1
|
Moghadam RZ, Dizagi HR, Agren H, Ehsani MH. Understanding the effect of Mn 2+ on Yb 3+/Er 3+ co-doped NaYF 4 upconversion and obtaining the optimal combination of these tridoping. Sci Rep 2023; 13:17556. [PMID: 37845290 PMCID: PMC10579380 DOI: 10.1038/s41598-023-44947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023] Open
Abstract
In this work, we investigated in detail the upconversion properties of several types of nanoparticles, including NaYF4:5%Yb3+/30%Mn2+, NaYF4:40%Mn2+/x%Yb3+ (x% = 1, 5, 10, 20, 30, and 40), NaYF4:2%Er3+/x%Mn2+ (x% = 20, 30, 40, 50, 60, and 70), NaYF4:40%Mn2+/x%Er3+ (x% = 1, 2, 5, and 10), and NaYF4:40%Mn2+/1%Yb3+/x%Er3+ (x% = 0, 2, 5, and 10). We studied their upconversion emission under 980 nm excitation in both pulsed and continuous wave modes at different synthesis temperatures. The nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and photoluminescence (PL) spectroscopy. The doping of Yb3+ and Mn2+ ions resulted in the nanoparticles assuming cubic and hexagonal crystal structures. The emission intensity increased (106.4 (a.u.*103) to 334.4(a.u.*103)) with increasing synthesis temperature from 120 to 140 °C, while a sharp decrease was observed when the synthesis temperature was increased to 200 °C. The gradual decrease in peak intensity with increasing Mn2+ concentration from 20 to 70% was attributed to energy transfer from Mn2+ to Yb3+. In NaYF4:Mn2+/Yb3+/Er3+ UCNPs, increasing the Er3+ concentration from 0 to 10% led to the disappearance of the blue, orange, and green emission bands. The intense upconversion luminescence pattern with high spatial resolution indicates excellent potential for applications in displays, biological sensors, photodetectors, and solar energy converters.
Collapse
Affiliation(s)
- Reza Zarei Moghadam
- Department of Physics, Faculty of Science, Arak University, Arak, 38156-88349, Iran.
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | | | - Hans Agren
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | | |
Collapse
|
2
|
Saatçi E, Natarajan S. State-of-the-art colloidal particles and unique interfaces-based SARS-CoV-2 detection methods and COVID-19 diagnosis. Curr Opin Colloid Interface Sci 2021; 55:101469. [PMID: 34093063 PMCID: PMC8164518 DOI: 10.1016/j.cocis.2021.101469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In March 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-based infections were declared 'COVID-19 pandemic' by the World Health Organization. Pandemic raised the necessity to design and develop genuine and sensitive tests for precise specific SARS-CoV-2 infections detection. Nanotechnological methods offer new ways to fight COVID-19. Nanomaterials are ideal for unique sensor platforms because of their chemically versatile properties and they are easy to manufacture. In this context, selected examples for integrating nanomaterials and distinct biosensor platforms are given to detect SARS-CoV-2 biological materials and COVID-19 biomarkers, giving researchers and scientists more goals and a better forecast to design more relevant and novel sensor arrays for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Ebru Saatçi
- Erciyes University, Faculty of Science, Biology Department, 38039, Kayseri, Turkey
| | - Satheesh Natarajan
- Healthcare Technology Innovation Centre, Indian Institute of Technology, Madras, 600113, Tamilnadu, India
| |
Collapse
|
3
|
Effect of Ho3+ concentration on the structure, morphology and optical properties of Ba0.5Mg0.5Al2O4 nanophosphor. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Zhu Q, Song C, Li X, Sun X, Li JG. Up-conversion monodispersed spheres of NaYF 4:Yb 3+/Er 3+: green and red emission tailoring mediated by heating temperature, and greatly enhanced luminescence by Mn 2+ doping. Dalton Trans 2018; 47:8646-8655. [PMID: 29629472 DOI: 10.1039/c8dt00792f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Submicron sized, monodispersed spheres of Mn2+, Yb3+/Er3+ and Mn2+/Yb3+/Er3+ doped α-NaYF4 were easily autoclaved from mixed solutions of the component nitrates and ammonium fluoride (NH4F), in the presence of EDTA-2Na. Detailed characterizations of the resultant phosphors were obtained using XRD, Raman spectroscopy, FE-SEM, HR-TEM, STEM, PLE/PL spectroscopy, and fluorescence decay analysis. Finer structure and better crystal perfection was observed at a higher calcination temperature, and the spherical shape and excellent dispersion of the original particles was retained at temperatures up to 600 °C. Under the 980 nm infrared excitation, the Yb3+/Er3+-doped sample (calcined at 400 °C) exhibits a stronger green emission centered at ∼524 nm (2H11/2 → 4I15/2 transition of Er3+) and a weaker red emission centered at ∼657 nm (4F9/2 → 4I15/2 transition of Er3+). A 200 °C increase in the temperature from 400 °C to 600 °C resulted in the dominant red emission originating from the 4F9/2 → 4I15/2 transition of Er3+, instead of the previously dominant green one. Mn2+ doping induced a remarkable more enhanced intensity at ∼657 nm and ∼667 nm (red emission area) than that at ∼524 nm and ∼546 nm (green emission area), because of the non-radiative energy transfer between Mn2+ and Er3+. However, a poor thermal stability was induced by Mn2+ doping. The observed upconversion luminescence of the samples calcined at 400 °C and 600 °C followed the two photon process and the four photon process, respectively.
