1
|
Glassey E, Zhang Z, King AM, Niquille DL, Voigt CA. De novo design of ribosomally synthesized and post-translationally modified peptides. Nat Chem 2025; 17:233-245. [PMID: 39774303 DOI: 10.1038/s41557-024-01685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
In nature, peptides are enzymatically modified to constrain their structure and introduce functional moieties. De novo peptide structures could be built by combining enzymes from different pathways, but determining the rules of their use is difficult. We present a biophysical model to combine enzymes sourced from bacterial ribosomally synthesized and post-translationally modified peptide (RiPP) gene clusters. Using a pipeline to evaluate more than 1,000 peptides, the model was parameterized under uniform conditions in Escherichia coli for enzymes from different classes (graspetide, spliceotide, pantocin, cyanobactin, glycocin, lasso peptide and lanthipeptide). Synthetic leader peptides with recognition sequences for up to three enzymes were designed to modify core sequences sharing no identity to natural RiPPs. Empirically, RiPPs with the desired modifications constituted 7-67% of the total peptides produced, and 6 of our 8 peptide designs were successfully modified. This work is an example of the design of enzyme-modified peptides and libraries, using a framework that can be expanded to include new enzymes and chemical moieties.
Collapse
Affiliation(s)
- Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David L Niquille
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Asikaer A, Sun C, Shen Y. Thiostrepton: multifaceted biological activities and its applications in treatment of inflammatory diseases. Inflammopharmacology 2025; 33:183-194. [PMID: 39487942 DOI: 10.1007/s10787-024-01587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Thiostrepton (TST) is a naturally occurring oligopeptide antibiotic with a demonstrated capacity to antagonize a broad spectrum of Gram-positive bacteria. It has been utilized as a safe antimicrobial agent in veterinary medicine. Despite its therapeutic potential, the clinical application of TST has been constrained by its poor solubility and bioavailability. However, an increasing number of studies indicate that TST possesses diverse pharmacological activities, including its significant role in microbe resistance and cancer countering. Notably, recent studies have pointed out that TST also possesses anti-inflammatory potential. It has exhibited promising therapeutic efficacy across various in vivo and in vitro disease models, including non-alcoholic fatty liver disease, inflammatory bowel disease, sepsis, psoriasis-like inflammation, and periodontitis. In this review, we describe the various pharmacological activities of TST, particularly its anti-inflammatory activity demonstrated in a variety of inflammatory diseases and the underlying mechanisms. These effects highlight the potential of TST as an anti-inflammatory agent for the treatment of inflammation diseases and for enhancing cellular therapies.
Collapse
Affiliation(s)
- Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR, China
| | - Cai Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR, China.
| |
Collapse
|
3
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
4
|
De BC, Zhang W, Zhang G, Liu Z, Tan B, Zhang Q, Zhang L, Zhang H, Zhu Y, Zhang C. Host-dependent heterologous expression of berninamycin gene cluster leads to linear thiopeptide antibiotics. Org Biomol Chem 2021; 19:8940-8946. [PMID: 34617948 DOI: 10.1039/d1ob01759d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Berninamycins are a class of thiopeptide antibiotics with potent activity against Gram-positive bacteria. Heterologous expression of the berninamycin (ber) biosynthetic gene cluster from marine-derived Streptomyces sp. SCSIO 11878 in different terrestrial model Streptomyces hosts led to the production of berninamycins A (1) and B (2) in Streptomyces lividans SBT18 and Streptomyces coelicolor M1154, while two new linearized berninamycins J (3) and K (4) were obtained in Streptomyces albus J1074. Their structures were elucidated by detailed interpretation of NMR data and Marfey's method. Bioactivity assays showed that the linear thiopeptides 3 and 4 were less potent than 1 and 2 in antibacterial activity. This work indicates that undefined host-dependent enzymes might be responsible for generating the linear thiopeptides 3 and 4 in S. albus J1074.
Collapse
Affiliation(s)
- Bidhan Chandra De
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| |
Collapse
|
5
|
Lin Z, Xue Y, Liang XW, Wang J, Lin S, Tao J, You SL, Liu W. Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavin-Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton. Angew Chem Int Ed Engl 2021; 60:8401-8405. [PMID: 33496012 DOI: 10.1002/anie.202013174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Indexed: 01/20/2023]
Abstract
The interest in indole dearomatization, which serves as a useful tool in the total synthesis of related alkaloid natural products, has recently been renewed with the intention of developing new methods efficient in both yield and stereoselective control. Here, we report an enzymatic approach for the oxidative dearomatization of indoles in the asymmetric synthesis of a variety of furoindolines with a vicinal quaternary carbon stereogenic center. This approach depends on the activity of a flavin-dependent monooxygenase, TsrE, which is involved in the biosynthesis of bicyclic thiopeptide antibiotic thiostrepton. TsrE catalyzes 2,3-epoxidation and subsequent epoxide opening in a highly enantioselective manner during the conversion of 2-methyl-indole-3-acetic acid or 2-methyl-tryptophol to furoindoline, with up to >99 % conversion and >99 % ee under mild reaction conditions. Complementing current chemical methods for oxidative indole dearomatization, the TsrE activity-based approach enriches the toolbox in the asymmetric synthesis of products possessing a furoindoline skeleton.
