1
|
Xiong F, Zhang T, Ma J, Jia Q. Dual-ligand hydrogen-bonded organic framework: Tailored for mono-phosphopeptides and glycopeptides analysis. Talanta 2024; 266:125068. [PMID: 37574607 DOI: 10.1016/j.talanta.2023.125068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have emerged as a promising class of materials for applications of separation and enrichment. Utilizing multiple-ligands to construct HOFs is a promising avenue towards the development of structurally stable and functionally diverse frameworks, offering opportunities to create customized binding sites for selective recognition of biomolecules. In recent years, due to the crucial role that protein post-translational modifications (PTMs) play in maintaining protein function and regulating signaling pathways, and the growing recognition of the extensive cross-talk that can occur between PTMs, simultaneous analysis of different types of PTMs represents a requirement of a new generation of enrichment materials. Here, for the first attempt, we report a dual-ligand HOF constructed from borate anion and guanidinium cation for the simultaneous identification of glycopeptides and phosphopeptides, especially mono-phosphopeptides. According to theoretical calculations, the HOF functional sites display a synergistic "matching" effect with mono-phosphopeptides, resulting in a stronger enrichment effect for mono-phosphopeptides as compared to multi-phosphopeptides. Also, due to its high hydrophilicity and boronate affinity, this material can efficiently capture glycoproteins. HOF is set to become an active research direction in the development of highly efficient simultaneous protein enrichment materials, and offers a new approach for comprehensive PTMs analysis.
Collapse
Affiliation(s)
- Fangfang Xiong
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Gladchuk AS, Gorbunov AY, Keltsieva OA, Ilyushonok SK, Babakov VN, Shilovskikh VV, Kolonitskii PD, Stepashkin NA, Soboleva A, Muradymov MZ, Krasnov NV, Sukhodolov NG, Selyutin AA, Frolov A, Podolskaya EP. Coating of a MALDI target with metal oxide nanoparticles by droplet-free electrospraying – a versatile tool for in situ enrichment of human globin adducts of halogen-containing drug metabolites. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
3
|
Gao C, Wang Y, Zhang H, Hang W. Titania Nanosheet as a Matrix for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis and Imaging. Anal Chem 2023; 95:650-658. [PMID: 36577518 DOI: 10.1021/acs.analchem.2c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Surface-assisted laser desorption/ionization (SALDI) acts as a soft desorption/ionization technique, which has been widely recognized in small-molecule analysis owing to eliminating the requirement of the organic matrix. Herein, titania nanosheets (TiO2 NSs) were applied as novel substrates for simultaneous analysis and imaging of low-mass molecules and lipid species. A wide variety of representative analytes containing amino acids, bases, drugs, peptides, endogenous small molecules, and saccharide-spiked urine were examined by the TiO2 NS-assisted LDI mass spectrometry (MS). Compared with conventional organic matrices and substrates [Ag nanoparticles (NPs), Au NPs, carbon nanotubes, carbon NPs, CeO2 microparticles, and P25 TiO2], the TiO2 NS-assisted LDI MS method shows higher sensitivity and less spectral interference. Repeatability was evaluated with batch-to-batch relative standard deviations for 5-hydroxytryptophan, glucose-spiked urine, and glucose with addition of internal standard, which were 17.4, 14.9, and 2.8%, respectively. The TiO2 NS-assisted LDI MS method also allows the determination of blood glucose levels in mouse serum with a linear range of 0.5-10 mM. Owing to the nanoscale size and uniform deposition of the TiO2 NS matrix, spatial distributions of 16 endogenous small molecules and 16 lipid species from the horizontal section of the mouse brain tissue can be visualized at a 50 μm spatial resolution. These successful applications confirm that the TiO2-assisted LDI MS method has promising prospects in the field of life science.
