1
|
An YJ, Jung YE, Lee KW, Kaushal P, Ko IY, Shin SM, Ji S, Yu W, Lee C, Lee WK, Cha K, Lee JH, Cha SS, Yim HS. Structural and biochemical investigation into stable FGF2 mutants with novel mutation sites and hydrophobic replacements for surface-exposed cysteines. PLoS One 2024; 19:e0307499. [PMID: 39236042 PMCID: PMC11376533 DOI: 10.1371/journal.pone.0307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) is an attractive biomaterial for pharmaceuticals and functional cosmetics. To improve the thermo-stability of FGF2, we designed two mutants harboring four-point mutations: FGF2-M1 (D28E/C78L/C96I/S137P) and FGF2-M2 (D28E/C78I/C96I/S137P) through bioinformatics, molecular thermodynamics, and molecular modeling. The D28E mutation reduced fragmentation of the FGF2 wild type during preparation, and the substitution of a whale-specific amino acid, S137P, enhanced the thermal stability of FGF2. Surface-exposed cysteines that participate in oligomerization through intermolecular disulfide bond formation were substituted with hydrophobic residues (C78L/C78I and C96I) using the in silico method. High-resolution crystal structures revealed at the atomic level that the introduction of mutations stabilizes each local region by forming more favorable interactions with neighboring residues. In particular, P137 forms CH-π interactions with the side chain indole ring of W123, which seems to stabilize a β-hairpin structure, containing a heparin-binding site of FGF2. Compared to the wild type, both FGF2-M1 and FGF2-M2 maintained greater solubility after a week at 45 °C, with their Tm values rising by ~ 5 °C. Furthermore, the duration for FGF2-M1 and FGF2-M2 to reach 50% residual activity at 45 °C extended to 8.8- and 8.2-fold longer, respectively, than that of the wild type. Interestingly, the hydrophobic substitution of surface-exposed cysteine in both FGF2 mutants makes them more resistant to proteolytic cleavage by trypsin, subtilisin, proteinase K, and actinase than the wild type and the Cys → Ser substitution. The hydrophobic replacements can influence protease resistance as well as oligomerization and thermal stability. It is notable that hydrophobic substitutions of surface-exposed cysteines, as well as D28E and S137P of the FGF2 mutants, were designed through various approaches with structural implications. Therefore, the engineering strategies and structural insights adopted in this study could be applied to improve the stability of other proteins.
Collapse
Affiliation(s)
- Young Jun An
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Ye-Eun Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Kyeong Won Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Prashant Kaushal
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic Korea
| | - In Young Ko
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongiu, Republic of Korea
| | - Seung Min Shin
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Sangho Ji
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Wookyung Yu
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, Republic Korea
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongiu, Republic of Korea
| | - Kiweon Cha
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongiu, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Hyung-Soon Yim
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| |
Collapse
|
2
|
Bhoge PR, Raigawali R, Mardhekar S, Anand S, Kikkeri R. Synergestic interplay of uronic acid and sulfation composition of heparan sulfate on molecular recognition to activity. Carbohydr Res 2023; 532:108919. [PMID: 37557021 DOI: 10.1016/j.carres.2023.108919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Heparan sulfate (HS) is ubiquitous polysaccharide on the surface of all mammalian cells and extracellular matrices. The incredible structural complexity of HS arises from its sulfation patterns and disaccharide compositions, which orchestrate a wide range of biological activities. Researchers have developed elegant synthetic methods to obtain well-defined HS oligosaccharides to understand the structure-activity relationship. These studies revealed that specific sulfation codes and uronic acid variants could synergistically modulate HS-protein interactions (HSPI). Additionally, the conformational flexibility of l-Iduronic acid, a uronic acid unit has emerged as a critical factor in fine-tuning the microenvironment to modulate HSPI. This review delineates how uronic acid composition in HS modulates protein binding affinity, selectivity, and biological activity. Finally, the significance of sulfated homo-oligo uronic acid as heparin mimics in drug development is also discussed.