Collapse
Affiliation(s)
- Qi Zhu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819, China.
| | | | | | | | | |
Collapse
|
5
|
Sojka B, Kociołek D, Banski M, Borisova T, Pozdnyakova N, Pastukhov A, Borysov A, Dudarenko M, Podhorodecki A. Effects of surface functionalization of hydrophilic NaYF 4 nanocrystals doped with Eu 3+ on glutamate and GABA transport in brain synaptosomes. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 19:275. [PMID: 28824289 PMCID: PMC5543196 DOI: 10.1007/s11051-017-3958-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Specific rare earth doped nanocrystals (NCs), a recent class of nanoparticles with fluorescent features, have great bioanalytical potential. Neuroactive properties of NaYF4 nanocrystals doped with Eu3+ were assessed based on the analysis of their effects on glutamate- and γ-aminobutyric acid (GABA) transport process in nerve terminals isolated from rat brain (synaptosomes). Two types of hydrophilic NCs were examined in this work: (i) coated by polyethylene glycol (PEG) and (ii) with OH groups at the surface. It was found that NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH within the concentration range of 0.5-3.5 and 0.5-1.5 mg/ml, respectively, did not influence Na+-dependent transporter-dependent l-[14C]glutamate and [3H]GABA uptake and the ambient level of the neurotransmitters in the synaptosomes. An increase in NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH concentrations up to 7.5 and 3.5 mg/ml, respectively, led to the (1) attenuation of the initial velocity of uptake of l-[14C]glutamate and [3H]GABA and (2) elevation of ambient neurotransmitters in the suspension of nerve terminals. In the mentioned concentrations, nanocrystals did not influence acidification of synaptic vesicles that was shown with pH-sensitive fluorescent dye acridine orange, however, decreased the potential of the plasma membrane of synaptosomes. In comparison with other nanoparticles studied with similar methodological approach, NCs start to exhibit their effects on neurotransmitter transport at concentrations several times higher than those shown for carbon dots, detonation nanodiamonds and an iron storage protein ferritin, whose activity can be registered at 0.08, 0.5 and 0.08 mg/ml, respectively. Therefore, NCs can be considered lesser neurotoxic as compared to above nanoparticles.
Collapse
Affiliation(s)
- Bartlomiej Sojka
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Daria Kociołek
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mateusz Banski
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Marina Dudarenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Artur Podhorodecki
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Sojka B, Podhorodecki A, Banski M, Misiewicz J, Drobczynski S, Dumych T, Lutsyk MM, Lutsyk A, Bilyy R. β-NaGdF4:Eu3+ nanocrystal markers for melanoma tumor imaging. RSC Adv 2016. [DOI: 10.1039/c6ra10351k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Europium doped nanocrystals can be optimized to be successfully used as visualization markers for i.e. melanoma tumor.
Collapse
Affiliation(s)
- B. Sojka
- Department of Experimental Physics
- Wroclaw University of Technology
- Wroclaw
- Poland
| | - A. Podhorodecki
- Department of Experimental Physics
- Wroclaw University of Technology
- Wroclaw
- Poland
| | - M. Banski
- Department of Experimental Physics
- Wroclaw University of Technology
- Wroclaw
- Poland
| | - J. Misiewicz
- Department of Experimental Physics
- Wroclaw University of Technology
- Wroclaw
- Poland
| | - S. Drobczynski
- Department of Optics and Photonics
- Wroclaw University of Technology
- Wroclaw
- Poland
| | - T. Dumych
- Danylo Halytsky Lviv National Medical University
- Lviv
- Ukraine
| | - M. M. Lutsyk
- Danylo Halytsky Lviv National Medical University
- Lviv
- Ukraine
| | - A. Lutsyk
- Danylo Halytsky Lviv National Medical University
- Lviv
- Ukraine
| | - R. Bilyy
- Danylo Halytsky Lviv National Medical University
- Lviv
- Ukraine
| |
Collapse
|
7
|
Cheng Z, Lin J. Synthesis and Application of Nanohybrids Based on Upconverting Nanoparticles and Polymers. Macromol Rapid Commun 2015; 36:790-827. [DOI: 10.1002/marc.201400588] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/29/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| |
Collapse
|
8
|
Chen C, Kang N, Xu T, Wang D, Ren L, Guo X. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging. NANOSCALE 2015; 7:5249-5261. [PMID: 25716884 DOI: 10.1039/c4nr07591a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.
