1
|
Jinks M, Davies EC, Boughton BA, Lodge S, Maker GL. 1H NMR spectroscopic characterisation of HepG2 cells as a model metabolic system for toxicology studies. Toxicol In Vitro 2024; 99:105881. [PMID: 38906200 DOI: 10.1016/j.tiv.2024.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
The immortalised human hepatocellular HepG2 cell line is commonly used for toxicology studies as an alternative to animal testing due to its characteristic liver-distinctive functions. However, little is known about the baseline metabolic changes within these cells upon toxin exposure. We have applied 1H Nuclear Magnetic Resonance (NMR) spectroscopy to characterise the biochemical composition of HepG2 cells at baseline and post-exposure to hydrogen peroxide (H2O2). Metabolic profiles of live cells, cell extracts, and their spent media supernatants were obtained using 1H high-resolution magic angle spinning (HR-MAS) NMR and 1H NMR spectroscopic techniques. Orthogonal partial least squares discriminant analysis (O-PLS-DA) was used to characterise the metabolites that differed between the baseline and H2O2 treated groups. The results showed that H2O2 caused alterations to 10 metabolites, including acetate, glutamate, lipids, phosphocholine, and creatine in the live cells; 25 metabolites, including acetate, alanine, adenosine diphosphate (ADP), aspartate, citrate, creatine, glucose, glutamine, glutathione, and lactate in the cell extracts, and 22 metabolites, including acetate, alanine, formate, glucose, pyruvate, phenylalanine, threonine, tryptophan, tyrosine, and valine in the cell supernatants. At least 10 biochemical pathways associated with these metabolites were disrupted upon toxin exposure, including those involved in energy, lipid, and amino acid metabolism. Our findings illustrate the ability of NMR-based metabolic profiling of immortalised human cells to detect metabolic effects on central metabolism due to toxin exposure. The established data sets will enable more subtle biochemical changes in the HepG2 model cell system to be identified in future toxicity testing.
Collapse
Affiliation(s)
- Maren Jinks
- Australian National Phenome, Health Futures Institute, Harry Perkins Building, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Building, Murdoch University, Perth, WA 6150, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Emily C Davies
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Building, Murdoch University, Perth, WA 6150, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Berin A Boughton
- Australian National Phenome, Health Futures Institute, Harry Perkins Building, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Building, Murdoch University, Perth, WA 6150, Australia; La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Bundoora, VIC 3083, Australia
| | - Samantha Lodge
- Australian National Phenome, Health Futures Institute, Harry Perkins Building, Murdoch University, Perth, WA 6150, Australia; Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Building, Murdoch University, Perth, WA 6150, Australia
| | - Garth L Maker
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Building, Murdoch University, Perth, WA 6150, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.
| |
Collapse
|
2
|
Mandal P, Lanaridi O, Warth B, Ansari KM. Metabolomics as an emerging approach for deciphering the biological impact and toxicity of food contaminants: the case of mycotoxins. Crit Rev Food Sci Nutr 2023; 64:9859-9883. [PMID: 37283072 DOI: 10.1080/10408398.2023.2217451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure to mycotoxins through the dietary route occurs on a daily basis while their deleterious effects are exhibited in the form of ailments, such as inflammation, cancer, and hormonal imbalance. The negative impact of mycotoxins can be attributed to their interaction with various biomolecules and their interference in metabolic pathways. The activity of biomolecules, such as enzymes/receptors, which engage the intricate mechanism of endogenous metabolism, is more susceptible to disruption by metabolites of high toxicity, which gives rise to adverse health effects. Metabolomics is a useful analytical approach that can assist in unraveling such information. It can simultaneously and comprehensively analyze a large number of endogenous and exogenous molecules present in biofluids and can, thus, reveal biologically relevant perturbations following mycotoxin exposure. Information provided by genome, transcriptome and proteome analyses, which have been utilized for the elucidation of biological mechanisms so far, are further complemented by the addition of metabolomics in the available bioanalytics toolbox. Metabolomics can offer insight into complex biological processes and their respective response to several (co-)exposures. This review focuses on the most extensively studied mycotoxins reported in literature and their respective impact on the metabolome upon exposure.
Collapse
Affiliation(s)
- Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Olga Lanaridi
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kausar M Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Dragone M, Shitaye G, D’Abrosca G, Russo L, Fattorusso R, Isernia C, Malgieri G, Iacovino R. Inclusions of Pesticides by β-Cyclodextrin in Solution and Solid State: Chlorpropham, Monuron, and Propanil. Molecules 2023; 28:molecules28031331. [PMID: 36771001 PMCID: PMC9920956 DOI: 10.3390/molecules28031331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Persistence and degradation are important factors in determining the safe use of such synthetic products, and numerous studies have been addressed to develop pesticide remediation methods aimed at ameliorating these features. In this frame, the use of different cyclodextrins (CDs) molecules has attracted considerable attention due to their well-known non-toxic nature, limited environmental impact, and capability to reduce the environmental and health risks of pesticides. CDs appear to be a valuable tool for the elimination of pesticides from polluted areas as well as for better pesticide formulations that positively influence their hydrolysis or degradation. The present work investigates the interaction between β-cyclodextrins and three commonly used pesticides (i.e., chlorpropham, monuron, and propanil) both in solution and in the solid state by means of UV-Vis, FT-IR, and X-ray powder diffractometry. We show that such interactions result in all three cases in the formation of inclusion complexes with a 1:1 stoichiometry and binding constants (Kb) of 369.9 M-1 for chlorpropham, 292.3 M-1 for monuron, and 298.3 M-1 for propanil. We also report the energy-minimized structures in silico for each complex. Our data expand and complement the available literature data in indicating CDs as a low-cost and very effective tool capable of modulating the properties that determine the environmental fate of pesticides.
Collapse
Affiliation(s)
- Martina Dragone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Getasew Shitaye
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
- Department of Biomedical Sciences, School of Medical Sciences, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Gianluca D’Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
- Correspondence: ; Tel.: +39-0823-2746363
| |
Collapse
|
4
|
Essaouiba A, Jellali R, Gilard F, Gakière B, Okitsu T, Legallais C, Sakai Y, Leclerc E. Investigation of the Exometabolomic Profiles of Rat Islets of Langerhans Cultured in Microfluidic Biochip. Metabolites 2022; 12:metabo12121270. [PMID: 36557308 PMCID: PMC9786643 DOI: 10.3390/metabo12121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus (DM) is a complex disease with high prevalence of comorbidity and mortality. DM is predicted to reach more than 700 million people by 2045. In recent years, several advanced in vitro models and analytical tools were developed to investigate the pancreatic tissue response to pathological situations and identify therapeutic solutions. Of all the in vitro promising models, cell culture in microfluidic biochip allows the reproduction of in-vivo-like micro-environments. Here, we cultured rat islets of Langerhans using dynamic cultures in microfluidic biochips. The dynamic cultures were compared to static islets cultures in Petri. The islets' exometabolomic signatures, with and without GLP1 and isradipine treatments, were characterized by GC-MS. Compared to Petri, biochip culture contributes to maintaining high secretions of insulin, C-peptide and glucagon. The exometabolomic profiling revealed 22 and 18 metabolites differentially expressed between Petri and biochip on Day 3 and 5. These metabolites illustrated the increase in lipid metabolism, the perturbation of the pentose phosphate pathway and the TCA cycle in biochip. After drug stimulations, the exometabolome of biochip culture appeared more perturbed than the Petri exometabolome. The GLP1 contributed to the increase in the levels of glycolysis, pentose phosphate and glutathione pathways intermediates, whereas isradipine led to reduced levels of lipids and carbohydrates.
