse
Affiliation(s)
- Jodi L Boer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Scott B Mulrooney
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
Hu B, Chen D, Hu X. Synthesis and Reactivity of Mononuclear Iron Models of [Fe]-Hydrogenase that Contain an Acylmethylpyridinol Ligand. Chemistry 2014; 20:1677-82. [DOI: 10.1002/chem.201304290] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Indexed: 11/06/2022]
|
29
|
Engineering Hydrogenases for H2 Production: Bolts and Goals. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
|
31
|
Zhang X, Zhou Z, Yan H. Metal–metal redox synergy in selective B–H activation of ortho-carborane-9,12-dithiolate. Chem Commun (Camb) 2014; 50:13077-80. [DOI: 10.1039/c4cc06171c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–metal redox synergy is introduced, for the first time, for B–H functionalization of inert dicarba-dodecaboranes under mild conditions in high yields.
Collapse
Affiliation(s)
- Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing, China
| | - Zhiwen Zhou
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing, China
| |
Collapse
|
32
|
Song LC, Hu FQ, Wang MM, Xie ZJ, Xu KK, Song HB. Synthesis, structural characterization, and some properties of 2-acylmethyl-6-ester group-difunctionalized pyridine-containing iron complexes related to the active site of [Fe]-hydrogenase. Dalton Trans 2014; 43:8062-71. [DOI: 10.1039/c4dt00335g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first four acylmethyl/ester group-disubstituted pyridine-containing models for [Fe]-hydrogenase have been synthesized and crystallographically characterized.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Fu-Qiang Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Miao-Miao Wang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Zhao-Jun Xie
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Kai-Kai Xu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Hai-Bin Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| |
Collapse
|
33
|
Finkelmann AR, Senn HM, Reiher M. Hydrogen-activation mechanism of [Fe] hydrogenase revealed by multi-scale modeling. Chem Sci 2014. [DOI: 10.1039/c4sc01605j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A complete atomistic model of [Fe] hydrogenase reveals important details of its mechanism.
Collapse
Affiliation(s)
| | - Hans Martin Senn
- WestCHEM and School of Chemistry
- University of Glasgow
- Glasgow G12 8QQ
- UK
| | - Markus Reiher
- Laboratory of Physical Chemistry
- ETH Zürich
- Zürich
- Switzerland
| |
Collapse
|
34
|
Gubler J, Finkelmann AR, Reiher M. Theoretical 57Fe Mössbauer Spectroscopy for Structure Elucidation of [Fe] Hydrogenase Active Site Intermediates. Inorg Chem 2013; 52:14205-15. [DOI: 10.1021/ic4021349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Joël Gubler
- Laboratorium
für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10 8093 Zürich, Switzerland
| | - Arndt R. Finkelmann
- Laboratorium
für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium
für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10 8093 Zürich, Switzerland
| |
Collapse
|
35
|
Wang H, Liu X. Intramolecular hydrogen bonding interaction, a mechanism for the bridging linkages to exert electronic influence on diiron models of [FeFe]-hydrogenase. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Lie TJ, Costa KC, Pak D, Sakesan V, Leigh JA. Phenotypic evidence that the function of the [Fe]-hydrogenase Hmd inMethanococcus maripaludisrequires sevenhcg(hmdco-occurring genes) but nothmdII. FEMS Microbiol Lett 2013; 343:156-60. [DOI: 10.1111/1574-6968.12141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Thomas J. Lie
- Department of Microbiology; University of Washington; Seattle; WA; USA
| | - Kyle C. Costa
- Department of Microbiology; University of Washington; Seattle; WA; USA
| | - Daniel Pak
- Department of Microbiology; University of Washington; Seattle; WA; USA
| | - Varun Sakesan
- Department of Microbiology; University of Washington; Seattle; WA; USA
| | - John A. Leigh
- Department of Microbiology; University of Washington; Seattle; WA; USA
| |
Collapse
|
37
|
Schultz KM, Chen D, Hu X. [Fe]-Hydrogenase and Models that Contain IronAcyl Ligation. Chem Asian J 2013; 8:1068-75. [DOI: 10.1002/asia.201300232] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Indexed: 11/06/2022]
|
38
|
Hu B, Chen D, Hu X. Reversible Dimerization of Mononuclear Models of [Fe]-Hydrogenase. Chemistry 2013; 19:6221-4. [DOI: 10.1002/chem.201300495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Indexed: 11/12/2022]
|
39
|
Turrell PJ, Hill AD, Ibrahim SK, Wright JA, Pickett CJ. Ferracyclic carbamoyl complexes related to the active site of [Fe]-hydrogenase. Dalton Trans 2013; 42:8140-6. [DOI: 10.1039/c3dt50642h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
|
41
|
Bar-Even A, Noor E, Flamholz A, Milo R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1039-47. [PMID: 23123556 DOI: 10.1016/j.bbabio.2012.10.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/05/2012] [Accepted: 10/25/2012] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a promising approach that enables the biological production of commodities, like fuels and fine chemicals, using renewably produced electricity. Several techniques have been proposed to mediate the transfer of electrons from the cathode to living cells. Of these, the electroproduction of formate as a mediator seems especially promising: formate is readily soluble, of low toxicity and can be produced at relatively high efficiency and at reasonable current density. While organisms that are capable of formatotrophic growth, i.e. growth on formate, exist naturally, they are generally less suitable for bulk cultivation and industrial needs. Hence, it may be helpful to engineer a model organism of industrial relevance, such as E. coli, for growth on formate. There are numerous metabolic pathways that can potentially support formatotrophic growth. Here we analyze these diverse pathways according to various criteria including biomass yield, thermodynamic favorability, chemical motive force, kinetics and the practical challenges posed by their expression. We find that the reductive glycine pathway, composed of the tetrahydrofolate system, the glycine cleavage system, serine hydroxymethyltransferase and serine deaminase, is a promising candidate to support electrosynthesis in E. coli. The approach presented here exemplifies how combining different computational approaches into a systematic analysis methodology provides assistance in redesigning metabolism. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Arren Bar-Even