Collapse
Affiliation(s)
- Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India.
| |
Collapse
|
3
|
Kareem N, Yates E, Skidmore M, Hoole D. In vitro investigations on the effects of semi-synthetic, sulphated carbohydrates on the immune status of cultured common carp (Cyprinus carpio) leucocytes. FISH & SHELLFISH IMMUNOLOGY 2018; 74:213-222. [PMID: 29289653 DOI: 10.1016/j.fsi.2017.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The rapid emergence of drug resistance, unfavourable immunosuppression and mounting evidence to suggest the deleterious accumulation of drug breakdown residues within animal tissues has driven a strong desire to move away from these current methods of disease control. Some natural products such as β-glucan, which are extracted from, for example, plants and fungi, are able to modulate the immune system and increase protection against diseases. However, these products are heterogeneous and their effects can be variable thus limiting their applicability and reliability. Carbohydrates were modified via chemical sulphation and these semi-synthetic, sulphated carbohydrates analysed for their immunological activity utilising carp pronephric cells and a carp leucocyte cell line (CLC). A sulphated β(1,4)-glucan, methyl hydroxyethyl cellulose sulphate (MHCS), demonstrated a stimulatory effect on fish immune cells. MHCS induced a range of bioactive effects in carp leucocyte cells whilst not affecting cell viability when cells were exposed for 24 h at concentrations of 1-150 μgml-1. MHCS stimulated the innate immune system where a significant increase in respiratory burst activity was observed at concentrations 25-250 μgml-1 in comparison to control (sterile water), cellulose ether, MacroGard® and zymosan. Also, under in mock bacterial and viral infection conditions i.e. Lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly(I:C)), MHCS enhanced the immune responses of pronephric cells by stimulating the respiratory burst activity at concentrations 50 and 150 μgml-1. MHCS also enhanced the expression of cytokines including interleukin 1 beta (IL1β), tumor necrosis factor alpha 1 and 2 (TNFα 1,2), interferons alpha 2 (IFN α2) and inducible nitric oxide synthase (iNOS) in carp pronephric cells. It is proposed that this new semi-synthetic carbohydrate is a potential candidate for the development of a new generation of immunostimulants and adjuvants for use in vaccination strategies in aquaculture.
Collapse
Affiliation(s)
- N Kareem
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; Faculty of Agricultural Sciences, University of Sulaimani, Kurdistan Region, Iraq
| | - E Yates
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - M Skidmore
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - D Hoole
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
4
|
Rudd TR, Preston MD, Yates EA. The nature of the conserved basic amino acid sequences found among 437 heparin binding proteins determined by network analysis. MOLECULAR BIOSYSTEMS 2018; 13:852-865. [PMID: 28317949 DOI: 10.1039/c6mb00857g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, a large number of proteins interact with the polyanionic polysaccharides heparan sulphate (HS) and heparin. These interactions are usually assumed to be dominated by charge-charge interactions between the anionic carboxylate and/or sulfate groups of the polysaccharide and cationic amino acids of the protein. A major question is whether there exist conserved amino acid sequences for HS/heparin binding among these diverse proteins. Potentially conserved HS/heparin binding sequences were sought amongst 437 HS/heparin binding proteins. Amino acid sequences were extracted and compared using a Levenshtein distance metric. The resultant similarity matrices were visualised as graphs, enabling extraction of strongly conserved sequences from highly variable primary sequences while excluding short, core regions. This approach did not reveal extensive, conserved HS/heparin binding sequences, rather a number of shorter, more widely spaced sequences that may work in unison to form heparin-binding sites on protein surfaces, arguing for convergent evolution. Thus, it is the three-dimensional arrangement of these conserved motifs on the protein surface, rather than the primary sequence per se, which are the evolutionary elements.