Collapse
Affiliation(s)
- Amal Essaouiba
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- Correspondence: (R.J.); (E.L.)
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Bâtiment 360, Avenue des Sciences, 91190 Gif sur Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Bâtiment 360, Avenue des Sciences, 91190 Gif sur Yvette, France
| | - Teru Okitsu
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Cécile Legallais
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Eric Leclerc
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Correspondence: (R.J.); (E.L.)
| |
Collapse
|
5
|
Dehghani F, Yousefinejad S, Walker DI, Omidi F. Metabolomics for exposure assessment and toxicity effects of occupational pollutants: current status and future perspectives. Metabolomics 2022; 18:73. [PMID: 36083566 DOI: 10.1007/s11306-022-01930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Work-related exposures to harmful agents or factors are associated with an increase in incidence of occupational diseases. These exposures often represent a complex mixture of different stressors, challenging the ability to delineate the mechanisms and risk factors underlying exposure-disease relationships. The use of omics measurement approaches that enable characterization of biological marker patterns provide internal indicators of molecular alterations, which could be used to identify bioeffects following exposure to a toxicant. Metabolomics is the comprehensive analysis of small molecule present in biological samples, and allows identification of potential modes of action and altered pathways by systematic measurement of metabolites. OBJECTIVES The aim of this study is to review the application of metabolomics studies for use in occupational health, with a focus on applying metabolomics for exposure monitoring and its relationship to occupational diseases. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2021. RESULTS Most of reviewed studies included worker populations exposed to heavy metals such as As, Cd, Pb, Cr, Ni, Mn and organic compounds such as tetrachlorodibenzo-p-dioxin, trichloroethylene, polyfluoroalkyl, acrylamide, polyvinyl chloride. Occupational exposures were associated with changes in metabolites and pathways, and provided novel insight into the relationship between exposure and disease outcomes. The reviewed studies demonstrate that metabolomics provides a powerful ability to identify metabolic phenotypes and bioeffect of occupational exposures. CONCLUSION Continued application to worker populations has the potential to enable characterization of thousands of chemical signals in biological samples, which could lead to discovery of new biomarkers of exposure for chemicals, identify possible toxicological mechanisms, and improved understanding of biological effects increasing disease risk associated with occupational exposure.
Collapse
Affiliation(s)
- Fatemeh Dehghani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health Sciences, Research Institute for Health, Department of Occupational Health and Safety Engineering, School of Health Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Research Institute for Health, Department of Occupational Health and Safety Engineering, School of Health Shiraz, University of Medical Sciences, Shiraz, Iran.
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fariborz Omidi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Mahmod II, Ismail IS, Alitheen NB, Normi YM, Abas F, Khatib A, Rudiyanto, Latip J. NMR and LCMS analytical platforms exhibited the nephroprotective effect of Clinacanthus nutans in cisplatin-induced nephrotoxicity in the in vitro condition. BMC Complement Med Ther 2020; 20:320. [PMID: 33092571 PMCID: PMC7579835 DOI: 10.1186/s12906-020-03067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Clinacanthus nutans (C. nutans) Lind. locally known as Belalai Gajah or Sabah snake grass is a medicinal plant belonging to Acanthaceae family. In Asia, this plant is traditionally used for treating skin rashes, insects and snake bites, diabetes mellitus, fever and for diuretic effect. C. nutans has been reported to possess biological activities including anti-oxidant, anti-inflammation, anti-cancer, anti-diabetic and anti-viral activities. Methods Proton Nuclear Magnetic Resonance (1H NMR) and Liquid Chromatography Mass Spectroscopy (LCMS) coupled with multivariate data analysis were employed to characterize the metabolic variations of intracellular metabolites and the compositional changes of the corresponding culture media in rat renal proximal tubular cells (NRK-52E). Results NMR and LCMS analysis highlighted choline, creatine, phosphocholine, valine, acetic acid, phenylalanine, leucine, glutamic acid, threonine, uridine and proline as the main metabolites which differentiated the cisplatin-induced group of NRK-52E from control cells extract. The corresponding media exhibited lactic acid, glutamine, glutamic acid and glucose-1-phosphate as the varied metabolites. The altered pathways perturbed by cisplatin nephrotoxic on NRK-52E cells included changes in amino acid metabolism, lipid metabolism and glycolysis. Conclusion The C. nutans aqueous extract (1000 μg/mL) exhibited the most potential nephroprotective effect against cisplatin toxicity on NRK-52E cell lines at 89% of viability. The protective effect could be seen through the changes of the metabolites such as choline, alanine and valine in the C. nutans pre-treated samples with those of the cisplatin-induced group. Supplementary information Supplementary information accompanies this paper at 10.1186/s12906-020-03067-3.
Collapse
Affiliation(s)
- Ilya Iryani Mahmod
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Faculty of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Rudiyanto
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Jalifah Latip
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
Islam MN, Griffin TP, Sander E, Rocks S, Qazi J, Cabral J, McCaul J, McMorrow T, Griffin MD. Human mesenchymal stromal cells broadly modulate high glucose-induced inflammatory responses of renal proximal tubular cell monolayers. Stem Cell Res Ther 2019; 10:329. [PMID: 31744554 PMCID: PMC6862760 DOI: 10.1186/s13287-019-1424-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/08/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Renal proximal tubular epithelial cells (RPTEC) are dysfunctional in diabetic kidney disease (DKD). Mesenchymal stromal cells (MSC) may modulate DKD pathogenesis through anti-inflammatory mediators. This study aimed to investigate the pro-inflammatory effect of extended exposure to high glucose (HG) concentration on stable RPTEC monolayers and the influence of MSC on this response. METHODS Morphologically stable human RPTEC/TERT1 cell monolayers were exposed to 5 mM and 30 mM (HG) D-glucose or to 5 mM D-glucose + 25 mM D-mannitol (MAN) for 5 days with sequential immunoassays of supernatants and end-point transcriptomic analysis by RNA sequencing. Under the same conditions, MSC-conditioned media (MSC-CM) or MSC-containing transwells were added for days 4-5. Effects of CM from HG- and MAN-exposed RPTEC/MSC co-cultures on cytokine secretion by monocyte-derived macrophages were determined. RESULTS After 72-80 h, HG resulted in increased RPTEC/TERT1 release of interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1 and neutrophil gelatinase-associated lipocalin (NGAL). The HG pro-inflammatory effect was attenuated by concentrated (10×) MSC-CM and, to a greater extent, by MSC transwell co-culture. Bioinformatics analysis of RNA sequencing data confirmed a predominant effect of HG on inflammation-related mediators and biological processes/KEGG pathways in RPTEC/TERT1 stable monolayers as well as the non-contact-dependent anti-inflammatory effect of MSC. Finally, CM from HG-exposed RPTEC/MSC transwell co-cultures was associated with attenuated secretion of inflammatory mediators by macrophages compared to CM from HG-stimulated RPTEC alone. CONCLUSIONS Stable RPTEC monolayers demonstrate delayed pro-inflammatory response to HG that is attenuated by close proximity to human MSC. In DKD, this MSC effect has potential to modulate hyperglycemia-associated RPTEC/macrophage cross-talk.
