1
|
Bortolamiol E, Botter E, Cavarzerani E, Mauceri M, Demitri N, Rizzolio F, Visentin F, Scattolin T. Rational Design of Palladium(II) Indenyl and Allyl Complexes Bearing Phosphine and Isocyanide Ancillary Ligands with Promising Antitumor Activity. Molecules 2024; 29:345. [PMID: 38257258 PMCID: PMC10819880 DOI: 10.3390/molecules29020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Eleonora Botter
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Matteo Mauceri
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy; (E.B.); (E.B.); (E.C.); (M.M.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università Degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Bortolamiol E, Fama F, Zhang Z, Demitri N, Cavallo L, Caligiuri I, Rizzolio F, Scattolin T, Visentin F. Cationic palladium(II)-indenyl complexes bearing phosphines as ancillary ligands: synthesis, and study of indenyl amination and anticancer activity. Dalton Trans 2022; 51:11135-11151. [PMID: 35801510 DOI: 10.1039/d2dt01821g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of palladium(II) indenyl derivatives and their applications are topics relatively less studied, though in recent times these compounds have been used as pre-catalysts able to promote challenging cross-coupling processes. Herein, we propose the first systematic study concerning the nucleophilic attack on the palladium(II) coordinated indenyl fragment and, for this purpose, we have prepared a library of new Pd-indenyl complexes bearing mono- or bidentate phosphines as spectator ligands, developing specific synthetic strategies. All novel compounds are thoroughly characterized, highlighting that the indenyl ligand presents always a hapticity intermediate between η3 and η5. Secondary amines have been chosen as nucleophiles for the present study and indenyl amination has been monitored by UV-Vis and NMR spectroscopies, deriving a second order rate law, with dependence on both complex and amine concentrations. The rate-determining step of the process is the initial attack of the amine to the coordinated indenyl fragment, and this conclusion has been supported also by DFT calculations. The determination of second order rate constants has allowed us to assess the impact of the phosphine ligands on the kinetics of the process and identify the steric and electronic descriptors most suitable for predicting the reactivity of these systems. Finally, in vitro tests have proven that these organometallic compounds promote antiproliferative activity towards ovarian cancer cells better than cisplatin and possibly by adopting a different mechanism of action.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Francesco Fama
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Ziyun Zhang
- Department KAUST Catalysis Centre, KCC, King Abdullah University of Science and Technology, Thuwal-23955-6900, Saudi Arabia
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Luigi Cavallo
- Department KAUST Catalysis Centre, KCC, King Abdullah University of Science and Technology, Thuwal-23955-6900, Saudi Arabia
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy.
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy. .,Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy.
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| |
Collapse
|
3
|
Heberle M, Legendre S, Wannenmacher N, Weber M, Frey W, Peters R. Bispalladacycle Catalyzed Nucleophilic Enantioselective Allylation of Aldehydes by Allylstannanes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Heberle
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | - Sarah Legendre
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | - Nick Wannenmacher
- University of Stuttgart: Universitat Stuttgart Chemistry Pfaffenwaldring 55 D-70569 Stuttgart GERMANY
| | - Manuel Weber
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | - Wolfgang Frey
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55Raum 06.301 70569 Stuttgart GERMANY
| |
Collapse
|
4
|
Scattolin T, Bortolamiol E, Visentin F, Palazzolo S, Caligiuri I, Perin T, Canzonieri V, Demitri N, Rizzolio F, Togni A. Palladium(II)-η 3 -Allyl Complexes Bearing N-Trifluoromethyl N-Heterocyclic Carbenes: A New Generation of Anticancer Agents that Restrain the Growth of High-Grade Serous Ovarian Cancer Tumoroids. Chemistry 2020; 26:11868-11876. [PMID: 32368809 DOI: 10.1002/chem.202002199] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 01/14/2023]
Abstract
The first palladium organometallic compounds bearing N-trifluoromethyl N-heterocyclic carbenes have been synthesized. These η3 -allyl complexes are potent antiproliferative agents against different cancer lines (for the most part, IC50 values fall in the range 0.02-0.5 μm). By choosing 1,3,5-triaza-7-phosphaadamantane (PTA) as co-ligand, we can improve the selectivity toward tumor cells, whereas the introduction of 2-methyl substituents generally reduces the antitumor activity slightly. A series of biochemical assays, aimed at defining the cellular targets of these palladium complexes, has shown that mitochondria are damaged before DNA, thus revealing a behavior substantially different from that of cisplatin and its derivatives. We assume that the specific mechanism of action of these organometallic compounds involves nucleophilic attack on the η3 -allyl fragment. The effectiveness of a representative complex, 4 c, was verified on ovarian cancer tumoroids derived from patients. The results are promising: unlike carboplatin, our compound turned out to be very active and showed a low toxicity toward normal liver organoids.