Collapse
Affiliation(s)
- Zhi Lin
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yufeng Xue
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Wei Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiang Tao
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou, 313000, China
| |
Collapse
|
6
|
Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavin‐Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
8
|
Vinogradov AA, Suga H. Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chem Biol 2020; 27:1032-1051. [PMID: 32698017 DOI: 10.1016/j.chembiol.2020.07.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Thiopeptides (also known as thiazolyl peptides) are structurally complex natural products with rich biological activities. Known for over 70 years for potent killing of Gram-positive bacteria, thiopeptides are experiencing a resurgence of interest in the last decade, primarily brought about by the genomic revolution of the 21st century. Every area of thiopeptide research-from elucidating their biological function and biosynthesis to expanding their structural diversity through genome mining-has made great strides in recent years. These advances lay the foundation for and inspire novel strategies for thiopeptide engineering. Accordingly, a number of diverse approaches are being actively pursued in the hope of developing the next generation of natural-product-inspired therapeutics. Here, we review the contemporary understanding of thiopeptide biological activities, biosynthetic pathways, and approaches to structural and functional reprogramming, with a special focus on the latter.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Du Y, Qiu Y, Meng X, Feng J, Tao J, Liu W. A Heterotrimeric Dehydrogenase Complex Functions with 2 Distinct YcaO Proteins to Install 5 Azole Heterocycles into 35-Membered Sulfomycin Thiopeptides. J Am Chem Soc 2020; 142:8454-8463. [DOI: 10.1021/jacs.0c02329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiang Meng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junyin Feng
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| | - Jiang Tao
- Department of General Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
10
|
Kudo K, Koiwai H, Kagaya N, Nishiyama M, Kuzuyama T, Shin-ya K, Ikeda H. Comprehensive Derivatization of Thioviridamides by Heterologous Expression. ACS Chem Biol 2019; 14:1135-1140. [PMID: 31184470 DOI: 10.1021/acschembio.9b00330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New technology for the derivatization of peptide natural products is required for drug development. Despite the recent advances in the genome sequencing technique enabling us to search for the biosynthetic genes for wide variety of natural products, the technical methods to get access to them are limited. A class of RiPPs, a recently emerged natural product family such as thioviridamide, is one of those possessing such unexplored chemical space. In this paper, we report a streamlined method to generate new thioviridamide derivatives and to assess their biological activities. Heterologous expression of 42 constructs in an engineered Streptomyces avermitilis host gave 35 designed thioviridamide derivatives, along with several unprecedented analogues. Moreover, cytotoxicity assay revealed that several derivatives showed more potent activities than those of prethioviridamide. These results indicate that this strategy can become one of the potential ways to produce supreme unnatural products.
Collapse
Affiliation(s)
- Kei Kudo
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hanae Koiwai
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohisa Kuzuyama
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
11
|
Yñigez-Gutierrez AE, Bachmann BO. Fixing the Unfixable: The Art of Optimizing Natural Products for Human Medicine. J Med Chem 2019; 62:8412-8428. [PMID: 31026161 DOI: 10.1021/acs.jmedchem.9b00246] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecules isolated from natural sources including bacteria, fungi, and plants are a long-standing source of therapeutics that continue to add to our medicinal arsenal today. Despite their potency and prominence in the clinic, complex natural products often exhibit a number of liabilities that hinder their development as therapeutics, which may be partially responsible for the current trend away from natural product discovery, research, and development. However, advances in synthetic biology and organic synthesis have inspired a new generation of natural product chemists to tackle powerful undeveloped scaffolds. In this Perspective, we will present case studies demonstrating the historical and current focus on making targeted, but significant, changes to natural product scaffolds via biosynthetic gene cluster manipulation, total synthesis, semisynthesis, or a combination of these methods, with a focus on increasing activity, decreasing toxicity, or improving chemical and pharmacological properties.
Collapse
Affiliation(s)
| | - Brian O Bachmann
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|
12
|
Characterization of Nocardithiocin Derivatives Produced by Amino Acid Substitution of Precursor Peptide notG. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09836-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Wang J, Lin Z, Bai X, Tao J, Liu W. Optimal design of thiostrepton-derived thiopeptide antibiotics and their potential application against oral pathogens. Org Chem Front 2019. [DOI: 10.1039/c9qo00219g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new fluorinated thiostrepton-type thiopeptide antibiotic was designed and biosynthesized by using a biological approach with synthetic advantages. Related bioassays indicated that thiostrepton and its derivatives hold potential in oral pathogen treatment.
Collapse
Affiliation(s)
- Jian Wang
- Department of General Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai 200011
| | - Zhi Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Xuebing Bai
- Department of General Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai 200011
| | - Jiang Tao
- Department of General Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Stomatology
- Shanghai 200011
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
14
|
Zhang R, Li C, Wang J, Yang Y, Yan Y. Microbial production of small medicinal molecules and biologics: From nature to synthetic pathways. Biotechnol Adv 2018; 36:2219-2231. [DOI: 10.1016/j.biotechadv.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
|
15
|
Hudson GA, Mitchell DA. RiPP antibiotics: biosynthesis and engineering potential. Curr Opin Microbiol 2018; 45:61-69. [PMID: 29533845 PMCID: PMC6131089 DOI: 10.1016/j.mib.2018.02.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 01/14/2023]
Abstract
The threat of antibiotic resistant bacterial infections continues to underscore the need for new treatment options. Historically, small molecule metabolites from microbes have provided a rich source of antibiotic compounds, and as a result, significant effort has been invested in engineering the responsible biosynthetic pathways to generate novel analogs with attractive pharmacological properties. Unfortunately, biosynthetic stringency has limited the capacity of non-ribosomal peptide synthetases and polyketide synthases from producing substantially different analogs in large numbers. Another class of natural products, the ribosomally synthesized and post-translationally modified peptides (RiPPs), have rapidly expanded in recent years with many natively displaying potent antibiotic activity. RiPP biosynthetic pathways are modular and intrinsically tolerant to alternative substrates. Several prominent RiPPs with antibiotic activity will be covered in this review with a focus on their biosynthetic plasticity. While only a few RiPP enzymes have been thoroughly investigated mechanistically, this knowledge has already been harnessed to generate new-to-nature compounds. Through the use of synthetic biology approaches, on-going efforts in RiPP engineering hold great promise in unlocking the potential of this natural product class.