Collapse
Affiliation(s)
- Timothy R Rudd
- The National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | | | | |
Collapse
|
5
|
Skidmore MA, Mustaffa KMF, Cooper LC, Guimond SE, Yates EA, Craig AG. A semi-synthetic glycosaminoglycan analogue inhibits and reverses Plasmodium falciparum cytoadherence. PLoS One 2017; 12:e0186276. [PMID: 29045442 PMCID: PMC5646806 DOI: 10.1371/journal.pone.0186276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
A feature of mature Plasmodium falciparum parasitized red blood cells is their ability to bind surface molecules of the microvascular endothelium via the parasite-derived surface protein Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This ligand is associated with the cytoadherence pathology observed in severe malaria. As pRBC treated with effective anti-malarial drugs are still able to cytoadhere, there is therefore a need to find an adjunct treatment that can inhibit and reverse the adhesion process. One semi-synthetic, sulfated polysaccharide has been identified that is capable of inhibiting and reversing sequestration of pRBC on endothelial cells in vitro under physiological flow conditions. Furthermore, it exhibits low toxicity in the intrinsic (APTT assay) and extrinsic (PT assay) clotting pathways, as well as exhibiting minimal effects on cell (HUVEC) viability (MTT proliferation assay). These findings suggest that carbohydrate-based anti-adhesive candidates may provide potential leads for therapeutics for severe malaria.
Collapse
Affiliation(s)
- Mark A. Skidmore
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | | | - Lynsay C. Cooper
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, United Kingdom
| | - Scott E. Guimond
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Edwin A. Yates
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Alister G. Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
6
|
Heparin Mimetics: Their Therapeutic Potential. Pharmaceuticals (Basel) 2017; 10:ph10040078. [PMID: 28974047 PMCID: PMC5748635 DOI: 10.3390/ph10040078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Heparin mimetics are synthetic and semi-synthetic compounds that are highly sulfated, structurally distinct analogues of glycosaminoglycans. These mimetics are often rationally designed to increase potency and binding selectivity towards specific proteins involved in disease manifestations. Some of the major therapeutic arenas towards which heparin mimetics are targeted include: coagulation and thrombosis, cancers, and inflammatory diseases. Although Fondaparinux, a rationally designed heparin mimetic, is now approved for prophylaxis and treatment of venous thromboembolism, the search for novel anticoagulant heparin mimetics with increased affinity and fewer side effects remains a subject of research. However, increasingly, research is focusing on the non-anticoagulant activities of these molecules. Heparin mimetics have potential as anti-cancer agents due to their ability to: (1) inhibit heparanase, an endoglycosidase which facilitates the spread of tumor cells; and (2) inhibit angiogenesis by binding to growth factors. The heparin mimetic, PI-88 is in clinical trials for post-surgical hepatocellular carcinoma and advanced melanoma. The anti-inflammatory properties of heparin mimetics have primarily been attributed to their ability to interact with: complement system proteins, selectins and chemokines; each of which function differently to facilitate inflammation. The efficacy of low/non-anticoagulant heparin mimetics in animal models of different inflammatory diseases has been demonstrated. These findings, plus clinical data that indicates heparin has anti-inflammatory activity, will raise the momentum for developing heparin mimetics as a new class of therapeutic agent for inflammatory diseases.
Collapse
|
7
|
Li Y, Sun C, Yates EA, Jiang C, Wilkinson MC, Fernig DG. Heparin binding preference and structures in the fibroblast growth factor family parallel their evolutionary diversification. Open Biol 2016; 6:rsob.150275. [PMID: 27030175 PMCID: PMC4821243 DOI: 10.1098/rsob.150275] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The interaction of a large number of extracellular proteins with heparan sulfate (HS) regulates their transport and effector functions, but the degree of molecular specificity underlying protein–polysaccharide binding is still debated. The 15 paracrine fibroblast growth factors (FGFs) are one of the paradigms for this interaction. Here, we measure the binding preferences of six FGFs (FGF3, FGF4, FGF6, FGF10, FGF17, FGF20) for a library of modified heparins, representing structures in HS, and model glycosaminoglycans, using differential scanning fluorimetry. This is complemented by the identification of the lysine residues in the primary and secondary binding sites of the FGFs by a selective labelling approach. Pooling these data with previous sets provides good coverage of the FGF phylogenetic tree, deduced from amino acid sequence alignment. This demonstrates that the selectivity of the FGFs for binding structures in sulfated polysaccharides and the pattern of secondary binding sites on the surface of FGFs follow the phylogenetic relationship of the FGFs, and so are likely to be the result of the natural selection pressures that led to the expansion of the FGF family in the course of the evolution of more complex animal body plans.
