1
|
Zhang H, Lv J, Ma Z, Ma J, Chen J. Advances in Antimicrobial Peptides: Mechanisms, Design Innovations, and Biomedical Potential. Molecules 2025; 30:1529. [PMID: 40286095 PMCID: PMC11990784 DOI: 10.3390/molecules30071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review explores the advancements in the study of antimicrobial peptides (AMPs), highlighting their potential as promising alternatives to conventional antibiotics in the context of growing antibiotic resistance. AMPs are small molecular proteins found ubiquitously in nature, exhibiting broad-spectrum antimicrobial activity, including antibacterial, antiviral, and antifungal effects, and are vital components of the innate immune system. Due to their non-specific membrane-disrupting mechanism, AMPs are emerging as effective candidates for novel anti-infective agents. The integration of AMPs with biomaterials, such as nanoparticles, liposomes, polymers, and hydrogels, enhances their stability and efficacy while offering multifunctional therapeutic benefits. These combinations promote diverse antibacterial mechanisms, including membrane disruption, intracellular metabolic interference, cell wall modulation, and immune system activation. Despite challenges, such as toxicity, stability, and resistance, innovative strategies including computer-aided design and structural modification show promise in optimizing AMPs' activity, targeting precision, and biocompatibility. The potential for AMPs in clinical applications remains highly promising, with significant opportunities for overcoming antimicrobial resistance through novel AMP-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Junfeng Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.Z.); (J.L.); (Z.M.)
| | - Jing Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.Z.); (J.L.); (Z.M.)
| |
Collapse
|
2
|
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022; 13:857735. [PMID: 35722307 PMCID: PMC9201425 DOI: 10.3389/fmicb.2022.857735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.
Collapse
Affiliation(s)
- Allison H. Shannon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sara A. Adelman
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin A. Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sanskruti S. Potnis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Madeline W. Yung
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
4
|
New Engineered Fusion Peptide with Dual Functionality: Antibacterial and Strong Binding to Hydroxyapatite. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Weishaupt R, Heuberger L, Siqueira G, Gutt B, Zimmermann T, Maniura-Weber K, Salentinig S, Faccio G. Enhanced Antimicrobial Activity and Structural Transitions of a Nanofibrillated Cellulose-Nisin Biocomposite Suspension. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20170-20181. [PMID: 29767501 DOI: 10.1021/acsami.8b04470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Resistance to antibiotics has posed a high demand for novel strategies to fight bacterial infections. Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. However, their poor solubility in water and sensitivity to degradation has limited their application. Here, we report the design of a smart, pH-responsive antimicrobial nanobiocomposite material based on the AMP nisin and 2,2,6,6-tetramethyl-1-piperidinyloxyl-oxidized nanofibrillated cellulose (TONFC). Morphological transformations of the nanoscale structure of nisin functionalized-TONFC fibrils were discovered at pH values between 5.8 and 8.0 using small-angle X-ray scattering. Complementary ζ potential measurements indicate that electrostatic attractions between the negatively charged TONFC surface and the positively charged nisin molecules are responsible for the integration of nisin. Modification of the pH level or increasing the ionic strength reduces the nisin binding capacity of TONFC. Biological evaluation studies using a bioluminescence-based reporter strain of Bacillus subtilis and a clinically relevant strain of Staphylococcus aureus indicated a significantly higher antimicrobial activity of the TONFC-nisin biocomposite compared to the pure nisin against both strains under physiological pH and ionic strength conditions. The in-depth characterization of this new class of antimicrobial biocomposite material based on nanocellulose and nisin may guide the rational design of sustainable antimicrobial materials.
Collapse
Affiliation(s)
- Ramon Weishaupt
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Lukas Heuberger
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Gilberto Siqueira
- Laboratory for Applied Wood Materials , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Beatrice Gutt
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Tanja Zimmermann
- Laboratory for Applied Wood Materials , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Stefan Salentinig
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Greta Faccio
- Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
6
|
Casciaro B, Moros M, Rivera-Fernández S, Bellelli A, de la Fuente JM, Mangoni ML. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH 2 as a reliable strategy for antipseudomonal drugs. Acta Biomater 2017; 47:170-181. [PMID: 27693686 DOI: 10.1016/j.actbio.2016.09.041] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Naturally occurring antimicrobial peptides (AMPs) hold promise as future therapeutics against multidrug resistant microorganisms. Recently, we have discovered that a derivative of the frog skin AMP esculentin-1a, Esc(1-21), is highly potent against both free living and biofilm forms of the bacterial pathogen Pseudomonas aeruginosa. However, bringing AMPs into clinics requires to overcome their low stability, high toxicity and inefficient delivery to the target site at high concentrations. Importantly, peptide conjugation to gold nanoparticles (AuNPs), which are among the most applied inorganic nanocarriers in biomedical sciences, represents a valuable strategy to solve these problems. Here we report that covalent conjugation of Esc(1-21) to soluble AuNPs [AuNPs@Esc(1-21)] via a poly(ethylene glycol) linker increased by ∼15-fold the activity of the free peptide against the motile and sessile forms of P. aeruginosa without being toxic to human keratinocytes. Furthermore, AuNPs@Esc(1-21) resulted to be significantly more resistant to proteolytic digestion and to disintegrate the bacterial membrane at very low concentration (5nM). Finally, we demonstrated for the first time the capability of peptide-coated AuNPs to display a wound healing activity on a keratinocytes monolayer. Overall, these findings suggest that our engineered AuNPs can serve as attractive novel biological-derived material for topical treatment of epithelial infections and healing of the injured tissue. STATEMENT OF SIGNIFICANCE Despite conjugation of AMPs to AuNPs represents a worthwhile solution to face some limitations for their development as new therapeutics, only a very limited number of studies is available on peptide-coated AuNPs. Importantly, this is the first report showing that a covalent binding of a linear AMP via a poly(ethylene glycol) linker to AuNPs highly enhances antipseudomonal activity, preserving the same mode of action of the free peptide, without being harmful. Furthermore, AuNPs@Esc(1-21) are expected to accelerate recovery of an injured skin layer. All together, these findings suggest our peptide-coated AuNPs as attractive novel nanoscale formulation to treat bacterial infections and to heal the injured tissue.