Collapse
Affiliation(s)
- Graham A Hudson
- Department of Chemistry, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Microbiology, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States.
| |
Collapse
|
16
|
Kang HS, Ji SA, Park SH, Kim JP. Lepistatins A-C, chlorinated sesquiterpenes from the cultured basidiomycete Lepista sordida. PHYTOCHEMISTRY 2017; 143:111-114. [PMID: 28803994 DOI: 10.1016/j.phytochem.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Three new chlorinated sesquiterpenes, named lepistatins A-C, were isolated from the culture broth of Basidiomycete Lepista sordida. The structures were determined by the analysis of spectroscopic data including HREIMS and 1D and 2D NMR. The absolute configuration of lepistatin B was determined by comparing the specific rotation and circular dichroism spectrum with those of known structurally related compounds bearing the same chiral carbon. The structures of lepistatins A-C feature the indanone core structure, but differ from other indanone-containing sesquiterpenes of fungal origin by the alkyl substitution pattern. This indicates that lepistatins A-C probably possess a new sesquiterpene scaffold derived from the common precursor, trans-humulyl cation, by an alternative cyclization.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea
| | - So-Ae Ji
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, South Korea; Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - So-Hyun Park
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, South Korea; Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Jong-Pyung Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, South Korea.
| |
Collapse
|
17
|
Lin Z, He Q, Liu W. Bio-inspired engineering of thiopeptide antibiotics advances the expansion of molecular diversity and utility. Curr Opin Biotechnol 2017; 48:210-219. [PMID: 28672170 DOI: 10.1016/j.copbio.2017.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 02/08/2023]
Abstract
Thiopeptide antibiotics, which are a class of sulfur-rich and highly modified peptide natural products, exhibit a wide variety of important biological properties. These antibiotics are ribosomally synthesized and arise from post-translational modifications, exemplifying a process through which nature develops the structural complexity from Ser/Thr and Cys-rich precursor peptides. Following a brief review of the knowledge gained from nature in terms of the formation of a common thiopeptide scaffold and its specialization to individual members, we highlight the significance of bio-inspired engineering, which has greatly expanded the molecular diversity and utility of thiopeptide antibiotics regarding the search for clinically useful agents, investigation into new mechanisms of action and access to typically 'inaccessible' biosynthetic processes over the past two years.
Collapse
Affiliation(s)
- Zhi Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qingli He
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.
| |
Collapse
|
18
|
Elucidating and engineering thiopeptide biosynthesis. World J Microbiol Biotechnol 2017; 33:119. [DOI: 10.1007/s11274-017-2283-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/03/2017] [Indexed: 01/15/2023]
|
19
|
Mahanta N, Zhang Z, Hudson GA, van der Donk WA, Mitchell DA. Reconstitution and Substrate Specificity of the Radical S-Adenosyl-methionine Thiazole C-Methyltransferase in Thiomuracin Biosynthesis. J Am Chem Soc 2017; 139:4310-4313. [PMID: 28301141 PMCID: PMC5477235 DOI: 10.1021/jacs.7b00693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thiomuracin is a thiopeptide antibiotic with potent activity toward Gram-positive drug-resistant bacteria. Thiomuracin is biosynthesized from a precursor peptide, TbtA, by a complex array of posttranslational modifications. One of several intriguing transformations is the C-methylation of thiazole, occurring at an unactivated sp2 carbon. Herein, we report the in vitro reconstitution of TbtI, the responsible radical S-adenosyl-methionine (rSAM) C-methyltransferase, which catalyzes the formation of 5-methylthiazole at a single site. Our studies demonstrate that a linear hexazole-bearing intermediate of TbtA is a substrate for TbtI whereas macrocyclized thiomuracin GZ is not. In determining the minimal substrate for TbtI, we found that the enzyme is functional when most of the leader peptide has been removed. The in vitro reconstitution of TbtI, a class C rSAM methyltransferase, further adds to the chemical versatility of rSAM enzymes, and informs on the complexity of thiomuracin biosynthesis.
Collapse
Affiliation(s)
- Nilkamal Mahanta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Zhengan Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Graham A. Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
20
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
21
|
Tran HL, Lexa KW, Julien O, Young TS, Walsh CT, Jacobson MP, Wells JA. Structure-Activity Relationship and Molecular Mechanics Reveal the Importance of Ring Entropy in the Biosynthesis and Activity of a Natural Product. J Am Chem Soc 2017; 139:2541-2544. [PMID: 28170244 DOI: 10.1021/jacs.6b10792] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrocycles are appealing drug candidates due to their high affinity, specificity, and favorable pharmacological properties. In this study, we explored the effects of chemical modifications to a natural product macrocycle upon its activity, 3D geometry, and conformational entropy. We chose thiocillin as a model system, a thiopeptide in the ribosomally encoded family of natural products that exhibits potent antimicrobial effects against Gram-positive bacteria. Since thiocillin is derived from a genetically encoded peptide scaffold, site-directed mutagenesis allows for rapid generation of analogues. To understand thiocillin's structure-activity relationship, we generated a site-saturation mutagenesis library covering each position along thiocillin's macrocyclic ring. We report the identification of eight unique compounds more potent than wild-type thiocillin, the best having an 8-fold improvement in potency. Computational modeling of thiocillin's macrocyclic structure revealed a striking requirement for a low-entropy macrocycle for activity. The populated ensembles of the active mutants showed a rigid structure with few adoptable conformations while inactive mutants showed a more flexible macrocycle which is unfavorable for binding. This finding highlights the importance of macrocyclization in combination with rigidifying post-translational modifications to achieve high-potency binding.