Collapse
Affiliation(s)
- Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Tomás P Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland.,Centre for Endocrinology, Diabetes and Metabolism, Galway University Hospitals, Galway, Ireland
| | - Elizabeth Sander
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Stephanie Rocks
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Junaid Qazi
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Joana Cabral
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Jasmin McCaul
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Tara McMorrow
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland.
| |
Collapse
|
8
|
Chiang JY, Lee SH, Chen YC, Wu CK, Chuang JY, Lo SC, Yeh HM, Yeh SFS, Hsu CA, Lin BB, Chang PC, Chang CH, Liang HJ, Chiang FT, Lin CY, Juang JMJ. Metabolomic Analysis of Platelets of Patients With Aspirin Non-Response. Front Pharmacol 2019; 10:1107. [PMID: 31680941 PMCID: PMC6797853 DOI: 10.3389/fphar.2019.01107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Aspirin is the most commonly used antiplatelet agent for the prevention of cardiovascular diseases. However, a certain proportion of patients do not respond to aspirin therapy. The mechanisms of aspirin non-response remain unknown. The unique metabolomes in platelets of patients with coronary artery disease (CAD) with aspirin non-response may be one of the causes of aspirin resistance. Materials and Methods: We enrolled 29 patients with CAD who were aspirin non-responders, defined as a study subject who were taking aspirin with a platelet aggregation time less than 193 s by PFA-100, and 31 age- and sex-matched patients with CAD who were responders. All subjects had been taking 100 mg of aspirin per day for more than 1 month. Hydrophilic metabolites from the platelet samples were extracted and analyzed by nuclear magnetic resonance (NMR). Both 1D 1H and 2D J-resolved NMR spectra were obtained followed by spectral processing and multivariate statistical analysis, such as partial least squares discriminant analysis (PLS-DA). Results: Eleven metabolites were identified. The PLS-DA model could not distinguish aspirin non-responders from responders. Those with low serum glycine level had significantly shorter platelet aggregation time (mean, 175.0 s) compared with those with high serum glycine level (259.5 s). However, this association became non-significant after correction for multiple tests. Conclusions: The hydrophilic metabolic profile of platelets was not different between aspirin non-responders and responders. An association between lower glycine levels and higher platelet activity in patients younger than 65 years suggests an important role of glycine in the pathophysiology of aspirin non-response.
Collapse
Affiliation(s)
- Jiun-Yang Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yen-Ching Chen
- College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Cho-Kai Wu
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Yuan Chuang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Shyh-Chyi Lo
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Ming Yeh
- Department of Anesthesiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Fan Sherri Yeh
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-An Hsu
- Division of Haematology, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bin-Bin Lin
- Division of Haematology, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pi-Chu Chang
- Division of Haematology, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hsin Chang
- Division of Haematology, Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fu-Tien Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Cardiovascular Center, Fu-Jen Catholic University Hospital, New Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
9
|
Lagies S, Pichler R, Bork T, Kaminski MM, Troendle K, Zimmermann S, Huber TB, Walz G, Lienkamp SS, Kammerer B. Impact of Diabetic Stress Conditions on Renal Cell Metabolome. Cells 2019; 8:cells8101141. [PMID: 31554337 PMCID: PMC6829414 DOI: 10.3390/cells8101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023] Open
Abstract
Diabetic kidney disease is a major complication in diabetes mellitus, and the most common reason for end-stage renal disease. Patients suffering from diabetes mellitus encounter glomerular damage by basement membrane thickening, and develop albuminuria. Subsequently, albuminuria can deteriorate the tubular function and impair the renal outcome. The impact of diabetic stress conditions on the metabolome was investigated by untargeted gas chromatography–mass spectrometry (GC-MS) analyses. The results were validated by qPCR analyses. In total, four cell lines were tested, representing the glomerulus, proximal nephron tubule, and collecting duct. Both murine and human cell lines were used. In podocytes, proximal tubular and collecting duct cells, high glucose concentrations led to global metabolic alterations in amino acid metabolism and the polyol pathway. Albumin overload led to the further activation of the latter pathway in human proximal tubular cells. In the proximal tubular cells, aldo-keto reductase was concordantly increased by glucose, and partially increased by albumin overload. Here, the combinatorial impact of two stressful agents in diabetes on the metabolome of kidney cells was investigated, revealing effects of glucose and albumin on polyol metabolism in human proximal tubular cells. This study shows the importance of including highly concentrated albumin in in vitro studies for mimicking diabetic kidney disease.
Collapse
Affiliation(s)
- Simon Lagies
- Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Roman Pichler
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Tillmann Bork
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Michael M Kaminski
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kevin Troendle
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gerd Walz
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Bernd Kammerer
- Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany.
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
10
|
Environmental cadmium exposure induces alterations in the urinary metabolic profile of pregnant women. Int J Hyg Environ Health 2019; 222:556-562. [DOI: 10.1016/j.ijheh.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/29/2022]
|
11
|
Limonciel A, van Breda SG, Jiang X, Tredwell GD, Wilmes A, Aschauer L, Siskos AP, Sachinidis A, Keun HC, Kopp-Schneider A, de Kok TM, Kleinjans JCS, Jennings P. Persistence of Epigenomic Effects After Recovery From Repeated Treatment With Two Nephrocarcinogens. Front Genet 2018; 9:558. [PMID: 30559759 PMCID: PMC6286959 DOI: 10.3389/fgene.2018.00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
The discovery of the epigenetic regulation of transcription has provided a new source of mechanistic understanding to long lasting effects of chemicals. However, this information is still seldom exploited in a toxicological context and studies of chemical effect after washout remain rare. Here we studied the effects of two nephrocarcinogens on the human proximal tubule cell line RPTEC/TERT1 using high-content mRNA microarrays coupled with miRNA, histone acetylation (HA) and DNA methylation (DM) arrays and metabolomics during a 5-day repeat-dose exposure and 3 days after washout. The mycotoxin ochratoxin A (OTA) was chosen as a model compound for its known impact on HA and DM. The foremost effect observed was the modulation of thousands of mRNAs and histones by OTA during and after exposure. In comparison, the oxidant potassium bromate (KBrO3) had a milder impact on gene expression and epigenetics. However, there was no strong correlation between epigenetic modifications and mRNA changes with OTA while with KBrO3 the gene expression data correlated better with HA for both up- and down-regulated genes. Even when focusing on the genes with persistent epigenetic modifications after washout, only half were coupled to matching changes in gene expression induced by OTA, suggesting that while OTA causes a major effect on the two epigenetic mechanisms studied, these alone cannot explain its impact on gene expression. Mechanistic analysis confirmed the known activation of Nrf2 and p53 by KBrO3, while OTA inhibited most of the same genes, and genes involved in the unfolded protein response. A few miRNAs could be linked to these effects of OTA, albeit without clear contribution of epigenetics to the modulation of the pathways at large. Metabolomics revealed disturbances in amino acid balance, energy catabolism, nucleotide metabolism and polyamine metabolism with both chemicals. In conclusion, the large impact of OTA on transcription was confirmed at the mRNA level but also with two high-content epigenomic methodologies. Transcriptomic data confirmed the previously reported activation (by KBrO3) and inhibition (by OTA) of protective pathways. However, the integration of omic datasets suggested that HA and DM were not driving forces in the gene expression changes induced by either chemical.