Collapse
Affiliation(s)
- Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Mark C Wilkinson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Meneghetti MCZ, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA. Heparan sulfate and heparin interactions with proteins. J R Soc Interface 2016; 12:0589. [PMID: 26289657 DOI: 10.1098/rsif.2015.0589] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure-activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure-activity relationships and regulation will be discussed.
Collapse
Affiliation(s)
- Maria C Z Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Ashley J Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Timothy R Rudd
- The National Institute for Biological Standards and Control (NIBSC), South Mimms, Potters Bar, Hertfordshire EN6 3QC, UK Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Helena B Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Andrew K Powell
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil
| | - Marcelo A Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio, São Paulo 40440-020, Brazil Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
9
|
Integrating computational and chemical biology tools in the discovery of antiangiogenic small molecule ligands of FGF2 derived from endogenous inhibitors. Sci Rep 2016; 6:23432. [PMID: 27000667 PMCID: PMC4802308 DOI: 10.1038/srep23432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
The FGFs/FGFRs system is a recognized actionable target for therapeutic approaches aimed at inhibiting tumor growth, angiogenesis, metastasis, and resistance to therapy. We previously identified a non-peptidic compound (SM27) that retains the structural and functional properties of the FGF2-binding sequence of thrombospondin-1 (TSP-1), a major endogenous inhibitor of angiogenesis. Here we identified new small molecule inhibitors of FGF2 based on the initial lead. A similarity-based screening of small molecule libraries, followed by docking calculations and experimental studies, allowed selecting 7 bi-naphthalenic compounds that bound FGF2 inhibiting its binding to both heparan sulfate proteoglycans and FGFR-1. The compounds inhibit FGF2 activity in in vitro and ex vivo models of angiogenesis, with improved potency over SM27. Comparative analysis of the selected hits, complemented by NMR and biochemical analysis of 4 newly synthesized functionalized phenylamino-substituted naphthalenes, allowed identifying the minimal stereochemical requirements to improve the design of naphthalene sulfonates as FGF2 inhibitors.
Collapse
|
10
|
Solari V, Rudd TR, Guimond SE, Powell AK, Turnbull JE, Yates EA. Heparan sulfate phage display antibodies recognise epitopes defined by a combination of sugar sequence and cation binding. Org Biomol Chem 2016; 13:6066-72. [PMID: 25952831 DOI: 10.1039/c5ob00564g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phage display antibodies are widely used to follow heparan sulfate (HS) expression in tissues and cells. We demonstrate by ELISA, that cations alter phage display antibody binding profiles to HS and this is mediated by changes in polysaccharide conformation, demonstrated by circular dichroism spectroscopy. Native HS structures, expressed on the cell surfaces of neuroblastoma and fibroblast cells, also exhibited altered antibody binding profiles following exposure to low mM concentrations of these cations. Phage display antibodies recognise conformationally-defined HS epitopes, rather than sequence alone, as has been assumed, and resemble proteins in being sensitive to changes in both charge distribution and conformation following binding of cations to HS polysaccharides.
Collapse
Affiliation(s)
- Valeria Solari
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
12
|
|
13
|
Heparin derivatives for the targeting of multiple activities in the inflammatory response. Carbohydr Polym 2014; 117:400-407. [PMID: 25498652 DOI: 10.1016/j.carbpol.2014.09.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/09/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
Abstract
An attractive strategy for ameliorating symptoms arising from the multi-faceted processes of excessive and/or continual inflammation would be to identify compounds able to interfere with multiple effectors of inflammation. The well-tolerated pharmaceutical, heparin, is capable of acting through several proteins in the inflammatory cascade, but its use is prevented by strong anticoagulant activity. Derivatives of heparin involving the periodate cleavage of 2,3 vicinal diols in non-sulfated uronate residues (glycol-split) and replacement of N-sulphamido- with N-acetamido- groups in glucosamine residues, capable of inhibiting neutrophil elastase activity in vitro, while exhibiting attenuated anticoagulant properties, have been identified and characterised. These also interact with two other important modulators of the inflammatory response, IL-8 and TNF-alpha. It is therefore feasible in principle to modulate several activities, while minimising anticoagulant side effects, providing a platform from which improved anti-inflammatory agents might be developed.