Collapse
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Enrica Bortolamiol
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Stefano Palazzolo
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy.,Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy.,Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
5
|
Scattolin T, Bortolamiol E, Caligiuri I, Rizzolio F, Demitri N, Visentin F. Synthesis and comparative study of the anticancer activity of η3-allyl palladium(II) complexes bearing N-heterocyclic carbenes as ancillary ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Scattolin T, Bortolamiol E, Rizzolio F, Demitri N, Visentin F. Allyl palladium complexes bearing carbohydrate‐based
N
‐heterocyclic carbenes: Anticancer agents for selective and potent
in vitro
cytotoxicity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry Ghent University Krijgslaan 281 (S‐3) Ghent 9000 Belgium
| | - Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
- Pathology unit Centro di Riferimento Oncologico di Aviano (CRO) IRCCS via F. Gallini 2 Aviano 33081 Italy
| | - Nicola Demitri
- Hard X‐ray Diffraction Beamlines Elettra Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park, Basovizza Trieste 34149 Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
| |
Collapse
|
7
|
Synthesis, Characterization, Solution Behavior and Theoretical Studies of Pd(II) Allyl Complexes with 2-Phenyl-3H-indoles as Ligands. Catalysts 2019. [DOI: 10.3390/catal9100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The study of the reactivity of three 2-phenyl-3H-indole ligands of general formulae C8H3N-2-(C6H4-4-R1)-3-NOMe-5-R2 (1) [with R1 = H, R2 = OMe (a); R1 = R2 = H (b) or R1 = Cl, R2 = H (c)] with [Pd(η3-1-R3C3H4)(μ-Cl)]2 (R3 = H or Ph) has allowed us to isolate two sets of new Pd(II)-allyl complexes of general formulae [Pd(η3-1-R3C3H4)(1)Cl] {R3 = H (2) or Ph (3)}. Compounds 2a–2c and 3a–3c were characterized by elemental analyses, mass spectrometry and IR spectroscopy. The crystal structures of 2a, 3a and 3b were also determined by X-ray diffraction. 1H-NMR studies reveal the coexistence of two (for 2a–2c) or three (for 3a–3c) isomeric forms in CD2Cl2 solutions at 182 K. Additional studies on the catalytic activity of mixtures containing [Pd(η3-C3H5)(μ-Cl)]2 and the parent ligand (1a–1c) in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with sodium diethyl 2-methylmalonate as well as the stoichiometric reaction between compounds 3a and 3c with the nucleophile reveal that in both cases the formation of the linear trans- derivative is strongly preferred over the branched product. Computational studies at a DFT level on compound 3a allowed us to compare the relative stability of their isomeric forms present in solution and to explain the regioselectivity of the catalytic and stoichiometric processes.
Collapse
|
8
|
Wu F, Wang H, Chen W. Synthesis and characterization of palladium amido complexes containing pincer CNO ligands through nitrene insertion. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Feifei Wu
- Department of Chemistry; Zhejiang University; Yuquan Campus Hangzhou 310007 China
| | - Huanhong Wang
- Department of Chemistry; Zhejiang University; Yuquan Campus Hangzhou 310007 China
| | - Wanzhi Chen
- Department of Chemistry; Zhejiang University; Yuquan Campus Hangzhou 310007 China
| |
Collapse
|
9
|
Taakili R, Lepetit C, Duhayon C, Valyaev DA, Lugan N, Canac Y. Palladium(ii) pincer complexes of a C,C,C-NHC, diphosphonium bis(ylide) ligand. Dalton Trans 2019; 48:1709-1721. [DOI: 10.1039/c8dt04316g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The preparation, characterization, and reactivity of Pd(ii) complexes of the C,C,C-NHC, diphosphonium bis(ylide) pincer ligand of LX2-type are here described.