Collapse
Affiliation(s)
- Alice Limonciel
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simone G van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Xiaoqi Jiang
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gregory D Tredwell
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT, Australia
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lydia Aschauer
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria.,Brookes Innovation Hub, Orbit Discovery, Oxford, United Kingdom
| | - Alexandros P Siskos
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | - Hector C Keun
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | - Theo M de Kok
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Sharma D, Gondaliya P, Tiwari V, Kalia K. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomed Pharmacother 2018; 109:1610-1619. [PMID: 30551415 DOI: 10.1016/j.biopha.2018.10.195] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
Abstract
RhoA/Rho-associated coiled-coil forming protein serine/threonine kinase (ROCK) has appeared as a potential therapeutic target in numerous diseases, because of its preventing action on various enzymes providing antioxidant and cytoprotective action. Progression and pathophysiology of diabetic nephropathy have also shown potential involvement of oxidative stress and inflammatory pathways. In the present study, we investigated the effect of kaempferol on hyperglycemia-induced activation of RhoA kinase and associated inflammatory signaling cascade. Currently there is only small literature available on the mechanism of anti-diabetic and nephroprotective action of this compound, which creates a void. Therefore, we focused here on the investigation of molecular mechanisms for kaempferol by means of in vitro testing, using rat (NRK-52E) and human renal tubular epithelial cells (RPTEC). Our findings suggest that kaempferol inhibits hyperglycemia-induced activation of RhoA and decreased oxidative stress, pro-inflammatory cytokines (TNF-α and IL-1β) and fibrosis (TGF-β1 expression, extracellular matrix protein expression) in NRK-52E and RPTEC cells. Therefore, kaempferol can be used as a potential therapeutic for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Dilip Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
13
|
Gil AM, Duarte D, Pinto J, Barros AS. Assessing Exposome Effects on Pregnancy through Urine Metabolomics of a Portuguese (Estarreja) Cohort. J Proteome Res 2018; 17:1278-1289. [DOI: 10.1021/acs.jproteome.7b00878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ana M. Gil
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela Duarte
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Pinto
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UCIBIO@REQUIMTE/Laboratório
de Toxicologia, Departamento de Ciências Biológicas,
Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - António S. Barros
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Cardiothoracic Surgery and Physiology, Faculty of Medicine, Porto 4200-319, Portugal
| |
Collapse
|
14
|
Hilmenyuk T, Ruckstuhl CA, Hayoz M, Berchtold C, Nuoffer JM, Solanki S, Keun HC, Beavis PA, Riether C, Ochsenbein AF. T cell inhibitory mechanisms in a model of aggressive Non-Hodgkin's Lymphoma. Oncoimmunology 2018; 7:e1365997. [PMID: 29296517 DOI: 10.1080/2162402x.2017.1365997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/16/2017] [Accepted: 08/05/2017] [Indexed: 12/30/2022] Open
Abstract
A reduced immune surveillance due to immune deficiency or treatment with immunosuppressive drugs is associated with a higher risk to develop aggressive Non-Hodgkin's lymphoma (NHL). Nevertheless, NHL also develops in immunocompetent patients indicating an escape from the immune system. T cell function in advanced aggressive lymphoma is not well characterized and the molecular mechanisms how malignant B cells influence T cell function are ill-defined. We therefore studied T cell function in Eμ-myc transgenic mice that develop an aggressive B cell lymphoma with some similarities to human Burkitt-lymphoma (BL). In advanced lymphoma, the number of T cells was severely reduced and the remaining CD4+ and CD8+ T cells lost the capacity to produce effector cytokines and expand upon re-stimulation. T cells in lymphoma-bearing mice were characterized by the expression of the immune inhibitory molecules programmed death (PD)-1, 2B4 and lymphocyte activation protein (LAG)-3. The proto-oncogene c-Myc not only drives cell proliferation and disease progression but also induces apoptosis of the malignant cells. We found that apoptotic lymphoma cells release purine metabolites that inhibit T cell function. Taken together, our data document that the characteristic high cell turnover and apoptotic rate in aggressive NHL induce a severe T cell dysfunction mediated by several immune-inhibitory mechanisms including ligation of inhibitory ligands and purine metabolites. Blocking a single mechanism only partially restored T cell function and did not increase survival of lymphoma mice.
Collapse
Affiliation(s)
- Tamara Hilmenyuk
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Carla A Ruckstuhl
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Michael Hayoz
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Christian Berchtold
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Shyam Solanki
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, London, UK
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, London, UK
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Hayton S, Maker GL, Mullaney I, Trengove RD. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci 2017; 74:4421-4441. [PMID: 28669031 PMCID: PMC11107723 DOI: 10.1007/s00018-017-2582-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolomics is an analytical technique that investigates the small biochemical molecules present within a biological sample isolated from a plant, animal, or cultured cells. It can be an extremely powerful tool in elucidating the specific metabolic changes within a biological system in response to an environmental challenge such as disease, infection, drugs, or toxins. A historically difficult step in the metabolomics pipeline is in data interpretation to a meaningful biological context, for such high-variability biological samples and in untargeted metabolomics studies that are hypothesis-generating by design. One way to achieve stronger biological context of metabolomic data is via the use of cultured cell models, particularly for mammalian biological systems. The benefits of in vitro metabolomics include a much greater control of external variables and no ethical concerns. The current concerns are with inconsistencies in experimental procedures and level of reporting standards between different studies. This review discusses some of these discrepancies between recent studies, such as metabolite extraction and data normalisation. The aim of this review is to highlight the importance of a standardised experimental approach to any cultured cell metabolomics study and suggests an example procedure fully inclusive of information that should be disclosed in regard to the cell type/s used and their culture conditions. Metabolomics of cultured cells has the potential to uncover previously unknown information about cell biology, functions and response mechanisms, and so the accurate biological interpretation of the data produced and its ability to be compared to other studies should be considered vitally important.
Collapse
Affiliation(s)
- Sarah Hayton
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Garth L Maker
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia.
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia.
| | - Ian Mullaney
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Robert D Trengove
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia
| |
Collapse
|
16
|
Hayton S, Maker GL, Mullaney I, Trengove RD. Untargeted metabolomics of neuronal cell culture: A model system for the toxicity testing of insecticide chemical exposure. J Appl Toxicol 2017; 37:1481-1492. [DOI: 10.1002/jat.3498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah Hayton
- Separation Sciences and Metabolomics Laboratories; Murdoch University; Perth WA Australia
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
| | - Garth L. Maker
- Separation Sciences and Metabolomics Laboratories; Murdoch University; Perth WA Australia
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
| | - Ian Mullaney
- School of Veterinary and Life Sciences; Murdoch University; Perth WA Australia
| | - Robert D. Trengove
- Separation Sciences and Metabolomics Laboratories; Murdoch University; Perth WA Australia
| |
Collapse
|
17
|
Metabolite signatures of doxorubicin induced toxicity in human induced pluripotent stem cell-derived cardiomyocytes. Amino Acids 2017; 49:1955-1963. [PMID: 28421296 PMCID: PMC5696498 DOI: 10.1007/s00726-017-2419-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/08/2017] [Indexed: 12/11/2022]
Abstract
Drug-induced off-target cardiotoxicity, particularly following anti-cancer therapy, is a major concern in new drug discovery and development. To ensure patient safety and efficient pharmaceutical drug development, there is an urgent need to develop more predictive cell model systems and distinct toxicity signatures. In this study, we applied our previously proposed repeated exposure toxicity methodology and performed 1H NMR spectroscopy-based extracellular metabolic profiling in culture medium of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exposed to doxorubicin (DOX), an anti-cancer agent. Single exposure to DOX did not show alteration in the basal level of extracellular metabolites while repeated exposure to DOX caused reduction in the utilization of pyruvate and acetate, and accumulation of formate compared to control culture medium. During drug washout, only pyruvate showed reversible effect and restored its utilization by hiPSC-CMs. On the other hand, formate and acetate showed irreversible effect in response to DOX exposure. DOX repeated exposure increased release of lactate dehydrogenase (LDH) in culture medium suggesting cytotoxicity events, while declined ATP levels in hiPSC-CMs. Our data suggests DOX perturbed mitochondrial metabolism in hiPSC-CMs. Pyruvate, acetate and formate can be used as metabolite signatures of DOX induced cardiotoxicity. Moreover, the hiPSC-CMs model system coupled with metabolomics technology offers a novel and powerful approach to strengthen cardiac safety assessment during new drug discovery and development.
