1
|
Wang Z, Han D, Wang H, Zheng M, Xu Y, Zhang H. Organic Semiconducting Nanoparticles for Biosensor: A Review. BIOSENSORS 2023; 13:bios13040494. [PMID: 37185569 PMCID: PMC10136359 DOI: 10.3390/bios13040494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Highly bio-compatible organic semiconductors are widely used as biosensors, but their long-term stability can be compromised due to photo-degradation and structural instability. To address this issue, scientists have developed organic semiconductor nanoparticles (OSNs) by incorporating organic semiconductors into a stable framework or self-assembled structure. OSNs have shown excellent performance and can be used as high-resolution biosensors in modern medical and biological research. They have been used for a wide range of applications, such as detecting small biological molecules, nucleic acids, and enzyme levels, as well as vascular imaging, tumor localization, and more. In particular, OSNs can simulate fine particulate matters (PM2.5, indicating particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) and can be used to study the biodistribution, clearance pathways, and health effects of such particles. However, there are still some problems that need to be solved, such as toxicity, metabolic mechanism, and fluorescence intensity. In this review, based on the structure and design strategies of OSNs, we introduce various types of OSNs-based biosensors with functional groups used as biosensors and discuss their applications in both in vitro and in vivo tracking. Finally, we also discuss the design strategies and potential future trends of OSNs-based biosensors. This review provides a theoretical scaffold for the design of high-performance OSNs-based biosensors and highlights important trends and future directions for their development and application.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| | - Meng Zheng
- R&D Center of Polymer Materials, Qingdao Haiwan Science and Technology Industry Research Institute Co., Ltd. (HWSTI), Qingdao Haiwan Chemistry Co., Ltd. (QHCC), Qingdao, 266061, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
2
|
Uto K, Arakawa CK, DeForest CA. Next-Generation Biomaterials for Culture and Manipulation of Stem Cells. Cold Spring Harb Perspect Biol 2020; 12:a035691. [PMID: 31843993 PMCID: PMC7461762 DOI: 10.1101/cshperspect.a035691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stem cell fate decisions are informed by physical and chemical cues presented within and by the extracellular matrix. Despite the generally attributed importance of extracellular cues in governing self-renewal, differentiation, and collective behavior, knowledge gaps persist with regard to the individual, synergistic, and competing effects that specific physiochemical signals have on cell function. To better understand basic stem cell biology, as well as to expand opportunities in regenerative medicine and tissue engineering, a growing suite of customizable biomaterials has been developed. These next-generation cell culture materials offer user-defined biochemical and biomechanical properties, increasingly in a manner that can be controlled in time and 3D space. This review highlights recent innovations in this regard, focusing on advances to culture and maintain stemness, direct fate, and to detect stem cell function using biomaterial-based strategies.
Collapse
Affiliation(s)
- Koichiro Uto
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0044, Japan
| | - Christopher K Arakawa
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
3
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
4
|
Han Y, Chen T, Li Y, Chen L, Wei L, Xiao L. Single-Particle Enumeration-Based Sensitive Glutathione S-Transferase Assay with Fluorescent Conjugated Polymer Nanoparticle. Anal Chem 2019; 91:11146-11153. [DOI: 10.1021/acs.analchem.9b01849] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yameng Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianyu Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yiliang Li
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Langxing Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lin Wei
- Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Wang X, Guo T, Chen J, Li X, Zhou Y, Pan Z. Covalent and selective immobilization of GST fusion proteins with fluorophosphonate-based probes. Chem Commun (Camb) 2018. [DOI: 10.1039/c7cc08888d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophosphonate probes covalently immobilize proteins onto solid support by reacting with tyrosine 111 in the GST tag.