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
42
|
Long L, Xiao Z, Zampella G, Wei Z, De Gioia L, Liu X. The reactions of pyridinyl thioesters with triiron dodecacarbonyl: their novel diiron carbonyl complexes and mechanistic investigations. Dalton Trans 2012; 41:9482-92. [PMID: 22751866 DOI: 10.1039/c2dt30798g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of Fe(3)(CO)(12) with pyridinyl thioester ligand PyCH(2)SCOCH(3) (L(1), Py = pyridin-2-yl) produced complex, [Fe(2)(κ-COCH(3))(μ-SCH(2)Py)(CO)(5)] (1) (PyCH(2)S = pyridin-2-ylmethanethiolate). When complex 1 reacted with PPh(3), a monosubstituted complex, [Fe(2)(κ-COCH(3))(μ-SCH(2)Py)(CO)(4)PPh(3)] (2), was derived. Reaction of the same precursor with analogous thioester ligand PyCH(2)SCOPy (L(2)) generated three novel diiron complexes, [Fe(2)(κ-Py)(μ-SCH(2)Py)(CO)(5)] (3), [Fe(2)(κ-Py)'(μ-SCH(2)Py)(CO)(5)] (4), and [Fe(2)(κ-Py)(μ-SCH(2)Py)(CO)(6)] (5). Complexes 3 and 4 are structural isomers. Complex 5 could be converted into complex 4 but the conversion from complex 5 to the isomer 3 was not observed. All the five complexes were fully characterised using FTIR, NMR, and other techniques. Their structures were determined using X-ray single crystal diffraction analysis. The oxidative formation of complexes 1, 3, 4, and 5 involved C-S and/or C-C bonds cleavages. To probe possible mechanisms for these cleavages, DFT calculations were performed. From the calculations, viable reaction pathways leading to the formation of all the isolated products were delineated. The results of the theoretic calculations also allowed rationalisation of the experimental observations.
Collapse
Affiliation(s)
- Li Long
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | | | | | | | | | | |
Collapse
|
43
|
Kovacevic LS, Idziak C, Markevicius A, Scullion C, Corr MJ, Kennedy AR, Tuttle T, Murphy JA. Superelectrophilic Amidine Dications: Dealkylation by Triflate Anion. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luka S. Kovacevic
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Christopher Idziak
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Augustinas Markevicius
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Callum Scullion
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Michael J. Corr
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Alan R. Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Tell Tuttle
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - John A. Murphy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| |
Collapse
|
44
|
Leidel N, Chernev P, Havelius KGV, Schwartz L, Ott S, Haumann M. Electronic Structure of an [FeFe] Hydrogenase Model Complex in Solution Revealed by X-ray Absorption Spectroscopy Using Narrow-Band Emission Detection. J Am Chem Soc 2012; 134:14142-57. [DOI: 10.1021/ja304970p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nils Leidel
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Petko Chernev
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kajsa G. V. Havelius
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lennart Schwartz
- Department of Chemistry, Uppsala University, Ångström Laboratories,
75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry, Uppsala University, Ångström Laboratories,
75120 Uppsala, Sweden
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
45
|
Kovacevic LS, Idziak C, Markevicius A, Scullion C, Corr MJ, Kennedy AR, Tuttle T, Murphy JA. Superelectrophilic Amidine Dications: Dealkylation by Triflate Anion. Angew Chem Int Ed Engl 2012; 51:8516-9. [DOI: 10.1002/anie.201202990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/12/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Luka S. Kovacevic
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Christopher Idziak
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Augustinas Markevicius
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Callum Scullion
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Michael J. Corr
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Alan R. Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - Tell Tuttle
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| | - John A. Murphy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL (United Kingdom)
| |
Collapse
|
46
|
Song LC, Xie ZJ, Wang MM, Zhao GY, Song HB. Biomimetic Models for the Active Site of [Fe]Hydrogenase Featuring an Acylmethyl(hydroxymethyl)pyridine Ligand. Inorg Chem 2012; 51:7466-8. [DOI: 10.1021/ic301146u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Cheng Song
- State Key Laboratory of Elemento−Organic
Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao-Jun Xie
- State Key Laboratory of Elemento−Organic
Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Miao-Miao Wang
- State Key Laboratory of Elemento−Organic
Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Gao-Yu Zhao
- State Key Laboratory of Elemento−Organic
Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Hai-Bin Song
- State Key Laboratory of Elemento−Organic
Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
47
|
Chen D, Scopelliti R, Hu X. Reversible Protonation of a Thiolate Ligand in an [Fe]-Hydrogenase Model Complex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107634] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Chen D, Scopelliti R, Hu X. Reversible Protonation of a Thiolate Ligand in an [Fe]-Hydrogenase Model Complex. Angew Chem Int Ed Engl 2012; 51:1919-21. [DOI: 10.1002/anie.201107634] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Indexed: 11/07/2022]
|
49
|
|
50
|
Zlatogorsky S, Ingleson MJ. Synthesis and solvent dependent reactivity of chelating bis-N-heterocyclic carbene complexes of Fe(II) hydrides. Dalton Trans 2012; 41:2685-93. [DOI: 10.1039/c2dt12048h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|