Collapse
|
14
|
Córdula CR, Lima MA, Shinjo SK, Gesteira TF, Pol-Fachin L, Coulson-Thomas VJ, Verli H, Yates EA, Rudd TR, Pinhal MAS, Toma L, Dietrich CP, Nader HB, Tersariol ILS. On the catalytic mechanism of polysaccharide lyases: evidence of His and Tyr involvement in heparin lysis by heparinase I and the role of Ca2+. MOLECULAR BIOSYSTEMS 2014; 10:54-64. [PMID: 24232366 DOI: 10.1039/c3mb70370c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structurally diverse polysaccharide lyase enzymes are distributed from plants to animals but share common catalytic mechanisms. One, heparinase I (F. heparinum), is employed in the production of the major anticoagulant drug, low molecular weight heparin, and is a mainstay of cell surface proteoglycan analysis. We demonstrate that heparinase I specificity and efficiency depend on the cationic form of the substrate. Ca(2+)-heparin, in which α-L-iduronate-2-O-sulfate residues adopt (1)C4 conformation preferentially, is a substrate, while Na(+)-heparin is an inhibitor. His and Tyr residues are identified in the catalytic step and a model based on molecular dynamics and docking is proposed, in which deprotonated His203 initiates β-elimination by abstracting the C5 proton of the α-L-iduonate-2-O-sulfate residue in the substrate, and protonated Tyr357 provides the donor to the hexosamine leaving group.
Collapse
Affiliation(s)
- Carolina R Córdula
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Três de Maio, 100, CEP 04044-020, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Giantsos-Adams KM, Koo AJA, Song S, Sakai J, Sankaran J, Shin JH, Garcia-Cardena G, Dewey CF. Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation. Cell Mol Bioeng 2013; 6:160-174. [PMID: 23805169 PMCID: PMC3689914 DOI: 10.1007/s12195-013-0273-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/07/2013] [Indexed: 11/17/2022] Open
Abstract
The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells' ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.
Collapse
Affiliation(s)
- Kristina M. Giantsos-Adams
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm. 3-254, Cambridge, MA 02139 USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm. 3-254, Cambridge, MA 02139 USA
| | - Andrew Jia-An Koo
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA USA
| | - Sukhyun Song
- Department of Bioengineering, Korean Advanced Institute for Science and Technology, 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon Korea
| | - Jiro Sakai
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm. 3-254, Cambridge, MA 02139 USA
| | - Jagadish Sankaran
- National University of Singapore, E4-04-10, 4 Engineering Drive 3, Singapore, Singapore
| | - Jennifer H. Shin
- Department of Bioengineering, Korean Advanced Institute for Science and Technology, 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon Korea
| | - Guillermo Garcia-Cardena
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA USA
| | - C. Forbes Dewey
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm. 3-254, Cambridge, MA 02139 USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA USA
| |
Collapse
|
16
|
Xu R, Rudd TR, Hughes AJ, Siligardi G, Fernig DG, Yates EA. Analysis of the fibroblast growth factor receptor (FGFR) signalling network with heparin as coreceptor: evidence for the expansion of the core FGFR signalling network. FEBS J 2013; 280:2260-70. [DOI: 10.1111/febs.12201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/06/2013] [Accepted: 02/18/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ruoyan Xu
- Department of Structural and Chemical Biology, Institute of Integrative Biology; University of Liverpool; UK
| | | | | | | | - David G. Fernig
- Department of Structural and Chemical Biology, Institute of Integrative Biology; University of Liverpool; UK
| | - Edwin A. Yates
- Department of Structural and Chemical Biology, Institute of Integrative Biology; University of Liverpool; UK
| |
Collapse
|
17
|