Collapse
Affiliation(s)
- Xiafeng Wang
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Tianlin Guo
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Jiahui Chen
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Xiaofeng Li
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Yiqing Zhou
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School
- Peking University Xili University Town
| |
Collapse
|
6
|
Fisher SA, Baker AEG, Shoichet MS. Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy. J Am Chem Soc 2017; 139:7416-7427. [PMID: 28481537 DOI: 10.1021/jacs.7b00513] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogels are used in a wide variety of biomedical applications including tissue engineering, biomolecule delivery, cell delivery, and cell culture. These hydrogels are often designed with a specific biological function in mind, requiring the chemical incorporation of bioactive factors to either mimic extracellular matrix or to deliver a payload to diseased tissue. Appropriate synthetic techniques to ligate bioactive factors, such as peptides and proteins, onto hydrogels are critical in designing materials with biological function. Here, we outline strategies for peptide and protein immobilization. We specifically focus on click chemistry, enzymatic ligation, and affinity binding for transient immobilization. Protein modification strategies have shifted toward site-specific modification using unnatural amino acids and engineered site-selective amino acid sequences to preserve both activity and structure. The selection of appropriate protein immobilization strategies is vital to engineering functional hydrogels. We provide insight into chemistry that balances the need for facile reactions while maintaining protein bioactivity or desired release.
Collapse
Affiliation(s)
- Stephanie A Fisher
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| | - Alexander E G Baker
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
7
|
Chang L, He X, Chen L, Zhang Y. A novel fluorescent turn-on biosensor based on QDs@GSH-GO fluorescence resonance energy transfer for sensitive glutathione S-transferase sensing and cellular imaging. NANOSCALE 2017; 9:3881-3888. [PMID: 28256653 DOI: 10.1039/c6nr09944k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel fluorescent turn-on biosensor based on fluorescence resonance energy transfer (FRET) from GSH functionalized Mn-doped ZnS QDs to graphene oxide (GO) was constructed to determine glutathione S-transferases (GSTs) in live cells and human urine. The QDs@GSH is adsorbed on the GO surface via hydrogen bonding interaction between the GSH on the surface of QDs@GSH and GO, and as a result, fluorescence quenching of the QDs@GSH takes place because of FRET. The FRET efficiency from QDs@GSH to GO was calculated to be 86.3%. However, in the presence of GSTs, the FRET process could be inhibited by the specific interaction between the GSH on the surface of QDs@GSH and GSTs, which would keep the QDs@GSH far away from the GO surface, leading to the recovery of the fluorescence. The proposed sensor exhibited high sensitivity, selectivity, and excellent specificity in the buffer, live cells and human urine for the detection of GSTs. Under the physiological conditions (pH 7.4), dissociation constants and the detection limit of GST and ATP6 V1F (a GST-tagged protein) were estimated to be 8.0 × 10-9 M, 2.1 × 10-10 M and 3.5 × 10-9 M, 7.2 × 10-11 M, respectively. The presented method has been successfully utilized for the determination of the GSTs in live cells and human urine without any complicated pretreatment and the recovery was in the range of 80%-90%.
Collapse
Affiliation(s)
- Lifang Chang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Xiwen He
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Langxing Chen
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Yukui Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China. and Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Zhou Y, Guo T, Tang G, Wu H, Wong NK, Pan Z. Site-Selective Protein Immobilization by Covalent Modification of GST Fusion Proteins. Bioconjug Chem 2014; 25:1911-5. [DOI: 10.1021/bc500347b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yiqing Zhou
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| | - Tianlin Guo
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| | - Guanghui Tang
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| | - Hui Wu
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| | - Nai-Kei Wong
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhengying Pan
- Key
Laboratory of Chemical Genomics, Key Laboratory of Structural Biology,
School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Xili University Town, PKU Campus, Shenzhen 518055, China
| |
Collapse
|
9
|
Gatterdam V, Ramadass R, Stoess T, Fichte MAH, Wachtveitl J, Heckel A, Tampé R. Three-Dimensional Protein Networks Assembled by Two-Photon Activation. Angew Chem Int Ed Engl 2014; 53:5680-4. [DOI: 10.1002/anie.201309930] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/23/2014] [Indexed: 12/16/2022]
|
10
|