Collapse
|
18
|
Li H, Wang M, Liang Q, Jin S, Sun X, Jiang Y, Pan X, Zhou Y, Peng Y, Zhang B, Zhou A, Zhang Y, Chen Z, Cao J, Zhang H, Xia W, Zheng T, Cai Z, Li Y, Xu S. Urinary metabolomics revealed arsenic exposure related to metabolic alterations in general Chinese pregnant women. J Chromatogr A 2017; 1479:145-152. [DOI: 10.1016/j.chroma.2016.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/16/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
|
19
|
Amberg A, Riefke B, Schlotterbeck G, Ross A, Senn H, Dieterle F, Keck M. NMR and MS Methods for Metabolomics. Methods Mol Biol 2017; 1641:229-258. [PMID: 28748468 DOI: 10.1007/978-1-4939-7172-5_13] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.
Collapse
Affiliation(s)
| | - Björn Riefke
- Investigational Toxicology, Metabolic Profiling and Clinical Pathology, Bayer Pharma AG, Muellerstr. 178, Berlin, 13353, Germany.
| | - Götz Schlotterbeck
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences, Northwestern Switzerland, Muttenz, Switzerland
| | - Alfred Ross
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hans Senn
- Heythrop College UCL, Kensington Square, London W85HN, UK
| | - Frank Dieterle
- New Products and Medical, Near Patient Testing, Novartis, Basel, Switzerland
| | - Matthias Keck
- Analytical Development 1, Bayer Pharma AG, Wupperal, 42096, Germany
| |
Collapse
|
20
|
Bouhifd M, Beger R, Flynn T, Guo L, Harris G, Hogberg H, Kaddurah-Daouk R, Kamp H, Kleensang A, Maertens A, Odwin-DaCosta S, Pamies D, Robertson D, Smirnova L, Sun J, Zhao L, Hartung T. Quality assurance of metabolomics. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2016; 32:319-26. [PMID: 26536290 PMCID: PMC5578451 DOI: 10.14573/altex.1509161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 12/15/2022]
Abstract
Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however – from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining – is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.
Collapse
Affiliation(s)
- Mounir Bouhifd
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Richard Beger
- US Food and Drug Administration, National Center for Toxicological Research, Division of Systems Biology, Jefferson, AR, USA
| | - Thomas Flynn
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Laurel, MD, USA
| | | | - Georgina Harris
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Helena Hogberg
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Hennicke Kamp
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Andre Kleensang
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Alexandra Maertens
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Shelly Odwin-DaCosta
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - David Pamies
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | | | - Lena Smirnova
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Jinchun Sun
- US Food and Drug Administration, National Center for Toxicological Research, Division of Systems Biology, Jefferson, AR, USA
| | - Liang Zhao
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA.,CAAT-Europe, University of Konstanz, Germany
| |
Collapse
|
21
|
Heussner A, Paget T. Evaluation of renal in vitro models used in ochratoxin research. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) induces renal carcinomas in rodents with a specific localisation in the S3 segment of proximal tubules and distinct early severe tissue alterations, which have been observed also in other species. Pronounced species- and sex-specific differences in toxicity occur and similar effects cannot be excluded in humans, however precise mechanism(s) remain elusive until today. In such cases, the use of in vitro models for mechanistic investigations can be very useful; in particular if a non-genotoxic mechanism of cancer formation is assumed which include cytotoxic effects. However, potential genotoxic mechanisms can also be investigated in vitro. A crucial issue of in vitro research is the choice of the appropriate cell model. Apparently, the cellular target of OTA is the renal proximal tubular cell; therefore cells from this tissue area are the most reasonable model. Furthermore, cells from affected species should be used and can be compared to cells of human origin. Another important parameter is whether to use primary cultures or to choose a cell line from the huge variety of cell lines available. In any case, important characteristics and quality controls need to be verified beforehand. Therefore, this review discusses the renal in vitro models that have been used for the investigation of renal ochratoxin toxicity. In particular, we discuss the choice of the models and the essential parameters making them suitable models for ochratoxin research together with exemplary results from this research. Furthermore, new promising models such as hTERT-immortalised cells and 3D-cultures are briefly discussed.
Collapse
Affiliation(s)
- A.H. Heussner
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| | - T. Paget
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| |
Collapse
|
22
|
Slyne J, Slattery C, McMorrow T, Ryan MP. New developments concerning the proximal tubule in diabetic nephropathy:in vitromodels and mechanisms. Nephrol Dial Transplant 2015. [DOI: 10.1093/ndt/gfv264] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
23
|
Ranninger C, Rurik M, Limonciel A, Ruzek S, Reischl R, Wilmes A, Jennings P, Hewitt P, Dekant W, Kohlbacher O, Huber CG. Nephron Toxicity Profiling via Untargeted Metabolome Analysis Employing a High Performance Liquid Chromatography-Mass Spectrometry-based Experimental and Computational Pipeline. J Biol Chem 2015; 290:19121-32. [PMID: 26055719 DOI: 10.1074/jbc.m115.644146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
Untargeted metabolomics has the potential to improve the predictivity of in vitro toxicity models and therefore may aid the replacement of expensive and laborious animal models. Here we describe a long term repeat dose nephrotoxicity study conducted on the human renal proximal tubular epithelial cell line, RPTEC/TERT1, treated with 10 and 35 μmol·liter(-1) of chloroacetaldehyde, a metabolite of the anti-cancer drug ifosfamide. Our study outlines the establishment of an automated and easy to use untargeted metabolomics workflow for HPLC-high resolution mass spectrometry data. Automated data analysis workflows based on open source software (OpenMS, KNIME) enabled a comprehensive and reproducible analysis of the complex and voluminous metabolomics data produced by the profiling approach. Time- and concentration-dependent responses were clearly evident in the metabolomic profiles. To obtain a more comprehensive picture of the mode of action, transcriptomics and proteomics data were also integrated. For toxicity profiling of chloroacetaldehyde, 428 and 317 metabolite features were detectable in positive and negative modes, respectively, after stringent removal of chemical noise and unstable signals. Changes upon treatment were explored using principal component analysis, and statistically significant differences were identified using linear models for microarray assays. The analysis revealed toxic effects only for the treatment with 35 μmol·liter(-1) for 3 and 14 days. The most regulated metabolites were glutathione and metabolites related to the oxidative stress response of the cells. These findings are corroborated by proteomics and transcriptomics data, which show, among other things, an activation of the Nrf2 and ATF4 pathways.
Collapse
Affiliation(s)
- Christina Ranninger
- From the Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, 5020 Salzburg, Austria
| | - Marc Rurik
- the Applied Bioinformatics Group, Center for Bioinformatics, Quantitative Biology Center and Department of Computer Science, University of Tübingen, Tübingen 72076, Germany
| | - Alice Limonciel
- the Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Silke Ruzek
- From the Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, 5020 Salzburg, Austria
| | - Roland Reischl
- From the Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, 5020 Salzburg, Austria
| | - Anja Wilmes
- the Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Paul Jennings
- the Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Philip Hewitt
- Merck KGaA, Merck Serono, Nonclinical Safety, Darmstadt 64293, Germany, and
| | - Wolfgang Dekant
- the Department of Toxicology, University of Würzburg, Würzburg 97078, Germany
| | - Oliver Kohlbacher
- the Applied Bioinformatics Group, Center for Bioinformatics, Quantitative Biology Center and Department of Computer Science, University of Tübingen, Tübingen 72076, Germany
| | - Christian G Huber
- From the Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, 5020 Salzburg, Austria,
| |
Collapse
|
24
|
Davis SA, Vincent BM, Endo MM, Whitesell L, Marchillo K, Andes DR, Lindquist S, Burke MD. Nontoxic antimicrobials that evade drug resistance. Nat Chem Biol 2015; 11:481-7. [PMID: 26030729 PMCID: PMC4472574 DOI: 10.1038/nchembio.1821] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/10/2015] [Indexed: 01/21/2023]
Abstract
Drugs that act more promiscuously provide fewer routes for the emergence of resistant mutants. But this benefit often comes at the cost of serious off-target and dose-limiting toxicities. The classic example is the antifungal amphotericin B (AmB), which has evaded resistance for more than half a century. We report dramatically less toxic amphotericins that nevertheless evade resistance. They are scalably accessed in just three steps from the natural product, and bind their target (the fungal sterol, ergosterol) with far greater selectivity than AmB. Hence, they are less toxic and far more effective in a mouse model of systemic candidiasis. Surprisingly, exhaustive efforts to select for mutants resistant to these more selective compounds revealed that they are just as impervious to resistance as AmB. Thus, highly selective cytocidal action and the evasion of resistance are not mutually exclusive, suggesting practical routes to the discovery of less toxic, resistance-evasive therapies.