Collapse
|
7
|
Wen R, Umeano AC, Francis L, Sharma N, Tundup S, Dhar S. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems. Vaccines (Basel) 2016; 4:E18. [PMID: 27258316 PMCID: PMC4931635 DOI: 10.3390/vaccines4020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Afoma C Umeano
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lily Francis
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Nivita Sharma
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Smanla Tundup
- School of Medicine, Department of Pulmonary and Critical Care, University of Virginia, Charlottesville, WV 22908, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Vries RD, Andrade CAS, Bakuzis AF, Mandal SM, Franco OL. Next-generation nanoantibacterial tools developed from peptides. Nanomedicine (Lond) 2016; 10:1643-61. [PMID: 26008197 DOI: 10.2217/nnm.15.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria resistant against various antimicrobial compounds have emerged in many countries, and the age of resistance has just started. Among the more promising novel antimicrobial compounds on which current research is focusing are the antimicrobial peptides (AMPs). These are often less susceptible to bacterial resistance since multiple modifications in the cellular membranes, cell wall and metabolism are required to reduce their effectiveness. Most likely, the use of pure AMPs will be insufficient for controlling pathogenic bacteria, and innovative approaches are required to employ AMPs in new antibiotic treatments. Therefore, here we review novel bionanotechnological approaches, including nanofibers, nanoparticles and magnetic particles for effectively using AMPs in fighting infectious diseases.
Collapse
Affiliation(s)
- Renko de Vries
- 2Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, PO Box 196, 9700 AD Groningen, The Netherlands
| | - Cesar A S Andrade
- 3Departamento de Bioquímica e Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Andris F Bakuzis
- 4Instituto de Física, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Santi M Mandal
- 5Anti-Infective Research Lab, Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, Índia
| | - Octavio L Franco
- 6Centro de Análises, Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160, Brazil.,7S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
9
|
Datta A, Kundu P, Bhunia A. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. J Colloid Interface Sci 2016; 461:335-345. [DOI: 10.1016/j.jcis.2015.09.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022]
|
10
|
Qin GT, Lopez A, Santos C, McDermott AM, Cai CZ. Antimicrobial peptide LL-37 on surfaces presenting carboxylate anions. Biomater Sci 2015. [PMID: 26222596 DOI: 10.1039/c5bm00055f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides (AMPs) are part of the immune system in a wide range of organisms. They generally carry positive charges under physiological conditions, allowing them to accumulate on the negatively charged bacterial membrane as the first step of bactericidal action. The concentration range of AMPs necessary for rapid killing of bacteria tested in vitro is much higher than levels found at epithelial surfaces and body fluids in vivo, and close to the a level that is toxic to the host cells. It is likely that AMPs in vivo are localized and act cooperatively to enhance antimicrobial activity, while the global concentration is low thus demonstrating low toxicity to host cells. Herein we employed well-defined mixed self-assembled monolayers (SAMs) to localize LL-37, one of the most studied AMPs, via electrostatic interactions. We systematically varied the surface density of LL-37, and found that the immobilized AMPs not only attracted bacteria Pseudomonas aeruginosa to the surface, but also killed nearly all bacteria when above a threshold density. More significantly, the AMPs displayed low toxicity to human corneal epithelial cells. The results indicated that localization of AMPs on suitable polyanion substrates facilitated the bactericidal activity while minimizing the cytotoxicity of AMPs.