Lima MA, Hughes AJ, Veraldi N, Rudd TR, Hussain R, Brito AS, Chavante SF, Tersariol II, Siligardi G, Nader HB, Yates EA. Antithrombin stabilisation by sulfated carbohydrates correlates with anticoagulant activity. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00048f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Xu R, Ori A, Rudd TR, Uniewicz KA, Ahmed YA, Guimond SE, Skidmore MA, Siligardi G, Yates EA, Fernig DG. Diversification of the structural determinants of fibroblast growth factor-heparin interactions: implications for binding specificity. J Biol Chem 2012; 287:40061-73. [PMID: 23019343 DOI: 10.1074/jbc.m112.398826] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The functions of a large number (>435) of extracellular regulatory proteins are controlled by their interactions with heparan sulfate (HS). In the case of fibroblast growth factors (FGFs), HS binding determines their transport between cells and is required for the assembly of high affinity signaling complexes with their cognate FGF receptor. However, the specificity of the interaction of FGFs with HS is still debated. Here, we use a panel of FGFs (FGF-1, FGF-2, FGF-7, FGF-9, FGF-18, and FGF-21) spanning five FGF subfamilies to probe their specificities for HS at different levels as follows: binding parameters, identification of heparin-binding sites (HBSs) in the FGFs, changes in their secondary structure caused by heparin binding and structures in the sugar required for binding. For interaction with heparin, the FGFs exhibit K(D) values varying between 38 nM (FGF-18) and 620 nM (FGF-9) and association rate constants spanning over 20-fold (FGF-1, 2,900,000 M(-1) s(-1) and FGF-9, 130,000 M(-1) s(-1)). The canonical HBS in FGF-1, FGF-2, FGF-7, FGF-9, and FGF-18 differs in its size, and these FGFs have a different complement of secondary HBS, ranging from none (FGF-9) to two (FGF-1). Differential scanning fluorimetry identified clear preferences in these FGFs for distinct structural features in the polysaccharide. These data suggest that the differences in heparin-binding sites in both the protein and the sugar are greatest between subfamilies and may be more restricted within a FGF subfamily in accord with the known conservation of function within FGF subfamilies.
Collapse
Affiliation(s)
- Ruoyan Xu
- Institute of Integrative Biology, Department of Chemical and Structural Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Decarlo AA, Belousova M, Ellis AL, Petersen D, Grenett H, Hardigan P, O'Grady R, Lord M, Whitelock JM. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis. BMC Biotechnol 2012; 12:60. [PMID: 22967000 PMCID: PMC3485628 DOI: 10.1186/1472-6750-12-60] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Background Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™). Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.
Collapse
Affiliation(s)
- Arthur A Decarlo
- Agenta Biotechnologies, Inc, 1500 1st Ave, N, Unit 31, Birmingham, AL 35203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Duchesne L, Octeau V, Bearon RN, Beckett A, Prior IA, Lounis B, Fernig DG. Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PLoS Biol 2012; 10:e1001361. [PMID: 22815649 PMCID: PMC3398970 DOI: 10.1371/journal.pbio.1001361] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 06/06/2012] [Indexed: 12/31/2022] Open
Abstract
The heparan sulfate (HS) chains of proteoglycans are a key regulatory component of the extracellular matrices of animal cells, including the pericellular matrix around the plasma membrane. In these matrices they regulate transport, gradient formation, and effector functions of over 400 proteins central to cell communication. HS from different matrices differs in its selectivity for its protein partners. However, there has been no direct test of how HS in the matrix regulates the transport of its partner proteins. We address this issue by single molecule imaging and tracking in fibroblast pericellular matrix of fibroblast growth factor 2 (FGF2), stoichiometrically labelled with small gold nanoparticles. Transmission electron microscopy and photothermal heterodyne imaging (PHI) show that the spatial distribution of the HS-binding sites for FGF2 in the pericellular matrix is heterogeneous over length scales ranging from 22 nm to several µm. Tracking of individual FGF2 by PHI in the pericellular matrix of living cells demonstrates that they undergo five distinct types of motion. They spend much of their time in confined motion (∼110 nm diameter), but they are not trapped and can escape by simple diffusion, which may be slow, fast, or directed. These substantial translocations (µm) cover distances far greater than the length of a single HS chain. Similar molecular motion persists in fixed cells, where the movement of membrane PGs is impeded. We conclude that FGF2 moves within the pericellular matrix by translocating from one HS-binding site to another. The binding sites on HS chains form non-random, heterogeneous networks. These promote FGF2 confinement or substantial translocation depending on their spatial organisation. We propose that this spatial organisation, coupled to the relative selectivity and the availability of HS-binding sites, determines the transport of FGF2 in matrices. Similar mechanisms are likely to underpin the movement of many other HS-binding effectors.