Collapse
Affiliation(s)
- Chaohong Gao
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yubing Wang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Zhang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
He Y, Hao Y, Shen J, Wang C, Wei Y. Removal of adsorption sites on the external surface of mesoporous adsorbent for eliminating the interference of proteins in enrichment of phosphopeptides/nucleotides. Anal Chim Acta 2021; 1178:338849. [PMID: 34482875 DOI: 10.1016/j.aca.2021.338849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/19/2023]
Abstract
Various mesoporous adsorbents are of great promise for enriching small molecules from biological samples based on the size-exclusion effect. At present, the mesoporous adsorbents have adsorption sites distributed uniformly on the internal and external surfaces of mesopores. However, the adsorption sites on the external surface can adsorb proteins, interfering with the enrichment of small molecules. Herein, a novel immobilized-Ti4+ magnetic mesoporous adsorbent removing the adsorption sites on the external surface was facile prepared via the coupling chemistry of isocyanate with amine and consequent hydrolysis of urea linkage by urease. The adsorbent enables fast and selective enrichment of phosphopeptides and nucleotides from biological samples. In addition, sensitive detection methods for phosphopeptides and nucleotides in human serum are developed by coupling the magnetic solid-phase extraction with matrix-assisted laser desorption/ionization time of flight mass spectrometry and liquid chromatography-mass spectrometer, respectively. Under optimal conditions, response is linear (R2 ≥ 0.9923), limits of detection are low (0.41-9.48 ng mL-1), and reproducibility is acceptable (inter- and intra-day assay RSDs of≤15.0%) for six nucleotides. The developed strategy offers an effective method to eliminate the interference of proteins in the enrichment of small molecules from real biological samples.
Collapse
Affiliation(s)
- Yijia He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Yirui Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
5
|
Yan S, Luo B, He J, Lan F, Wu Y. Phytic acid functionalized magnetic bimetallic metal-organic frameworks for phosphopeptide enrichment. J Mater Chem B 2021; 9:1811-1820. [PMID: 33503098 DOI: 10.1039/d0tb02517h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Highly specific enrichment of phosphopeptides from complex biological samples was a precondition for further studying its physiological and pathological processes due to the important and trace amounts of phosphopeptides. In this work, phytic acid (PA) functionalized magnetic cerium and zirconium bimetallic metal-organic framework nanocomposites (denoted as Fe3O4@SiO2@Ce-Zr-MOF@PA) were fabricated by a facile yet efficient method. The as-prepared nanomaterial exhibited high sensitivity (0.1 fmol μL-1), high selectivity toward phosphopeptides from β-casein tryptic digests/BSA (1 : 800), and good reusability of five cycles for enriching phosphopeptides. This affinity probe was applied to biological samples, and 19, 4 and 15 phosphopeptides were identified from non-fat milk, human serum and human saliva, respectively. The above marked advantages are attributed to the strong affinity of the abundant Ce-O and Zr-O nanoclusters on the surface of the MOF shell with the improved hydrophilicity from a great number of phosphate groups. Therefore, the novel Fe3O4@SiO2@Ce-Zr-MOF@PA nanospheres could not only enrich phosphopeptides effectively, but also reduce the adsorption of phosphopeptides, manifesting great potential in the identification and further analysis of low abundance phosphopeptides in complex biological samples.
Collapse
Affiliation(s)
- Shuang Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Jia He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
6
|
Yu L, Luo B, Li Z, He J, Lan F, Wu Y. PAMAM–PMAA brush-functionalized magnetic composite nanospheres: a smart nanoprobe with tunable selectivity for effective enrichment of mono-, multi-, or global phosphopeptides. J Mater Chem B 2020; 8:1266-1276. [DOI: 10.1039/c9tb02577d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel PAMAM–PMAA brush functionalized magnetic composite nanosphere was successfully prepared for selective enrichment of mono-, multi-, or global phosphopeptides by modulating buffer polarity and acidity.