Collapse
Affiliation(s)
- Stephen A Davis
- 1] Howard Hughes Medical Institute, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Roger Adam Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Benjamin M Vincent
- 1] Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Matthew M Endo
- 1] Howard Hughes Medical Institute, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Roger Adam Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Karen Marchillo
- 1] Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA. [2] Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - David R Andes
- 1] Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA. [2] Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Susan Lindquist
- 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Martin D Burke
- 1] Howard Hughes Medical Institute, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Roger Adam Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
25
|
Abstract
Systems biology and synthetic biology are emerging disciplines which are becoming increasingly utilised in several areas of bioscience. Toxicology is beginning to benefit from systems biology and we suggest in the future that is will also benefit from synthetic biology. Thus, a new era is on the horizon. This review illustrates how a suite of innovative techniques and tools can be applied to understanding complex health and toxicology issues. We review limitations confronted by the traditional computational approaches to toxicology and epidemiology research, using polycyclic aromatic hydrocarbons (PAHs) and their effects on adverse birth outcomes as an illustrative example. We introduce how systems toxicology (and their subdisciplines, genomic, proteomic, and metabolomic toxicology) will help to overcome such limitations. In particular, we discuss the advantages and disadvantages of mathematical frameworks that computationally represent biological systems. Finally, we discuss the nascent discipline of synthetic biology and highlight relevant toxicological centred applications of this technique, including improvements in personalised medicine. We conclude this review by presenting a number of opportunities and challenges that could shape the future of these rapidly evolving disciplines.
Collapse
|
26
|
Gu L, Li S, Zhang R, Zhang Y, Wang X, Zhang K, Liu Z, Bi K, Chen X. Integrative investigation of Semen Strychni nephrotoxicity and the protective effect of Radix Glycyrrhizae by a UPLC-MS/MS method based cell metabolomics strategy in HEK 293t cell lysates. RSC Adv 2015. [DOI: 10.1039/c5ra07708g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Scheme of the cell metabolomics strategy workflow.
Collapse
Affiliation(s)
- Liqiang Gu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shujuan Li
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ruowen Zhang
- Stem Cell Institute
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Yuanyuan Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiaofan Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Kexia Zhang
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ziying Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Kaishun Bi
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xiaohui Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
27
|
Huang JX, Blaskovich MA, Cooper MA. Cell- and biomarker-based assays for predicting nephrotoxicity. Expert Opin Drug Metab Toxicol 2014; 10:1621-35. [DOI: 10.1517/17425255.2014.967681] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Abstract
Nephrotoxicity or renal toxicity can be a result of hemodynamic changes, direct injury to cells and tissue, inflammatory tissue injury, and/or obstruction of renal excretion. Nephrotoxicity is frequently induced by a wide spectrum of therapeutic drugs and environ mental pollutants. Knowledge of the complex molecular and pathophysiologic mechanisms leading to nephrotoxicity remains limited, in part, by research that historically focused on single or relatively few risk markers. As such, current kidney injury biomarkers are inadequate in terms of sensitivity and specificity. In contrast, metabolomics enables screening of a vast array of metabolites simultaneously using NMR and MS to assess their role in nephrotoxicity development and progression. A more comprehensive understanding of these biochemical pathways would also provide valuable insight to disease mechanisms critical for drug development and treatment.
Collapse
|
29
|
Dudka I, Kossowska B, Senhadri H, Latajka R, Hajek J, Andrzejak R, Antonowicz-Juchniewicz J, Gancarz R. Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: a preliminary study. ENVIRONMENT INTERNATIONAL 2014; 68:71-81. [PMID: 24713610 DOI: 10.1016/j.envint.2014.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 05/20/2023]
Abstract
Environmental metabonomics is the application of metabonomics to characterize the interactions of organisms with their environment. Metabolic profiling is an exciting addition to the armory of the epidemiologist for the discovery of new disease risk biomarkers and diagnostics. This work is a continuation of research searching for preclinical serum markers in a group of 389 healthy smelter workers exposed to lead, cadmium and arsenic. Changes in the metabolic profiles were studied using Proton Nuclear Magnetic Resonance Spectroscopy on pooled serum samples from both the metal exposed and control groups. These multivariate metabonomic datasets were analyzed with Principal Component Analysis and Partial Least Squares Discriminant Analysis. Analysis of metabolic profiles of people exposed to heavy metals suggests energy metabolism disturbance induced by heavy metals. Changes in lipid fraction (very-low-density lipoprotein - VLDL, low-density lipoprotein - LDL), unsaturated lipids and in the level of amino acids suggest perturbation of the metabolism of lipids and amino acids. This study illustrated the high reliability of NMR-based metabonomic profiling on the study of the biochemical effects induced by the mixture of heavy metals. This approach is capable of identifying intermediate biomarkers of response to toxicants at environmental/occupational concentrations, paving the way to its use in a monitoring of smelter workers exposed to low doses of lead, cadmium and arsenic.
Collapse
Affiliation(s)
- Ilona Dudka
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Barbara Kossowska
- Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland.
| | - Hanna Senhadri
- Institute of Biomedical Engineering and Instrumentation, Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Plac Grunwaldzki 13, 50-377 Wrocław, Poland.
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Julianna Hajek
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Ryszard Andrzejak
- Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 4, 50-367 Wrocław, Poland.
| | - Jolanta Antonowicz-Juchniewicz
- Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 4, 50-367 Wrocław, Poland.
| | - Roman Gancarz
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
30
|
Wenzel C, Riefke B, Gründemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Räse S, Ansari N, Esner M, Bickle M, Pampaloni F, Mattheyer C, Stelzer EH, Parczyk K, Prechtl S, Steigemann P. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 2014; 323:131-143. [PMID: 24480576 DOI: 10.1016/j.yexcr.2014.01.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
Abstract
Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions.