Collapse
Affiliation(s)
- Laurence Duchesne
- Department of Structural and Chemical Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Institut du Fer à Moulin, UMR-S 839 INSERM, University Pierre and Marie Curie, Paris, France
- UMR 6290 CNRS, Institut de Génétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France
- * E-mail: (LD); (DGF)
| | - Vivien Octeau
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298 CNRS and Institut d'Optique Graduate School, Talence, France
| | - Rachel N. Bearon
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alison Beckett
- Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | - Ian A. Prior
- Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | - Brahim Lounis
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298 CNRS and Institut d'Optique Graduate School, Talence, France
| | - David G. Fernig
- Department of Structural and Chemical Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (LD); (DGF)
| |
Collapse
|
21
|
Bouças RI, Jarrouge-Bouças TR, Lima MA, Trindade ES, Moraes FA, Cavalheiro RP, Tersariol IL, Hoppenstead D, Fareed J, Nader HB. Glycosaminoglycan backbone is not required for the modulation of hemostasis: Effect of different heparin derivatives and non-glycosaminoglycan analogs. Matrix Biol 2012; 31:308-16. [DOI: 10.1016/j.matbio.2012.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/10/2012] [Accepted: 03/23/2012] [Indexed: 11/26/2022]
|
22
|
Rudd TR, Hughes A, Holman J, Solari V, Ferreira EDO, Domingues RMCP, Yates EA. Heparan sulphate, its derivatives and analogues share structural characteristics that can be exploited, particularly in inhibiting microbial attachment. Braz J Med Biol Res 2012; 45:386-91. [PMID: 22473323 PMCID: PMC3854285 DOI: 10.1590/s0100-879x2012007500048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/20/2012] [Indexed: 12/13/2022] Open
Abstract
Heparan sulphate (HS) and the related polysaccharide, heparin, exhibit conformational and charge arrangement properties, which provide a degree of redundancy allowing several seemingly distinct sequences to exhibit the same activity. This can also be mimicked by other sulphated polysaccharides, both in overall effect and in the details of interactions and structural consequences of interactions with proteins. Together, these provide a source of active compounds suitable for further development as potential drugs. These polysaccharides also possess considerable size, which bestows upon them an additional useful property: the capability of disrupting processes comprising many individual interactions, such as those characterising the attachment of microbial pathogens to host cells. The range of involvement of HS in microbial attachment is reviewed and examples, which include viral, bacterial and parasitic infections and which, in many cases, are now being investigated as potential targets for intervention, are identified.
Collapse
Affiliation(s)
- T R Rudd
- Istituto di Chimica e Biochimica, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Mulloy B, Khan S, Perkins SJ. Molecular architecture of heparin and heparan sulfate: Recent developments in solution structural studies. PURE APPL CHEM 2011. [DOI: 10.1351/pac-con-11-10-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study of the relationship between the complex structures and numerous physiological functions of the glycosaminoglycans (GAGs) heparin and heparan sulfate (HS) has continued to thrive in the past decade. Though it is clear that the monosaccharide sequences of these polysaccharides must determine their ability to modulate the action of growth factors, morphogens, chemokines, cytokines, and many other extracellular proteins, the exact details of this dependence still prove elusive. Sequence determines the 3D structure of GAGs at more than one level; detailed sequences of highly sulfated regions may influence affinity for specific proteins in some cases, but in addition attention has been called to the importance of the length and spacing of these highly sulfated sequences, which are separated by unsulfated domains. Within the sulfated “S-domains”, the internal dynamics of the conformationally flexible iduronate pyranose ring have continued to interest NMR spectroscopists and molecular modelers. New studies of the relative degrees of flexibility of sulfated and unsulfated domains lead to an overall model of heparin/HS in which protein-binding, highly sulfated S-domains with well-defined conformations are separated by more flexible NA-domains.