Collapse
Affiliation(s)
- Lingzhu Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bin Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhiyu Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jia He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
7
|
Layer-by-layer assembled magnetic bimetallic metal-organic framework composite for global phosphopeptide enrichment. J Chromatogr A 2019; 1601:45-52. [DOI: 10.1016/j.chroma.2019.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
|
8
|
Luo B, Yang M, Jiang P, Lan F, Wu Y. Multi-affinity sites of magnetic guanidyl-functionalized metal-organic framework nanospheres for efficient enrichment of global phosphopeptides. NANOSCALE 2018; 10:8391-8396. [PMID: 29701230 DOI: 10.1039/c8nr01914b] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic guanidyl-functionalized metal-organic framework (MOF) nanospheres with multi-affinity sites composed of an inherent Zn-O cluster based on MOAC and specific recognized groups (amino group and guanidyl group) were for the first time synthesized by a combination strategy of epitaxial growth and post-synthetic modification of magnetic amino-derived MOFs, and they exhibit great potential for efficient enrichment of global phosphopeptides.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | | | | | | | | |
Collapse
|
9
|
Yang SS, Yu HX, Wang ZZ, Liu HL, Zhang H, Yu X, Shang W, Chen GQ, Gu ZY. An Exfoliated 2D Egyptian Blue Nanosheet for Highly Selective Enrichment of Multi-phosphorylated Peptides in Mass Spectrometric Analysis. Chemistry 2017; 24:2109-2116. [DOI: 10.1002/chem.201704138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Shi-Shu Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Hai-Xia Yu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Zi-Zhen Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Hai-Long Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Hao Zhang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine; Nanjing University of, Chinese Medicine; Nanjing 210023 China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine; Nanjing University of, Chinese Medicine; Nanjing 210023 China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine; Nanjing University of, Chinese Medicine; Nanjing 210023 China
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center; Nanjing University; 12 Xuefu Avenue Nanjing 210061 China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| |
Collapse
|
10
|
Long XY, Zhang ZJ, Li JY, Sheng D, Lian HZ. A combination strategy using two novel cerium-based nanocomposite affinity probes for the selective enrichment of mono- and multi-phosphopeptides in mass spectrometric analysis. Chem Commun (Camb) 2017; 53:4620-4623. [DOI: 10.1039/c7cc00540g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sequential enrichment of mono- and multi-phosphopeptides was successfully achieved using two novel Ce-based nanocomposite affinity probes.
Collapse
Affiliation(s)
- Xing-yu Long
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Zi-jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Jia-yuan Li
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Dong Sheng
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| |
Collapse
|
11
|
Liu Z, Wang F, Chen J, Zhou Y, Zou H. Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy. J Chromatogr A 2016; 1461:35-41. [DOI: 10.1016/j.chroma.2016.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
|
12
|
|
13
|
Li XS, Yuan BF, Feng YQ. Recent advances in phosphopeptide enrichment: Strategies and techniques. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Xu L, Ma W, Shen S, Li L, Bai Y, Liu H. Hydrazide functionalized monodispersed silica microspheres: a novel probe with tunable selectivity for a versatile enrichment of phosphopeptides with different numbers of phosphorylation sites in MS analysis. Chem Commun (Camb) 2016; 52:1162-5. [DOI: 10.1039/c5cc07941a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hydrazide functionalized monodispersed silica microspheres (HFMSM) were developed for the enrichment of phosphopeptides for the first time.
Collapse
Affiliation(s)
- Linnan Xu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Wen Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Sensen Shen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Liping Li
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
15
|
Min Q, Li S, Chen X, Abdel-Halim ES, Jiang LP, Zhu JJ. Magnetite/Ceria-Codecorated Titanoniobate Nanosheet: A 2D Catalytic Nanoprobe for Efficient Enrichment and Programmed Dephosphorylation of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9563-9572. [PMID: 25806593 DOI: 10.1021/acsami.5b01006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Global characterization and in-depth understanding of phosphoproteome based on mass spectrometry (MS) desperately needs a highly efficient affinity probe during sample preparation. In this work, a ternary nanocomposite of magnetite/ceria-codecorated titanoniobate nanosheet (MC-TiNbNS) was synthesized by the electrostatic assembly of Fe3O4 nanospheres and in situ growth of CeO 2 nanoparticles on pre-exfoliated titanoniobate and eventually utilized as the probe and catalyst for the enrichment and dephosphorylation of phosphopeptides. The two-dimensional (2D) structured titanoniobate nanosheet not only promoted the efficacy of capturing phosphopeptides with enlarged surface area, but also functioned as a substrate for embracing the magnetic anchor Fe3O4 to enable magnetic separation and mimic phosphatase CeO2 to produce identifying signatures of phosphopeptides. Compared to single-component TiNbNS or CeO2 nanoparticles, the ternary nanocomposite provided direct evidence of the number of phosphorylation sites while maintaining the enrichment efficiency. Moreover, by altering the on-sheet CeO2 coverage, the dephosphorylation activity could be fine-tuned, generating continuously adjustable signal intensities of both phosphopeptides and their dephosphorylated tags. Exhaustive detection of both mono- and multiphosphorylated peptides with precise counting of their phosphorylation sites was achieved in the primary mass spectra in the cases of digests of standard phosphoprotein and skim milk, as well as a more complex biological sample, human serum. With the resulting highly informative mass spectra, this multifunctional probe can be used as a promising tool for the fast and comprehensive characterization of phosphopeptides in MS-based phosphoproteomics.