Collapse
Affiliation(s)
| | | | | | - Travis S Young
- Department of Biology, California Institute for Biomedical Research , La Jolla, California 92037, United States
| | - Christopher T Walsh
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University , Stanford, California 94305, United States
| | | | | |
Collapse
|
22
|
Zhang Z, Hudson GA, Mahanta N, Tietz JI, van der Donk WA, Mitchell DA. Biosynthetic Timing and Substrate Specificity for the Thiopeptide Thiomuracin. J Am Chem Soc 2016; 138:15511-15514. [PMID: 27700071 PMCID: PMC5148741 DOI: 10.1021/jacs.6b08987] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biosynthesis of the thiopeptide thiomuracin is a well-orchestrated process involving a multitude of posttranslational modifications. We show that six Cys residues of a precursor peptide are first cyclodehydrated and oxidized to thiazoles in an ordered, but nonlinear fashion that is leader-peptide-dependent. Then four alcohols are glutamylated and converted to alkenes in a C-to-N terminal directional process that is leader-peptide-independent. Finally, two of these alkenes undergo a formal [4 + 2] cycloaddition to form a trithiazole-substituted pyridine macrocycle. We describe here the factors that govern the substrate specificity and order of biosynthetic events that turn a ribosomal peptide into a powerful antibiotic.
Collapse
Affiliation(s)
- Zhengan Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Graham A. Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Nilkamal Mahanta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Jonathan I. Tietz
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Zheng Q, Wang S, Liao R, Liu W. Precursor-Directed Mutational Biosynthesis Facilitates the Functional Assignment of Two Cytochromes P450 in Thiostrepton Biosynthesis. ACS Chem Biol 2016; 11:2673-2678. [PMID: 27560135 DOI: 10.1021/acschembio.6b00419] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Side-ring-modified thiostrepton (TSR) derivatives that vary in their quinaldic acid (QA) substitution possess more potent biological activities and better pharmaceutical properties than the parent compound. In this work, we sought to introduce fluorine onto C-7' or C-8' of the TSR QA moiety via precursor-directed mutational biosynthesis to obtain new TSR variants. Unexpectedly, instead of the target product, the exogenous chemical feeding of 7-F-QA into the ΔtsrT mutant strain resulted in a unique TSR analog with an incomplete side-ring structure and an unoxidized QA moiety (1). Accordingly, two cytochrome P450 genes, tsrP and tsrR, were in-frame deleted to elucidate the candidate responsible for the monooxidation of the QA moiety in TSR. The unfluorinated analog of compound 1 that was thus isolated from ΔtsrP (2) and the abolishment of TSR production in ΔtsrR revealed not only the biosynthetic logic of the TSR side-ring but also the essential checkpoint in TSR maturation before macro-ring closure.
Collapse
Affiliation(s)
- Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shoufeng Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Rijing Liao
- State Key Laboratory of Bioorganic and Natural Products Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
24
|
Capture of micrococcin biosynthetic intermediates reveals C-terminal processing as an obligatory step for in vivo maturation. Proc Natl Acad Sci U S A 2016; 113:12450-12455. [PMID: 27791142 DOI: 10.1073/pnas.1612161113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thiopeptides, including micrococcins, are a growing family of bioactive natural products that are ribosomally synthesized and heavily modified. Here we use a refactored, modular in vivo system containing the micrococcin P1 (MP1) biosynthetic genes (TclIJKLMNPS) from Macrococcus caseolyticus str 115 in a genetically tractable Bacillus subtilis strain to parse the processing steps of this pathway. By fusing the micrococcin precursor peptide to an affinity tag and coupling it with catalytically defective enzymes, biosynthetic intermediates were easily captured for analysis. We found that two major phases of molecular maturation are separated by a key C-terminal processing step. Phase-I conversion of six Cys residues to thiazoles (TclIJN) is followed by C-terminal oxidative decarboxylation (TclP). This TclP-mediated oxidative decarboxylation is a required step for the peptide to progress to phase II. In phase II, Ser/Thr dehydration (TclKL) and peptide macrocycle formation (TclM) occurs. A C-terminal reductase, TclS, can optionally act on the substrate peptide, yielding MP1, and is shown to act late in the pathway. This comprehensive characterization of the MP1 pathway prepares the way for future engineering efforts.
Collapse
|
25
|
Deane CD, Burkhart BJ, Blair PM, Tietz JI, Lin A, Mitchell DA. In Vitro Biosynthesis and Substrate Tolerance of the Plantazolicin Family of Natural Products. ACS Chem Biol 2016; 11:2232-43. [PMID: 27248686 PMCID: PMC4992447 DOI: 10.1021/acschembio.6b00369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plantazolicin (PZN) is a ribosomally synthesized and post-translationally modified peptide (RiPP) natural product that exhibits extraordinarily narrow-spectrum antibacterial activity toward the causative agent of anthrax, Bacillus anthracis. During PZN biosynthesis, a cyclodehydratase catalyzes cyclization of cysteine, serine, and threonine residues in the PZN precursor peptide (BamA) to azolines. Subsequently, a dehydrogenase oxidizes most of these azolines to thiazoles and (methyl)oxazoles. The final biosynthetic steps consist of leader peptide removal and dimethylation of the nascent N-terminus. Using a heterologously expressed and purified heterocycle synthetase, the BamA peptide was processed in vitro concordant with the pattern of post-translational modification found in the naturally occurring compound. Using a suite of BamA-derived peptides, including amino acid substitutions as well as contracted and expanded substrate variants, the substrate tolerance of the heterocycle synthetase was elucidated in vitro, and the residues crucial for leader peptide binding were identified. Despite increased promiscuity compared to what was previously observed during heterologous production in E. coli, the synthetase retained exquisite selectivity in cyclization of unnatural peptides only at positions which correspond to those cyclized in the natural product. A cleavage site was subsequently introduced to facilitate leader peptide removal, yielding mature PZN variants after enzymatic or chemical dimethylation. In addition, we report the isolation and characterization of two novel PZN-like natural products that were predicted from genome sequences but whose production had not yet been observed.