Collapse
Affiliation(s)
- G T Qin
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA.
| | | | | | | | | |
Collapse
|
11
|
Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Ther Deliv 2014; 5:409-27. [PMID: 24856168 DOI: 10.4155/tde.14.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that causes serious lung infections in cystic fibrosis, non-cystic fibrosis bronchiectasis, immunocompromised, and mechanically ventilated patients. The arsenal of conventional antipseudomonal antibiotic drugs include the extended-spectrum penicillins, cephalosporins, carbapenems, monobactams, polymyxins, fluoroquinolones, and aminoglycosides but their toxicity and/or increasing antibiotic resistance are of particular concern. Improvement of existing therapies against Pseudomonas aeruginosa infections involves the use of liposomes - artificial phospholipid vesicles that are biocompatible, biodegradable, and nontoxic and able to entrap and carry hydrophilic, hydrophobic, and amphiphilic molecules to the site of action. The goal of developing liposomal antibiotic formulations is to improve their therapeutic efficacy by reducing drug toxicity and/or by enhancing the delivery and retention of antibiotics at the site of infection. The focus of this review is to appraise the current progress of the development and application of liposomal antibiotic delivery systems for the treatment pulmonary infections caused by P. aeruginosa.
Collapse
|
12
|
Kolar SSN, Luca V, Baidouri H, Mannino G, McDermott AM, Mangoni ML. Esculentin-1a(1-21)NH2: a frog skin-derived peptide for microbial keratitis. Cell Mol Life Sci 2014; 72:617-627. [PMID: 25086859 DOI: 10.1007/s00018-014-1694-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is the primary bacterial pathogen causing contact lens related keratitis. Available ophthalmic agents have reduced efficacy and antimicrobial peptides (AMPs) hold promise as future antibiotics. Here we investigated the in vitro and in vivo anti-Pseudomonal activity of esculentin-1a(1-21)NH2, derived from a frog skin AMP. The data revealed a minimum inhibitory concentration between 2 and 16 μM against reference strains or drug-resistant clinical isolates of P. aeruginosa without showing toxicity to human corneal epithelial cells up to 50 μM. At 1 μM the peptide rapidly killed bacterial cells and this activity was fully retained in 150 mM sodium chloride and 70 % (v/v) human basal tears, particularly against the virulent ATCC 19660 strain. Furthermore, its dropwise administration at 40 μM to the ocular surface in a murine model of P. aeruginosa keratitis (three times daily, for 5 days post-infection) resulted in a significant reduction of infection. The mean clinical score was 2.89 ± 0.26 compared to 3.92 ± 0.08 for the vehicle control. In addition, the corneal level of viable bacteria in the peptide treated animals was significantly lower with a difference of 4 log10 colony counts, compared to 7.7 log10 cells recovered in the control. In parallel, recruitment of inflammatory cells was reduced by half compared to that found in the untreated eyes. Similar results were obtained when esculentin-1a(1-21)NH2 was applied prior to induction of keratitis. Overall, our findings highlight esculentin-1a(1-21)NH2 as an attractive candidate for the development of novel topical pharmaceuticals against Pseudomonas keratitis.
Collapse
Affiliation(s)
- Satya Sree N Kolar
- College of Optometry, The Ocular Surface Institute, University of Houston, Houston, TX, USA
| | - Vincenzo Luca
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Via degli Apuli 9, 00185, Rome, Italy
| | - Hasna Baidouri
- College of Optometry, The Ocular Surface Institute, University of Houston, Houston, TX, USA
| | - Giuseppe Mannino
- Ophthalmology Unit, NESMOS Department, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Alison M McDermott
- College of Optometry, The Ocular Surface Institute, University of Houston, Houston, TX, USA
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Via degli Apuli 9, 00185, Rome, Italy.
| |
Collapse
|
13
|
Li Y, Cai C. Click chemistry-based functionalization on non-oxidized silicon substrates. Chem Asian J 2011; 6:2592-605. [PMID: 21751406 DOI: 10.1002/asia.201100294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Indexed: 11/07/2022]
Abstract
Copper-catalyzed azide-alkyne cycloaddition (CuAAC), combined with the chemical stability of the Si-C-bound organic layer, serves as an efficient tool for the modification of silicon substrates, particularly for the immobilization of complex biomolecules. This review covers recent advances in the preparation of alkynyl- or azido-terminated "clickable" platforms on non-oxidized silicon and their further derivatization by means of the CuAAC reaction. The exploitation of these "click"-functionalized organic thin films as model surfaces to study many biological events was also addressed, as they are directly relevant to the on-going effort of creating silicon-based molecular electronics and chemical/biomolecular sensors.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry & Center for Materials Chemistry, University of Houston, Houston, Texas 77204, USA
| | | |
Collapse
|
14
|
Kolar SS, McDermott AM. Role of host-defence peptides in eye diseases. Cell Mol Life Sci 2011; 68:2201-13. [PMID: 21584809 PMCID: PMC3637883 DOI: 10.1007/s00018-011-0713-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarised. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed.
Collapse
Affiliation(s)
- Satya S. Kolar
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| | - Alison M. McDermott
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| |
Collapse
|