Collapse
Affiliation(s)
- Carsten Wenzel
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Björn Riefke
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Stephan Gründemann
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Alice Krebs
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Sven Christian
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Florian Prinz
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Marc Osterland
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Sven Golfier
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Sebastian Räse
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Nariman Ansari
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Germany
| | - Milan Esner
- Max Planck Institute of Molecular Cell Biology and Genetics, High-Throughput Technology Development Studio (TDS), Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, High-Throughput Technology Development Studio (TDS), Dresden, Germany
| | - Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Germany
| | - Christian Mattheyer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Germany
| | - Ernst H Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Germany
| | - Karsten Parczyk
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Stefan Prechtl
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany
| | - Patrick Steigemann
- Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin, Germany.
| |
Collapse
|
31
|
Irfan A, Cauchi M, Edmands W, Gooderham NJ, Njuguna J, Zhu H. Assessment of Temporal Dose-Toxicity Relationship of Fumed Silica Nanoparticle in Human Lung A549 Cells by Conventional Cytotoxicity and 1H-NMR-Based Extracellular Metabonomic Assays. Toxicol Sci 2014; 138:354-64. [DOI: 10.1093/toxsci/kfu009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Jennings P, Aschauer L, Wilmes A, Gstraunthaler G. Renal Cell Culture. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Bouhifd M, Hartung T, Hogberg HT, Kleensang A, Zhao L. Review: toxicometabolomics. J Appl Toxicol 2013; 33:1365-83. [PMID: 23722930 PMCID: PMC3808515 DOI: 10.1002/jat.2874] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/19/2022]
Abstract
Metabolomics use in toxicology is rapidly increasing, particularly owing to advances in mass spectroscopy, which is widely used in the life sciences for phenotyping disease states. Toxicology has the advantage of having the disease agent, the toxicant, available for experimental induction of metabolomics changes monitored over time and dose. This review summarizes the different technologies employed and gives examples of their use in various areas of toxicology. A prominent use of metabolomics is the identification of signatures of toxicity - patterns of metabolite changes predictive of a hazard manifestation. Increasingly, such signatures indicative of a certain hazard manifestation are identified, suggesting that certain modes of action result in specific derangements of the metabolism. This might enable the deduction of underlying pathways of toxicity, which, in their entirety, form the Human Toxome, a key concept for implementing the vision of Toxicity Testing for the 21st century. This review summarizes the current state of metabolomics technologies and principles, their uses in toxicology and gives a thorough overview on metabolomics bioinformatics, pathway identification and quality assurance. In addition, this review lays out the prospects for further metabolomics application also in a regulatory context.
Collapse
Affiliation(s)
| | - Thomas Hartung
- Correspondence to: T. Hartung, Johns Hopkins Bloomberg School of Public Health, Environmental Health Sciences, Chair for Evidence-based Toxicology, Center for Alternatives to Animal Testing, 615 N. Wolfe St., Baltimore, MD, 21205, USA.
| | | | | | | |
Collapse
|
34
|
Ahuja V, Sharma S. Drug safety testing paradigm, current progress and future challenges: an overview. J Appl Toxicol 2013; 34:576-94. [PMID: 24777877 DOI: 10.1002/jat.2935] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 12/29/2022]
Abstract
Early assessment of the toxicity potential of new molecules in pharmaceutical industry is a multi-dimensional task involving predictive systems and screening approaches to aid in the optimization of lead compounds prior to their entry into development phase. Due to the high attrition rate in the pharma industry in last few years, it has become imperative for the nonclinical toxicologist to focus on novel approaches which could be helpful for early screening of drug candidates. The need is that the toxicologists should change their classical approach to a more investigative approach. This review discusses the developments that allow toxicologists to anticipate safety problems and plan ways to address them earlier than ever before. This includes progress in the field of in vitro models, surrogate models, molecular toxicology, 'omics' technologies, translational safety biomarkers, stem-cell based assays and preclinical imaging. The traditional boundaries between teams focusing on efficacy/ safety and preclinical/ clinical aspects in the pharma industry are disappearing, and translational research-centric organizations with a focused vision of bringing drugs forward safely and rapidly are emerging. Today's toxicologist should collaborate with medicinal chemists, pharmacologists, and clinicians and these value-adding contributions will change traditional toxicologists from side-effect identifiers to drug development enablers.
Collapse
Affiliation(s)
- Varun Ahuja
- Drug Safety Assessment, Novel Drug Discovery and Development, Lupin Limited (Research Park), 46A/47A, Nande Village, MulshiTaluka, Pune, 412 115, India
| | | |
Collapse
|
35
|
Radford R, Frain H, Ryan MP, Slattery C, McMorrow T. Mechanisms of chemical carcinogenesis in the kidneys. Int J Mol Sci 2013; 14:19416-33. [PMID: 24071941 PMCID: PMC3821564 DOI: 10.3390/ijms141019416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Chemical carcinogens are substances which induce malignant tumours, increase their incidence or decrease the time taken for tumour formation. Often, exposure to chemical carcinogens results in tissue specific patterns of tumorigenicity. The very same anatomical, biochemical and physiological specialisations which permit the kidney to perform its vital roles in maintaining tissue homeostasis may in fact increase the risk of carcinogen exposure and contribute to the organ specific carcinogenicity observed with numerous kidney carcinogens. This review will address the numerous mechanisms which play a role in the concentration, bioactivation, and uptake of substances from both the urine and blood which significantly increase the risk of cancer in the kidney.
Collapse
Affiliation(s)
- Robert Radford
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Helena Frain
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Michael P. Ryan
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Craig Slattery
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Tara McMorrow
- UCD School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Dublin 4, Ireland; E-Mails: (R.R.); (H.F.); (M.P.R.); (C.S.)
- Renal Disease Research Group, School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
36
|
Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell metabolomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:495-501. [PMID: 23988149 DOI: 10.1089/omi.2012.0090] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract Metabolomics technologies enable the examination and identification of endogenous biochemical reaction products, revealing information on the precise metabolic pathways and processes within a living cell. Metabolism is either directly or indirectly involved with every aspect of cell function, and metabolomics is thus believed to be a reflection of the phenotype of any cell. Metabolomics analysis of cells has many potential applications and advantages compared to currently used methods in the postgenomics era. Cell metabolomics is an emerging field that addresses fundamental biological questions and allows one to observe metabolic phenomena in cells. Cell metabolomics consists of four sequential steps: (a) sample preparation and extraction, (b) metabolic profiles of low-weight metabolites based on MS or NMR spectroscopy techniques, (c) pattern recognition approaches and bioinformatics data analysis, (d) metabolites identification resulting in putative biomarkers and molecular targets. The biomarkers are eventually placed in metabolic networks to provide insight on the cellular biochemical phenomena. This article analyzes the recent developments in use of metabolomics to characterize and interpret the cellular metabolome in a wide range of pathophysiological and clinical contexts, and the putative roles of the endogenous small molecule metabolites in this new frontier of postgenomics biology and systems medicine.