Collapse
Affiliation(s)
- Caitlin D. Deane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brandon J. Burkhart
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Patricia M. Blair
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan I. Tietz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alice Lin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
26
|
Lin Z, Chen D, Liu W. Biosynthesis-based artificial evolution of microbial natural products. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Himes PM, Allen SE, Hwang S, Bowers AA. Production of Sactipeptides in Escherichia coli: Probing the Substrate Promiscuity of Subtilosin A Biosynthesis. ACS Chem Biol 2016; 11:1737-44. [PMID: 27019323 DOI: 10.1021/acschembio.6b00042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sactipeptides are peptide-derived natural products that are processed by remarkable, radical-mediated cysteine sulfur to α-carbon coupling reactions. The resulting sactionine thioether linkages give rise to the unique defined structures and concomitant biological activities of sactipeptides. An E. coli heterologous expression system, based on the biosynthesis of one such sactipeptide, subtilosin A, is described and this expression system is exploited to probe the promiscuity of the subtilosin A sactionine bond-forming enzyme, AlbA. These efforts allowed the facile expression and isolation of a small library of mutant sactipeptides based on the subtilosin A precursor peptide, demonstrating broad substrate promiscuity where none was previously known. Importantly, we show that the positions of the sactionine linkages can be moved, giving rise to new, unnatural sactipeptide structures. E. coli heterologous expression also allowed incorporation of unnatural amino acids into sactipeptides by means of amber-suppression technology, potentially opening up new chemistry and new applications for unnatural sactipeptides.
Collapse
Affiliation(s)
- Paul M. Himes
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Scott E. Allen
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Sungwon Hwang
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| | - Albert A. Bowers
- Division of Chemical Biology
and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
| |
Collapse
|
28
|
Zhang F, Li C, Kelly WL. Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue. ACS Chem Biol 2016; 11:415-24. [PMID: 26630475 DOI: 10.1021/acschembio.5b00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thiopeptides are a family of ribosomally synthesized and post-translationally modified peptide metabolites, and the vast majority of thiopeptides characterized to date possess one highly modified macrocycle. A few members, including thiostrepton A, harbor a second macrocycle that incorporates a quinaldic acid moiety and the four N-terminal residues of the peptide. The antibacterial properties of thiostrepton A are well established, and its recently discovered ability to inhibit the proteasome has additional implications for the development of antimalarial and anticancer therapeutics. We have conducted the saturation mutagenesis of Ala2 in the precursor peptide, TsrA, to examine which variants can be transformed into a mature thiostrepton analogue. Although the thiostrepton biosynthetic system is somewhat restrictive toward substitutions at the second residue, eight thiostrepton Ala2 analogues were isolated. The TsrA Ala2Ile and Ala2Val variants were largely channeled through an alternate processing pathway wherein the first residue of the core peptide, Ile1, is removed, and the resulting thiostrepton analogues bear quinaldic acid macrocycles abridged by one residue. This is the first report revealing that quinaldic acid loop size is amenable to alteration during the course of thiostrepton biosynthesis. Both the antibacterial and proteasome inhibitory properties of the thiostrepton Ala2 analogues were examined. While the identity of the residue at the second position of the core peptide influences thiostrepton biosynthesis, our report suggests it may not be crucial for antibacterial and proteasome inhibitory properties of the full-length variants. In contrast, the contracted quinaldic acid loop can, to differing degrees, affect both types of biological activity.
Collapse
Affiliation(s)
- Feifei Zhang
- School of Chemistry and Biochemistry
and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Chaoxuan Li
- School of Chemistry and Biochemistry
and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Wendy L. Kelly
- School of Chemistry and Biochemistry
and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
29
|
Wang S, Zheng X, Pan Q, Chen Y. Mutagenesis of precursor peptide for the generation of nosiheptide analogues. RSC Adv 2016; 6:94643-94650. [DOI: 10.1039/c6ra20302g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024] Open
Abstract
Thr3 in the core peptide of NosM could be mutated to generate nosiheptide analogues retaining antimicrobial activities.
Collapse
Affiliation(s)
- Shuzhen Wang
- State Key Laboratory of Natural Medicines
- Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Xulu Zheng
- State Key Laboratory of Natural Medicines
- Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Qi Pan
- State Key Laboratory of Natural Medicines
- Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines
- Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| |
Collapse
|
30
|
Wang S, Zheng Q, Wang J, Chen D, Yu Y, Liu W. Concurrent modifications of the C-terminus and side ring of thiostrepton and their synergistic effects with respect to improving antibacterial activities. Org Chem Front 2016. [DOI: 10.1039/c5qo00433k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new C-terminally methylated TSR derivatives that varied in side-ring structure were obtained via the chemical feeding of quinaldic acid analogs to a double-mutant strain ΔtsrB/T.