Collapse
Affiliation(s)
- Chuan Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Guo L, Wang Y, Wang Y, Zhang J, Dong P, Zeng W. Structure, enhancement and white luminescence of multifunctional Lu₆O₅F₈:20%Yb³⁺,1%Er³⁺(Tm³⁺) nanoparticles via further doping with Li⁺ under different excitation sources. NANOSCALE 2013; 5:2491-2504. [PMID: 23411671 DOI: 10.1039/c2nr33577h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A series of Lu6O5F8:20%Yb(3+),1%Er(3+)(Tm(3+)),x%Li(+) (0 ≤ x ≤ 12) nanoparticles with average size from 20 to 320 nm upon increasing Li(+) concentration were prepared by a coprecipitation method. The detailed crystal structure of Lu6O5F8 as a new matrix is firstly analysed via retrieved refinement of the powder X-ray diffraction (XRD). In addition, the corresponding Powder Diffraction File card information was also obtained through indexing the XRD pattern of the host. Upconversion under excitation at 980 nm, downconversion with Xe lamp as excitation source and cathodoluminescence properties of Lu6O5F8:20%Yb(3+),1%Er(3+)(Tm(3+)),x%Li(+) (0 ≤ x ≤ 12) nanoparticles were compared and studied. It is worthwhile pointing out that according to the effects of Li(+) on emission intensity ratio, white UC emission was achieved in the Lu6O5F8:6%Yb(3+),0.3%Er(3+),0.4%Tm(3+),5%Li(+) compared to Li(+) free sample with the same activator concentration. The reasons behind this behavior were presented and discussed. All in all, Li(+) ion would be a wonderful luminescence intensifier for lanthanide ions, and the multifunctional lanthanide ion-doped Lu6O5F8 nanoparticles have potential application in photoluminescence areas and field emission display devices.
Collapse
Affiliation(s)
- Linna Guo
- Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | | | | | | | | | | |
Collapse
|
10
|
Tu D, Liu Y, Zhu H, Chen X. Optical/Magnetic Multimodal Bioprobes Based on Lanthanide-Doped Inorganic Nanocrystals. Chemistry 2013; 19:5516-27. [DOI: 10.1002/chem.201204640] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Holmberg RJ, Aharen T, Murugesu M. Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition. J Phys Chem Lett 2012; 3:3721-3733. [PMID: 26291102 DOI: 10.1021/jz301562m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic nanoparticles have been developed in recent years with applications in unique and crucial areas such as biomedicine, data storage, environmental remediation, catalysis, and so forth. NaYF4 nanoparticles were synthesized and isolated with lanthanide dopant percentages, confirmed by ICP-OES measurements, of Er, Yb, Tb, Gd, and Dy that were in agreement with the targeted ratios. SEM images showed a distinct variation in particle size and shape with dopant type and percentage. HRTEM and XRD studies confirmed the particles to be crystalline, possessing both α and β phases. Magnetic measurements determined that all of the nanoparticles were paramagnetic and did not exhibit a blocking temperature from 2 to 300 K. The multifunctional properties of these nanoparticles make them suitable for many applications, such as multimodal imaging probes, up-conversion fluorescent markers, as well as MRI contrast agents.
Collapse
Affiliation(s)
- Rebecca J Holmberg
- Centre for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5
| | - Tomoko Aharen
- Centre for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5
| | - Muralee Murugesu
- Centre for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5
| |
Collapse
|
12
|
Guo L, Wang Y, Zhang J, Wang Y, Dong P. Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers. NANOSCALE RESEARCH LETTERS 2012; 7:636. [PMID: 23171624 PMCID: PMC3533901 DOI: 10.1186/1556-276x-7-636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/09/2012] [Indexed: 05/30/2023]
Abstract
Infrared quantum cutting involving Yb3+ 950-1,000 nm (2 F5/2 → 2 F7/2) and Ho3+ 1,007 nm (5S2,5F4 → 5I6) as well as 1,180 nm (5I6 → 5I8) emissions is achieved in BaGdF5: Ho3+, Yb3+ nanoparticles which are synthesized by a facile hydrothermal route. The mechanisms through first- and second-order energy transfers were analyzed by the dependence of Yb3+ doping concentration on the visible and infrared emissions, decay lifetime curves of the 5 F5 → 5I8, 5S2/5F4 → 5I8, and 5 F3 → 5I8 of Ho3+, in which a back energy transfer from Yb3+ to Ho3+ is first proposed to interpret the spectral characteristics. A modified calculation equation for quantum efficiency of Yb3+-Ho3+ couple by exciting at 450 nm was presented according to the quantum cutting mechanism. Overall, the excellent luminescence properties of BaGdF5: Ho3+, Yb3+ near-infrared quantum cutting nanoparticles could explore an interesting approach to maximize the performance of solar cells.