Collapse
Affiliation(s)
| | | | | | | | - Noël Lugan
- LCC-CNRS
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Yves Canac
- LCC-CNRS
- Université de Toulouse
- CNRS
- Toulouse
- France
| |
Collapse
|
10
|
Scattolin T, Caligiuri I, Canovese L, Demitri N, Gambari R, Lampronti I, Rizzolio F, Santo C, Visentin F. Synthesis of new allyl palladium complexes bearing purine-based NHC ligands with antiproliferative and proapoptotic activities on human ovarian cancer cell lines. Dalton Trans 2018; 47:13616-13630. [PMID: 30207339 DOI: 10.1039/c8dt01831f] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of new palladium allyl complexes bearing purine-based carbenes derived from caffeine, theophylline and theobromine have been prepared and characterized by NMR spectroscopy, and elemental analysis and in two cases by single crystal X-ray diffraction. The cytotoxic and proapoptotic activities of compounds have been determined in vitro on human ovarian cancer A2780 and SKOV-3 cell lines. These experiments have shown that the palladium-allyl fragment induces a general cytotoxicity, but the choice of the supporting ligands is of paramount importance for achieving the best results. In particular complexes 4c, 4d and 5d exhibit a higher antiproliferative effect (IC50: 0.09, 0.81 and 0.85 μM respectively) than cisplatin (IC50: 1.5 μM) on A2780 cells, and 4d (IC50: 1.7 μM vs. 5.94 μM) on SKOV-3 cell line. Moreover in many cases it has been proved that the cytotoxicity of our complexes is associated with the induction of apoptosis.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Beillard A, Bantreil X, Métro TX, Martinez J, Lamaty F. Mechanochemistry for facilitated access to N,N-diaryl NHC metal complexes. NEW J CHEM 2017. [DOI: 10.1039/c6nj02895k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A solvent-free synthesis of NHC–silver, gold, copper and palladium complexes in a ball-mill was achieved.
Collapse
Affiliation(s)
- Audrey Beillard
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Thomas-Xavier Métro
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
12
|
Synthesis, characterization and a reactivity study of some allyl palladium complexes bearing bidentate hemi-labile carbene or mixed carbene/PPh3 ligands. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.08.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Alam K, Kim SM, Kim DJ, Park JK. Development of Structurally Diverse N-Heterocyclic Carbene LigandsviaPalladium-Copper-Catalyzed Decarboxylative Arylation of Pyrazolo[1,5-a]pyridine-3-carboxylic Acid. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Khyarul Alam
- Department of Chemistry and Institute of Functional Materials; Pusan National University; Busan 609-735 Korea
| | - Seong Min Kim
- Department of Chemistry and Institute of Functional Materials; Pusan National University; Busan 609-735 Korea
| | - Do Joong Kim
- Department of Chemistry and Institute of Functional Materials; Pusan National University; Busan 609-735 Korea
| | - Jin Kyoon Park
- Department of Chemistry and Institute of Functional Materials; Pusan National University; Busan 609-735 Korea
| |
Collapse
|
14
|
Canovese L, Santo C, Scattolin T, Visentin F, Bertolasi V. Synthesis and characterization of palladacyclopentadiene complexes with N-heterocyclic carbene ligands. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Walker WK, Kay BM, Michaelis SA, Anderson DL, Smith SJ, Ess DH, Michaelis DJ. Origin of Fast Catalysis in Allylic Amination Reactions Catalyzed by Pd–Ti Heterobimetallic Complexes. J Am Chem Soc 2015; 137:7371-8. [DOI: 10.1021/jacs.5b02428] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Whitney K. Walker
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Benjamin M. Kay
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Scott A. Michaelis
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Diana L. Anderson
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Stacey J. Smith
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Daniel H. Ess
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - David J. Michaelis
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
16
|
Philipova I, Stavrakov G, Vassilev N, Nikolova R, Shivachev B, Dimitrov V. Cytisine as a scaffold for ortho-diphenylphosphinobenzenecarboxamide ligands for Pd-catalyzed asymmetric allylic alkylation. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Walker WK, Anderson DL, Stokes RW, Smith SJ, Michaelis DJ. Allylic Aminations with Hindered Secondary Amine Nucleophiles Catalyzed by Heterobimetallic Pd–Ti Complexes. Org Lett 2015; 17:752-5. [DOI: 10.1021/acs.orglett.5b00058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Whitney K. Walker
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Diana L. Anderson
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ryjul W. Stokes
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Stacey J. Smith
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - David J. Michaelis
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
18
|
Canovese L, Visentin F, Santo C. Reactivity of palladium olefin complexes with heteroditopic NHC–pyridine as spectator ligand toward olefin exchange. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Synthesis of novel palladium allyl complexes bearing heteroditopic NHC–S ligands. Kinetic study on the carbene exchange between bis-carbene palladium allyl complexes. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Budagumpi S, Haque RA, Salman AW. Stereochemical and structural characteristics of single- and double-site Pd(II)–N-heterocyclic carbene complexes: Promising catalysts in organic syntheses ranging from CC coupling to olefin polymerizations. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Canovese L, Visentin F, Levi C, Santo C, Bertolasi V. Facile synthesis and reactivity study of mixed phosphane–isocyanide Pd(II) and Pd(0) complexes. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|