Collapse
Affiliation(s)
- Shoufeng Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Jianfeng Wang
- Department of Infectious Diseases
- Sir Run Run Shaw Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
| | - Dandan Chen
- Huzhou Center of Bio-Synthetic Innovation
- Huzhou 313000
- China
| | - Yunsong Yu
- Department of Infectious Diseases
- Sir Run Run Shaw Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
31
|
Sardar D, Schmidt EW. Combinatorial biosynthesis of RiPPs: docking with marine life. Curr Opin Chem Biol 2015; 31:15-21. [PMID: 26709871 DOI: 10.1016/j.cbpa.2015.11.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
Ribosomally synthesized natural products are found in all forms of life. Their biosynthesis uses simple ribosomally synthesized peptides as starting materials that are transformed into complex structures via posttranslational modifications, enriched with elaborate chemical scaffolds that make them desirable as pharmacological tools. In addition, these natural products often exhibit combinatorial biosynthesis, making them attractive targets for engineering. An increasing knowledge of their biosynthetic machinery has provided key insights into their fascinating chemistry. Marine organisms have been a rich source of this class of natural products and here we review the lessons learned from marine life that enables exploitation of their potential for combinatorial engineering, opening up new routes for peptide-based drug discovery.
Collapse
Affiliation(s)
- Debosmita Sardar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
32
|
Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC. Current and future resources for functional metagenomics. Front Microbiol 2015; 6:1196. [PMID: 26579102 PMCID: PMC4625089 DOI: 10.3389/fmicb.2015.01196] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022] Open
Abstract
Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries—physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research.
Collapse
Affiliation(s)
- Kathy N Lam
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Jiujun Cheng
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Katja Engel
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo Waterloo, ON, Canada
| |
Collapse
|
33
|
Kakule TB, Jadulco RC, Koch M, Janso JE, Barrows LR, Schmidt EW. Native promoter strategy for high-yielding synthesis and engineering of fungal secondary metabolites. ACS Synth Biol 2015; 4:625-33. [PMID: 25226362 PMCID: PMC4487227 DOI: 10.1021/sb500296p] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Strategies
are needed for the robust production of cryptic, silenced,
or engineered secondary metabolites in fungi. The filamentous fungus Fusarium heterosporum natively synthesizes the polyketide
equisetin at >2 g L–1 in a controllable manner.
We hypothesized that this production level was achieved by regulatory
elements in the equisetin pathway, leading to the prediction that
the same regulatory elements would be useful in producing other secondary
metabolites. This was tested by using the native eqxS promoter and eqxR regulator in F. heterosporum, synthesizing heterologous natural products in yields of ∼1
g L–1. As proof of concept for the practical application,
we resurrected an extinct pathway from an endophytic fungus with an
initial yield of >800 mg L–1, leading to the
practical
synthesis of a selective antituberculosis agent. Finally, the method
enabled new insights into the function of polyketide synthases in
filamentous fungi. These results demonstrate a strategy for optimally
employing native regulators for the robust synthesis of secondary
metabolites.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E. Janso
- Natural Products,
Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06355, United States
| | | | | |
Collapse
|
34
|
Zhang F, Kelly WL. Saturation mutagenesis of TsrA Ala4 unveils a highly mutable residue of thiostrepton A. ACS Chem Biol 2015; 10:998-1009. [PMID: 25572285 DOI: 10.1021/cb5007745] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thiopeptides are post-translationally processed macrocyclic peptide metabolites, characterized by extensive backbone and side chain modifications that include a six-membered nitrogeneous ring, thiazol(in)e/oxazol(in)e rings, and dehydrated amino acid residues. Thiostrepton A, one of the more structurally complex and well-studied thiopeptides, contains a second macrocycle bearing a quinaldic acid moiety. Antibacterial, antimalarial, and anticancer properties have been described for thiostrepton A and other thiopeptides, although the molecular details for binding the cellular target in each case are not fully elaborated. We previously demonstrated that a mutation of the TsrA core peptide, Ala4Gly, supported the successful production of the corresponding thiostrepton variant. To more thoroughly probe the thiostrepton biosynthetic machinery's tolerance toward structural variation at the fourth position of the TsrA core peptide, we report here the saturation mutagenesis of this residue using a fosmid-dependent biosynthetic engineering method and the isolation of 16 thiostrepton analogues. Several types of side chain substitutions at the fourth position of TsrA, including those that introduce polar or branched hydrophobic residues are accepted, albeit with varied preferences. In contrast, proline and amino acid residues inherently charged at physiological pH are not well-tolerated at the queried site by the thiostrepton biosynthetic system. These newly generated thiostrepton analogues were assessed for their antibacterial activities and abilities to inhibit the proteolytic functions of the eukaryotic 20S proteasome. We demonstrate that the identity of the fourth amino acid residue in the thiostrepton scaffold is not critical for either ribosome or proteasome inhibition.
Collapse
Affiliation(s)
- Feifei Zhang
- School of Chemistry and Biochemistry
and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Wendy L. Kelly
- School of Chemistry and Biochemistry
and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Sardar D, Pierce E, McIntosh JA, Schmidt EW. Recognition sequences and substrate evolution in cyanobactin biosynthesis. ACS Synth Biol 2015; 4:167-76. [PMID: 24625112 PMCID: PMC4384831 DOI: 10.1021/sb500019b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Ribosomally
synthesized and posttranslationally modified peptide
(RiPP) natural products are of broad interest because of their intrinsic
bioactivities and potential for synthetic biology. The RiPP cyanobactin
pathways pat and tru have been experimentally
shown to be extremely tolerant of mutations. In nature, the pathways
exhibit “substrate evolution”, where enzymes remain
constant while the substrates of those enzymes are hypervariable and
readily evolvable. Here, we sought to determine the mechanism behind
this promiscuity. Analysis of a series of different enzyme–substrate
combinations from five different cyanobactin gene clusters, in addition
to engineered substrates, led us to define short discrete recognition
elements within substrates that are responsible for directing enzymes.