Gatterdam V, Ramadass R, Stoess T, Fichte MAH, Wachtveitl J, Heckel A, Tampé R. Dreidimensionale Proteinnetzwerke durch Zwei-Photonen- Aktivierung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Voelker AE, Viswanathan R. Synthesis of a Suite of Bioorthogonal Glutathione S-Transferase Substrates and Their Enzymatic Incorporation for Protein Immobilization. J Org Chem 2013; 78:9647-58. [DOI: 10.1021/jo401278x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alden E. Voelker
- Department of Chemistry, Case Western Reserve University, Millis Science Center: Rm
216, 2074 Adelbert Road, Cleveland, Ohio 44106-7078, United States
| | - Rajesh Viswanathan
- Department of Chemistry, Case Western Reserve University, Millis Science Center: Rm
216, 2074 Adelbert Road, Cleveland, Ohio 44106-7078, United States
| |
Collapse
|
12
|
Wang Y, Firlar E, Dai X, Libera M. Poly(ethylene glycol) as a biointeractive electron-beam resist. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yi Wang
- Department of Chemical Engineering and Materials Science; Stevens Institute of Technology; Hoboken; New Jersey
| | - Emre Firlar
- Department of Chemical Engineering and Materials Science; Stevens Institute of Technology; Hoboken; New Jersey
| | - Xiaoguang Dai
- Department of Chemical Engineering and Materials Science; Stevens Institute of Technology; Hoboken; New Jersey
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science; Stevens Institute of Technology; Hoboken; New Jersey
| |
Collapse
|
13
|
Voelker AE, Viswanathan R. Self-Catalyzed Immobilization of GST-Fusion Proteins for Genome-Encoded Biochips. Bioconjug Chem 2013; 24:1295-301. [DOI: 10.1021/bc400128g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alden E. Voelker
- Department of Chemistry, Case Western Reserve University, Millis Science Center:
Rm 216, 2074 Adelbert Road, Cleveland Ohio 44106-7078, United States
| | - Rajesh Viswanathan
- Department of Chemistry, Case Western Reserve University, Millis Science Center:
Rm 216, 2074 Adelbert Road, Cleveland Ohio 44106-7078, United States
| |
Collapse
|
14
|
Yang L, Gomez-Casado A, Young JF, Nguyen HD, Cabanas-Danés J, Huskens J, Brunsveld L, Jonkheijm P. Reversible and oriented immobilization of ferrocene-modified proteins. J Am Chem Soc 2012; 134:19199-206. [PMID: 23126430 DOI: 10.1021/ja308450n] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Adopting supramolecular chemistry for immobilization of proteins is an attractive strategy that entails reversibility and responsiveness to stimuli. The reversible and oriented immobilization and micropatterning of ferrocene-tagged yellow fluorescent proteins (Fc-YFPs) onto β-cyclodextrin (βCD) molecular printboards was characterized using surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in combination with electrochemistry. The proteins were assembled on the surface through the specific supramolecular host-guest interaction between βCD and ferrocene. Application of a dynamic covalent disulfide lock between two YFP proteins resulted in a switch from monovalent to divalent ferrocene interactions with the βCD surface, yielding a more stable protein immobilization. The SPR titration data for the protein immobilization were fitted to a 1:1 Langmuir-type model, yielding K(LM) = 2.5 × 10(5) M(-1) and K(i,s) = 1.2 × 10(3) M(-1), which compares favorably to the intrinsic binding constant presented in the literature for the monovalent interaction of ferrocene with βCD self-assembled monolayers. In addition, the SPR binding experiments were qualitatively simulated, confirming the binding of Fc-YFP in both divalent and monovalent fashion to the βCD monolayers. The Fc-YFPs could be patterned on βCD surfaces in uniform monolayers, as revealed using fluorescence microscopy and atomic force microscopy measurements. Both fluorescence microscopy imaging and SPR measurements were carried out with the in situ capability to perform cyclic voltammetry and chronoamperometry. These studies emphasize the repetitive desorption and adsorption of the ferrocene-tagged proteins from the βCD surface upon electrochemical oxidation and reduction, respectively.
Collapse
Affiliation(s)
- Lanti Yang
- Molecular Nanofabrication Group, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Grover GN, Lee J, Matsumoto NM, Maynard HD. Aminooxy and Pyridyl Disulfide Telechelic Poly(Polyethylene Glycol Acrylate) by RAFT Polymerization. Macromolecules 2012; 45:4858-4965. [PMID: 24648600 DOI: 10.1021/ma300575e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An efficient method to synthesize telechelic, bio-reactive polymers is described. Homotelechelic polymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization in one step by employing bifunctional chain transfer agents (CTAs). A bis-carboxylic acid CTA was coupled to N-BOC-aminooxy ethanol or pyridyl disulfide ethanol resulting in a bis-N-BOC-aminooxy CTA and a bis-pyridyl disulfide CTA, respectively. RAFT polymerization of polyethylene glycol (PEG) acrylate in the presence of both CTAs resulted in a series of polymers over a range of molecular weights (~8.4 kDa to 35.2 kDa; polydispersity indices, PDIs of 1.11 to 1.44) with retention of end-groups post-polymerization. The polymers were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC). Conjugations of small molecules and peptides resulted in homotelechelic polymer conjugates.