Collapse
Affiliation(s)
- Aihua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Key Laboratory of Chinmedomics, Key Pharmacometabolomics Platform of Chinese Medicines, and Heilongjiang University of Chinese Medicine , Harbin, China
| | | | | | | | | |
Collapse
|
37
|
Blazquez M, Carretero A, Ellis JK, Athersuch TJ, Cavill R, Ebbels TMD, Keun HC, Castell JV, Lahoz A, Bort R. A combination of transcriptomics and metabolomics uncovers enhanced bile acid biosynthesis in HepG2 cells expressing CCAAT/enhancer-binding protein β (C/EBPβ), hepatocyte nuclear factor 4α (HNF4α), and constitutive androstane receptor (CAR). J Proteome Res 2013; 12:2732-41. [PMID: 23641669 DOI: 10.1021/pr400085n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of hepatoma-based in vitro models to study hepatocyte physiology is an invaluable tool for both industry and academia. Here, we develop an in vitro model based on the HepG2 cell line that produces chenodeoxycholic acid, the main bile acid in humans, in amounts comparable to human hepatocytes. A combination of adenoviral transfections for CCAAT/enhancer-binding protein β (C/EBPβ), hepatocyte nuclear factor 4α (HNF4α), and constitutive androstane receptor (CAR) decreased intracellular glutamate, succinate, leucine, and valine levels in HepG2 cells, suggestive of a switch to catabolism to increase lipogenic acetyl CoA and increased anaplerosis to replenish the tricarboxylic acid cycle. Transcripts of key genes involved in bile acid synthesis were significantly induced by approximately 160-fold. Consistently, chenodeoxycholic acid production rate was increased by more than 20-fold. Comparison between mRNA and bile acid levels suggest that 12-alpha hydroxylation of 7-alpha-hydroxy-4-cholesten-3-one is the limiting step in cholic acid synthesis in HepG2 cells. These data reveal that introduction of three hepatocyte-related transcription factors enhance anabolic reactions in HepG2 cells and provide a suitable model to study bile acid biosynthesis under pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Blazquez
- Unidad de Hepatología Experimental, CIBERehd, Instituto de Investigación Sanitaria La Fe, Valencia 46009, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Delineation of the key aspects in the regulation of epithelial monolayer formation. Mol Cell Biol 2013; 33:2535-50. [PMID: 23608536 DOI: 10.1128/mcb.01435-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation, maintenance, and repair of epithelial barriers are of critical importance for whole-body homeostasis. However, the molecular events involved in epithelial tissue maturation are not fully established. To this end, we investigated the molecular processes involved in renal epithelial proximal-tubule monolayer maturation utilizing transcriptomic, metabolomic, and functional parameters. We uncovered profound dynamic alterations in transcriptional regulation, energy metabolism, and nutrient utilization over the maturation process. Proliferating cells exhibited high glycolytic rates and high transcript levels for fatty acid synthesis genes (FASN), whereas matured cells had low glycolytic rates, increased oxidative capacity, and preferentially expressed genes for beta oxidation. There were dynamic alterations in the expression and localization of several adherens (CDH1, -4, and -16) and tight junction (TJP3 and CLDN2 and -10) proteins. Genes involved in differentiated proximal-tubule function, cilium biogenesis (BBS1), and transport (ATP1A1 and ATP1B1) exhibited increased expression during epithelial maturation. Using TransAM transcription factor activity assays, we could demonstrate that p53 and FOXO1 were highly active in matured cells, whereas HIF1A and c-MYC were highly active in proliferating cells. The data presented here will be invaluable in the further delineation of the complex dynamic cellular processes involved in epithelial cell regulation.
Collapse
|
39
|
Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 2013; 79:180-94. [DOI: 10.1016/j.jprot.2012.11.022] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/08/2012] [Accepted: 11/24/2012] [Indexed: 01/01/2023]
|
40
|
Proteomic and metabolomic responses to connexin43 silencing in primary hepatocyte cultures. Arch Toxicol 2012; 87:883-94. [DOI: 10.1007/s00204-012-0994-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
|
41
|
Lamour SD, Choi BS, Keun HC, Müller I, Saric J. Metabolic characterization of Leishmania major infection in activated and nonactivated macrophages. J Proteome Res 2012; 11:4211-22. [PMID: 22724526 PMCID: PMC3411194 DOI: 10.1021/pr3003358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Infection with Leishmania spp. can lead
to a range
of symptoms in the affected individual, depending on underlying immune-metabolic
processes. The macrophage activation state hereby plays a key role.
Whereas the l-arginine pathway has been described in detail
as the main biochemical process responsible for either nitric oxide
mediated parasite killing (classical activation) or amplification
of parasite replication (alternative activation), we were interested
in a wider characterization of metabolic events in vitro. We therefore assessed cell growth medium, parasite extract, and
intra- and extracellular metabolome of activated and nonactivated
macrophages, in presence and absence of Leishmania major. A metabolic profiling approach was applied combining 1H NMR spectroscopy with multi- and univariate data treatment. Metabolic
changes were observed along both conditional axes, that is, infection
state and macrophage activation, whereby significantly higher levels
of potential parasite end products were found in parasite exposed
samples including succinate, acetate, and alanine, compared to uninfected
macrophages. The different macrophage activation states were mainly
discriminated by varying glucose consumption. The presented profiling
approach allowed us to obtain a metabolic snapshot of the individual
biological compartments in the assessed macrophage culture experiments
and represents a valuable read out system for further multiple compartment in vitro studies.
Collapse
Affiliation(s)
- Sabrina D Lamour
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Tralau T, Luch A. Drug-mediated toxicity: illuminating the ‘bad’ in the test tube by means of cellular assays? Trends Pharmacol Sci 2012; 33:353-64. [DOI: 10.1016/j.tips.2012.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 12/19/2022]
|
43
|
Dong H, Zhang A, Sun H, Wang H, Lu X, Wang M, Ni B, Wang X. Ingenuity pathways analysis of urine metabolomics phenotypes toxicity of Chuanwu in Wistar rats by UPLC-Q-TOF-HDMS coupled with pattern recognition methods. MOLECULAR BIOSYSTEMS 2012; 8:1206-21. [PMID: 22282765 DOI: 10.1039/c1mb05366c] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chuanwu (CW), a valuable traditional Chinese medicine (TCM), is the mother root of Aconitum carmichaelii Debx. The cause of CW-induced toxicity is still under ongoing research, although this is limited by the lack of sensitive and reliable biomarkers. Ingenuity pathway analysis (IPA) was performed to analyzing global metabolomics in order to characterize the phenotypically biochemical perturbations and potential mechanisms of the CW-induced toxicity. CW was administered to Wistar rats (0.027 g/200 g and 0.108 g/200 g bw, oral) for 6 months and urine samples were collected. The urinary metabolomics was performed by UPLC-Q-TOF-HDMS, and the mass spectra signals of the detected metabolites were systematically deconvoluted and analyzed by pattern recognition methods (PCA, PLS-DA, and OPLS-DA), revealing a time- and dose-dependency of the biochemical perturbations induced by CW toxicity. As a result, several metabolites responsible for pentose and glucuronate interconversions, alanine, aspartate and glutamate metabolism, starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, purine metabolism, tryptophan metabolism, taurine and hypotaurine metabolism, fructose and mannose metabolism, fatty acid metabolism were characterized, and it was confirmed that biochemical perturbations can be foreseen from these biomarkers. The urinary metabolomics based IPA with pattern recognition methods also revealed that CW produced serious heart and liver toxicity, consistent with clinical biochemistry and histopathology. Significant changes of 17 metabolites were identified and validated as phenotypic biomarkers of CW toxicity. Overall, our work demonstrated the metabolomics has brought enormous opportunities for improved detection of toxicity and biomarker discovery, highlighting the powerful predictive potential of the IPA to study of drug toxicity.
Collapse
Affiliation(s)
- Hui Dong
- National TCM Key Lab of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, and Key Pharmacometabolomics Platform of Chinese Medicines, Harbin 150040, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Qin XY, Wei F, Yoshinaga J, Yonemoto J, Tanokura M, Sone H. siRNA-mediated knockdown of aryl hydrocarbon receptor nuclear translocator 2 affects hypoxia-inducible factor-1 regulatory signaling and metabolism in human breast cancer cells. FEBS Lett 2011; 585:3310-5. [PMID: 21945317 DOI: 10.1016/j.febslet.2011.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 12/26/2022]
Abstract
Recent human studies found that the mRNA expression level of aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) was positively associated with the prognosis of breast cancer. In this study, we used small interfering RNA techniques to knockdown ARNT2 expression in MCF7 human breast cancer cells, and found that an almost 40% downregulation of ARNT2 mRNA expression increased the expression of sensitive to apoptosis gene (3.36-fold), and decreased the expression of von Hippel-Lindau (0.27-fold) and matrix metalloproteinase-1 (0.35-fold). The metabolite analysis revealed the contents of glucose, glycine, betaine, phosphocholine, pyruvate and lactate involved in the hypoxia-inducible factor (HIF)-1-dependent glycolytic pathway were significantly lower in cells treated with siARNT2. Our results suggested that ARNT2 might play an important role in the modulation of HIF-1-regulated signaling and metabolism.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Health Risk Research Section, Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|