We show that these recognition sequences (RSs) are portable and can
be interchanged to control which functional groups are added to the
final natural product. In addition to the previously assigned N- and
C-terminal proteolysis RSs, here we assign the RS for heterocyclization
modification. We show that substrate elements can be swapped in vivo leading to successful production of natural products
in E. coli. The exchangeability of these elements
holds promise in synthetic biology approaches to tailor peptide products in vivo and in vitro.
Collapse
Affiliation(s)
- Debosmita Sardar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Elizabeth Pierce
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John A. McIntosh
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
36
|
Kang HS, Brady SF. Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case study. J Am Chem Soc 2014; 136:18111-9. [PMID: 25521786 PMCID: PMC4291760 DOI: 10.1021/ja510606j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Sequence-guided
mining of metagenomic libraries provides a means
of recovering specific natural product gene clusters of interest from
the environment. In this study, we use ketosynthase gene (KS) PCR
amplicon sequences (sequence tags) to explore the structural and biosynthetic
diversities of pentangular polyphenols (PP). In phylogenetic analyses,
eDNA-derived sequence tags often fall between closely related clades
that are associated with gene clusters known to encode distinct chemotypes.
We show that these common “intermediate” sequence tags
are useful for guiding the discovery of not only novel bioactive metabolites
but also collections of closely related gene clusters that can provide
new insights into the evolution of natural product structural diversity.
Gene clusters corresponding to two eDNA-derived KSβ sequence tags that reside between well-defined KSβ clades associated with the biosynthesis of (C24)-pradimicin and
(C26)-xantholipin type metabolites were recovered from archived soil
eDNA libraries. Heterologous expression of these gene clusters in Streptomyces albus led to
the isolation of three new PPs (compounds 1–3). Calixanthomycin A (1) shows potent antiproliferative
activity against HCT-116 cells, whereas arenimycins C (2) and D (3) display potent antibacterial activity. By
comparing genotypes and chemotypes across all known PP gene clusters,
we define four PP subfamilies, and also observe that the horizontal
transfer of PP tailoring genes has likely been restricted to gene
clusters that encode closely related chemical structures, suggesting
that only a fraction of the “natural product-like” chemical
space that can theoretically be encoded by these secondary metabolite
tailoring genes has likely been sampled naturally.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, Howard Hughes Medical Institute , 1230 York Avenue, New York, New York 10065, United States
| | | |
Collapse
|
37
|
Just-Baringo X, Albericio F, Álvarez M. Engineering von Thiopeptiden: ein multidisziplinärer Weg zu neuen Wirkstoffen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201307288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Just-Baringo X, Albericio F, Álvarez M. Thiopeptide engineering: a multidisciplinary effort towards future drugs. Angew Chem Int Ed Engl 2014; 53:6602-16. [PMID: 24861213 DOI: 10.1002/anie.201307288] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Indexed: 11/12/2022]
Abstract
The recent development of thiopeptide analogues of antibiotics has allowed some of the limitations inherent to these naturally occurring substances to be overcome. Chemical synthesis, semisynthetic derivatization, and engineering of the biosynthetic pathway have independently led to complementary modifications of various thiopeptides. Some of the new substances have displayed improved profiles, not only as antibiotics, but also as antiplasmodial and anticancer drugs. The design of novel molecules based on the thiopeptide scaffold appears to be the only strategy to exploit the high potential they have shown in vitro. Herein we present the most relevant achievements in the production of thiopeptide analogues and also discuss the way the different approaches might be combined in a multidisciplinary strategy to produce more sophisticated structures.
Collapse
Affiliation(s)
- Xavier Just-Baringo
- Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, Baldiri Reixac 10, 08028 Barcelona (Spain) http://www.pcb.ub.edu/fama/htm/home.htm; CIBER-BBN, Networking Centre on Bioengineering Biomaterials and Nanomedicine, 08028 Barcelona (Spain)
| | | | | |
Collapse
|
39
|
Myers CL, Harris J, Yeung JCK, Honek JF. Molecular interactions between thiostrepton and the TipAS protein from Streptomyces lividans. Chembiochem 2014; 15:681-7. [PMID: 24616128 DOI: 10.1002/cbic.201300724] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 11/07/2022]
Abstract
In Streptomyces lividans, the expression of several proteins is stimulated by the thiopeptide antibiotic thiostrepton. Two of these, TipAL and TipAS, autoregulate their expression after covalently binding to thiostrepton; this irreversibly sequesters the antibiotic and desensitizes the organism to its effects. In this work, additional molecular recognition interactions involved in this critical event were explored by utilizing various thiostrepton analogues and several site-directed mutants of the TipAS antibiotic binding protein. Dissociation constants for several thiostrepton analogues ranged from 0.19 to 12.95 μM, depending on the analogue. The contributions of specific structural elements of the thiostrepton molecule to this interaction have been discerned, and an unusual covalent modification between the antibiotic and a new residue in a TipAS mutant has been detected.