Collapse
Affiliation(s)
- Linna Guo
- Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yuhua Wang
- Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jia Zhang
- Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanzhao Wang
- Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Pengyu Dong
- Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
13
|
Li C, Xu Z, Yang D, Cheng Z, Hou Z, Ma P, Lian H, Lin J. Well-dispersed KRE3F10(RE = Sm–Lu, Y) nanocrystals: solvothermal synthesis and luminescence properties. CrystEngComm 2012. [DOI: 10.1039/c1ce06087b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
De M, Chou SS, Joshi HM, Dravid VP. Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv Drug Deliv Rev 2011; 63:1282-99. [PMID: 21851844 DOI: 10.1016/j.addr.2011.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/29/2011] [Accepted: 07/02/2011] [Indexed: 12/13/2022]
Abstract
The development of MRI contrast agents has experienced its version of the gilded age over the past decade, thanks largely to the rapid advances in nanotechnology. In addition to progress in single mode contrast agents, which ushered in unprecedented R(1) or R(2) sensitivities, there has also been a boon in the development of agents covering more than one mode of detection. These include T(1)-PET, T(2)-PET T(1)-optical, T(2)-optical, T(1)-T(2) agents and many others. In this review, we describe four areas which we feel have experienced particular growth due to nanotechnology, specifically T(2) magnetic nanostructure development, T(1)/T(2)-optical dual mode agents, and most recently the T(1)-T(2) hybrid imaging systems. In each of these systems, we describe applications including in vitro, in vivo usage and assay development. In all, while the benefits and drawbacks of most MRI contrast agents depend on the application at hand, the recent development in multimodal nanohybrids may curtail the shortcomings of single mode agents in diagnostic and clinical settings by synergistically incorporating functionality. It is hoped that as nanotechnology advances over the next decade, it will produce agents with increased diagnostics and assay relevant capabilities in streamlined packages that can meaningfully improve patient care and prognostics. In this review article, we focus on T(2) materials, its surface functionalization and coupling with optical and/or T(1) agents.
Collapse
|
15
|
Kobayashi H, Longmire MR, Ogawa M, Choyke PL. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 2011; 40:4626-48. [PMID: 21607237 PMCID: PMC3417232 DOI: 10.1039/c1cs15077d] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references).
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, National Cancer Institute/NIH, Bldg. 10, Room B3B69, MSC 1088, 10 Center Dr Bethesda, Maryland 20892-1088, USA.
| | | | | | | |
Collapse
|
16
|
Hu D, Chen M, Gao Y, Li F, Wu L. A facile method to synthesize superparamagnetic and up-conversion luminescent NaYF4:Yb, Er/Tm@SiO2@Fe3O4 nanocomposite particles and their bioapplication. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11172h] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Wang Y, Cai R, Liu Z. Controlled synthesis of NaYF4: Yb, Er nanocrystals with upconversion fluorescence via a facile hydrothermal procedure in aqueous solution. CrystEngComm 2011. [DOI: 10.1039/c0ce00708k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Carlos LD, Ferreira RAS, de Zea Bermudez V, Julián-López B, Escribano P. Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem Soc Rev 2010; 40:536-49. [PMID: 21180708 DOI: 10.1039/c0cs00069h] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Research on organic-inorganic hybrid materials containing trivalent lanthanide ions (Ln(3+)) is a very active field that has rapidly shifted in the last couple of years to the development of eco-friendly, versatile and multifunctional systems, stimulated by the challenging requirements of technological applications spanning domains as diverse as optics, environment, energy, and biomedicine. This tutorial review offers a general overview of the myriad of advanced Ln(3+)-based organic-inorganic hybrid materials recently synthesised, which may be viewed as a major innovation in areas of phosphors, lighting, integrated optics and optical telecommunications, solar cells, and biomedicine.
Collapse
Affiliation(s)
- Luís D Carlos
- Department of Physics, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|