Collapse
Affiliation(s)
- Gregory N Grover
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Juneyoung Lee
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Nicholas M Matsumoto
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Heather D Maynard
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| |
Collapse
|
16
|
Gatterdam V, Stoess T, Menge C, Heckel A, Tampé R. Photoaktivierbares Glutathion - lichtgesteuerte Proteinwechselwirkung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Gatterdam V, Stoess T, Menge C, Heckel A, Tampé R. Caged Glutathione - Triggering Protein Interaction by Light. Angew Chem Int Ed Engl 2012; 51:3960-3. [DOI: 10.1002/anie.201108073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Indexed: 12/15/2022]
|
18
|
Yang H, An Q, Zhu W, Li W, Jiang Y, Cui J, Zhang X, Li G. A new strategy for effective construction of protein stacks by using cucurbit[8]uril as a glue molecule. Chem Commun (Camb) 2012; 48:10633-5. [DOI: 10.1039/c2cc33380e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Kolodziej CM, Kim SH, Broyer RM, Saxer SS, Decker CG, Maynard HD. Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns. J Am Chem Soc 2011; 134:247-55. [PMID: 22126191 DOI: 10.1021/ja205524x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding and controlling cell adhesion on engineered scaffolds is important in biomaterials and tissue engineering. In this report we used an electron-beam (e-beam) lithography technique to fabricate patterns of a cell adhesive integrin ligand combined with a growth factor. Specifically, micron-sized poly(ethylene glycol) (PEG) hydrogels with aminooxy- and styrene sulfonate-functional groups were fabricated. Cell adhesion moieties were introduced using a ketone-functionalized arginine-glycine-aspartic acid (RGD) peptide to modify the O-hydroxylamines by oxime bond formation. Basic fibroblast growth factor (bFGF) was immobilized by electrostatic interaction with the sulfonate groups. Human umbilical vein endothelial cells (HUVECs) formed focal adhesion complexes on RGD- and RGD and bFGF-immobilized patterns as shown by immunostaining of vinculin and actin. In the presence of both bFGF and RGD, cell areas were larger. The data demonstrate confinement of cellular focal adhesions to chemically and physically well-controlled microenvironments created by a combination of e-beam lithography and "click" chemistry techniques. The results also suggest positive implications for addition of growth factors into adhesive patterns for cell-material interactions.
Collapse
Affiliation(s)
- Christopher M Kolodziej
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
20
|
Christman KL, Broyer RM, Schopf E, Kolodziej CM, Chen Y, Maynard HD. Protein nanopatterns by oxime bond formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1415-8. [PMID: 21192671 PMCID: PMC3050016 DOI: 10.1021/la103978x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patterning proteins on the nanoscale is important for applications in biology and medicine. As feature sizes are reduced, it is critical that immobilization strategies provide site-specific attachment of the biomolecules. In this study, oxime chemistry was exploited to conjugate proteins onto nanometer-sized features. Poly(Boc-aminooxy tetra(ethylene glycol) methacrylate) was synthesized by free radical polymerization. The polymer was patterned onto silicon wafers using an electron beam writer. Trifluoroacetic acid removal of the Boc groups provided the desired aminooxy functionality. In this manner, patterns of concentric squares and contiguous bowtie shapes were fabricated with 150-170-nm wide features. Ubiquitin modified at the N-terminus with an α-ketoamide group and N(ε)-levulinyl lysine-modified bovine serum albumin were subsequently conjugated to the polymer nanopatterns. Protein immobilization was confirmed by fluorescence microscopy. Control studies on protected surfaces and using proteins presaturated with O-methoxyamine indicated that attachment occurred via oxime bond formation.
Collapse
Affiliation(s)
- Karen L. Christman
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, CA 90095
| | - Rebecca M. Broyer
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, CA 90095
| | - Eric Schopf
- Department of Mechanical and Aerospace Engineering and the California NanoSystems Institute, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| | - Christopher M. Kolodziej
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, CA 90095
| | - Yong Chen
- Department of Mechanical and Aerospace Engineering and the California NanoSystems Institute, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, CA 90095
| |
Collapse
|