Collapse
Affiliation(s)
- Cullen L Myers
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)
| | | | | | | |
Collapse
|
40
|
Guo H, Wang J, Li Y, Yu Y, Zheng Q, Wu J, Liu W. Insight into bicyclic thiopeptide biosynthesis benefited from development of a uniform approach for molecular engineering and production improvement. Chem Sci 2014. [DOI: 10.1039/c3sc52015c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Deane CD, Melby JO, Molohon KJ, Susarrey AR, Mitchell DA. Engineering unnatural variants of plantazolicin through codon reprogramming. ACS Chem Biol 2013; 8:1998-2008. [PMID: 23823732 DOI: 10.1021/cb4003392] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plantazolicin (PZN) is a polyheterocyclic natural product derived from a ribosomal peptide that harbors remarkable antibiotic selectivity for the causative agent of anthrax, Bacillus anthracis. To simultaneously establish the structure-activity relationship of PZN and the substrate tolerance of the biosynthetic pathway, an Escherichia coli expression strain was engineered to heterologously produce PZN analogues. Variant PZN precursor genes were produced by site-directed mutagenesis and later screened by mass spectrometry to assess post-translational modification and export by E. coli. From a screen of 72 precursor peptides, 29 PZN variants were detected. This analogue collection provided insight into the selectivity of the post-translational modifying enzymes and established the boundaries of the natural biosynthetic pathway. Unlike other studied thiazole/oxazole-modified microcins, the biosynthetic machinery appeared to be finely tuned toward the production of PZN, such that the cognate enzymes did not process even other naturally occurring sequences from similar biosynthetic clusters. The modifying enzymes were exquisitely selective, installing heterocycles only at predefined positions within the precursor peptides while leaving neighboring residues unmodified. Nearly all substitutions at positions normally harboring heterocycles prevented maturation of a PZN variant, though some exceptions were successfully produced lacking a heterocycle at the penultimate residue. No variants containing additional heterocycles were detected, although several peptide sequences yielded multiple PZN variants as a result of varying oxidation states of select residues. Eleven PZN variants were produced in sufficient quantity to facilitate purification and assessment of their antibacterial activity, providing insight into the structure-activity relationship of PZN.
Collapse
Affiliation(s)
- Caitlin D. Deane
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joel O. Melby
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Katie J. Molohon
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Aziz R. Susarrey
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, ‡Institute for Genomic Biology, and §Department of Microbiology, ∥School of Molecular and Cellular
Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Yang X, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chemistry 2013; 19:7662-77. [PMID: 23666908 DOI: 10.1002/chem.201300401] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 11/08/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this Concept article, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the post-translational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | | |
Collapse
|
43
|
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108-60. [PMID: 23165928 DOI: 10.1039/c2np20085f] [Citation(s) in RCA: 1552] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Collapse
Affiliation(s)
- Paul G Arnison
- Prairie Plant Systems Inc, Botanical Alternatives Inc, Suite 176, 8B-3110 8th Street E, Saskatoon, SK, S7H 0W2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Q, Liu W. Biosynthesis of thiopeptide antibiotics and their pathway engineering. Nat Prod Rep 2013; 30:218-26. [DOI: 10.1039/c2np20107k] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Bowers AA, Acker MG, Young TS, Walsh CT. Generation of thiocillin ring size variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. J Am Chem Soc 2012; 134:10313-6. [PMID: 22686940 DOI: 10.1021/ja302820x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thiocillins from Bacillus cereus ATCC 14579 are natural products from the broader class of thiazolyl peptides. Their biosynthesis proceeds via extensive post-translational modification of a ribosomally encoded precursor peptide. This post-translational tailoring involves a key step formal cycloaddition between two distal serine residues. In the wild-type structure, this cycloaddition forms a major macrocycle circumscribed by 26-atoms (shortest path). Results presented herein demonstrate the promiscuity of this last step by means of a set of "competition" experiments. Cyclization proceeds in many cases to provide altered ring sizes, giving access to several variant rings sizes that have not previously been observed in nature.
Collapse
Affiliation(s)
- Albert A Bowers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
46
|
Insights into Quinaldic Acid Moiety Formation in Thiostrepton Biosynthesis Facilitating Fluorinated Thiopeptide Generation. ACTA ACUST UNITED AC 2012; 19:443-8. [DOI: 10.1016/j.chembiol.2012.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/01/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
|
47
|
|
48
|
Tianero MDB, Donia MS, Young TS, Schultz PG, Schmidt EW. Ribosomal route to small-molecule diversity. J Am Chem Soc 2011; 134:418-25. [PMID: 22107593 DOI: 10.1021/ja208278k] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cyanobactin ribosomal peptide (RP) natural product pathway was manipulated to incorporate multiple tandem mutations and non-proteinogenic amino acids, using eight heterologous components simultaneously expressed in Escherichia coli . These studies reveal the potential of RPs for the rational synthesis of complex, new small molecules over multiple-step biosynthetic pathways using simple genetic engineering.
Collapse
Affiliation(s)
- Ma Diarey B Tianero
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
49
|
Kirst HA. Recent derivatives from smaller classes of fermentation-derived antibacterials. Expert Opin Ther Pat 2011; 22:15-35. [DOI: 10.1517/13543776.2012.642370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Li C, Zhang F, Kelly WL. Mutagenesis of the thiostrepton precursor peptide at Thr7 impacts both biosynthesis and function. Chem Commun (Camb) 2011; 48:558-60. [PMID: 22068975 DOI: 10.1039/c1cc14281j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The seventh residue of thiostrepton is predicted to be critical for antibacterial activity. Substitution of Thr7 in the thiostrepton precursor peptide disrupts both biological activity and the successful biosynthesis of analogs.
Collapse
Affiliation(s)
- Chaoxuan Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|