Collapse
|
24
|
Sapay N, Cabannes E, Petitou M, Imberty A. Molecular modeling of the interaction between heparan sulfate and cellular growth factors: bringing pieces together. Glycobiology 2011; 21:1181-93. [PMID: 21572110 DOI: 10.1093/glycob/cwr052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heparan sulfate is a polysaccharide belonging to the glycaminoglycan family. It interacts with numerous proteins of the extracellular matrix, in particular cellular growth factors. The number of experimental protein-heparin sulfate complexes obtained by crystallography or nuclear magnetic resonance is limited. Alternatively, computational approaches can be employed. Generally, they restrain the conformation of the glycosidic rings and linkages in order to reduce the complexity of the problem. Modeling the interaction between protein and heparan sulfate is indeed challenging because of the large size of the fragment needed for a strong binding, the flexibility brought by the glycosidic rings and linkages and the high density of negative charges. We propose a two-step method based on molecular docking and molecular dynamics simulation. Molecular docking allows exploring the positioning of a rigid heparin sulfate fragment on the protein surface. Molecular dynamics refine selected docking models by explicitly representing solvent molecules and not restraining the polysaccharide backbone. The interaction of a hexamer of heparin sulfate was studied in interaction with fibroblast growth factor 2 and stromal cell-derived factor 1α. This approach shed light on the plasticity of the growth factors interacting with heparan sulfate. This approach can be extended to the study of other protein/glycosaminoglycan complexes.
Collapse
Affiliation(s)
- Nicolas Sapay
- Centre de Recherches sur les Macromolécules Végétales-CNRS, 601 rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
25
|
Rudd TR, Gaudesi D, Lima MA, Skidmore MA, Mulloy B, Torri G, Nader HB, Guerrini M, Yates EA. High-sensitivity visualisation of contaminants in heparin samples by spectral filtering of 1H NMR spectra. Analyst 2011; 136:1390-8. [PMID: 21279244 DOI: 10.1039/c0an00835d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel application of two-dimensional correlation analysis has been employed to filter (1)H NMR heparin spectra distinguishing acceptable natural variation and the presence of foreign species. Analysis of contaminated heparin samples, compared to a dataset of accepted heparin samples using two-dimensional correlation spectroscopic analysis of their 1-dimensional (1)H NMR spectra, allowed the spectral features of contaminants to be recovered with high sensitivity, without having to resort to more complicated NMR experiments. Contaminants, which exhibited features distinct from those of heparin and those with features normally hidden within the spectral mass of heparin could be distinguished readily. A heparin sample which had been pre-mixed with a known contaminant, oversulfated chondroitin sulfate (OSCS), was tested against the heparin reference library. It was possible to recover the (1)H NMR spectrum of the OSCS component through difference 2D-COS power spectrum analysis of as little as 0.25% (w/w) with ease, and of 2% (w/w) for more challenging contaminants, whose NMR signals fell under those of heparin. The approach shows great promise for the quality control of heparin and provides the basis for greatly improved regulatory control for the analysis of heparin, as well as other intrinsically heterogeneous and varied products.
Collapse
Affiliation(s)
- Timothy R Rudd
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via Giuseppe Colombo, 81 Milano 20133, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Herzog C, Lippmann I, Grobe K, Zamfir AD, Echtermeyer F, Seidler DG. The amino acid tryptophan prevents the biosynthesis of dermatan sulfate. MOLECULAR BIOSYSTEMS 2011; 7:2872-81. [DOI: 10.1039/c1mb05139c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|