Collapse
Affiliation(s)
- Qianhao Min
- †State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Siyuan Li
- †State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xueqin Chen
- †State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - E S Abdel-Halim
- §Petrochemical Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Li-Ping Jiang
- †State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jun-Jie Zhu
- †State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
16
|
Li XS, Chen X, Yuan BF, Feng YQ. Phosphonate-modified metal oxides for the highly selective enrichment of phosphopeptides. RSC Adv 2015. [DOI: 10.1039/c4ra13878c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphonate-modified metal oxides display higher selectivity than unmodified ones for the effective enrichment of phosphopeptides.
Collapse
Affiliation(s)
- Xiao-Shui Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Xi Chen
- Wuhan Institute of Biotechnology
- Wuhan 430072
- China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
17
|
Eriksson AIK, Edwards K, Agmo Hernández V. Cooperative adsorption behavior of phosphopeptides on TiO2 leads to biased enrichment, detection and quantification. Analyst 2015; 140:303-12. [DOI: 10.1039/c4an01580k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel data show that anomalous adsorption behavior and common washing procedures can lead to biased results in TiO2-based phosphoproteomics.
Collapse
Affiliation(s)
| | - K. Edwards
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | | |
Collapse
|
18
|
Xu LN, Li LP, Jin L, Bai Y, Liu HW. Guanidyl-functionalized graphene as a bifunctional adsorbent for selective enrichment of phosphopeptides. Chem Commun (Camb) 2014; 50:10963-6. [DOI: 10.1039/c4cc04327h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This novel bi-functional gfg provides two enriching performances, one is for global phosphopeptides, and the other is for multi-phosphopeptides with consecutive phosphorylated residues.
Collapse
Affiliation(s)
- Lin-Nan Xu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Li-Ping Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Liang Jin
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| | - Hu-Wei Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Institute of Analytical Chemistry
- Peking University
| |
Collapse
|
19
|
Eriksson AIK, Bartsch M, Bergquist J, Edwards K, Lind SB, Agmo Hernández V. On-target titanium dioxide-based enrichment for characterization of phosphorylations in the Adenovirus pIIIa protein. J Chromatogr A 2013; 1317:105-9. [PMID: 24054126 DOI: 10.1016/j.chroma.2013.08.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 12/29/2022]
Abstract
A recently developed titanium dioxide (TiO2) based on-target method for phosphopeptide enrichment and matrix assisted laser desorption-ionization mass spectrometry (MALDI MS) analysis was used to investigate phosphorylations in the Adenovirus type 2 structural protein pIIIa. Lysates of purified virus particles were separated on 1-D SDS-PAGE and the band for the pIIIa protein was excised for tryptic digestion into peptides that were enriched with the on-target method. The enrichment provided by the method clearly improved the detectability of phosphorylated peptides and the results show for the first time evidence for multi-phosphorylated peptides in pIIIa. Moreover, three novel phosphorylations were identified in the protein sequence, even though the precise positions could not be determined. These results illustrate the potential of the method for the characterization of novel phosphoproteomes in biological samples of medical relevance.
Collapse
|
20
|
Cheng G, Li SM, Wang Y, Wang ZG, Zhang JL, Ni JZ. REPO4 (RE = La, Nd, Eu) affinity nanorods modified on a MALDI plate for rapid capture of target peptides from complex biosamples. Chem Commun (Camb) 2013; 49:8492-4. [DOI: 10.1039/c3cc44929g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Krásný L, Pompach P, Strohalm M, Obsilova V, Strnadová M, Novák P, Volný M. In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1294-302. [PMID: 23019160 DOI: 10.1002/jms.3081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report substantial in-situ enrichment of phosphopeptides in peptide mixtures using titanium and zirconium dioxide-coated matrix assisted laser desorption-ionization (MALDI) plates prepared by recently reported ambient ion landing deposition technique. The technique was able to modify four common materials currently used for MALDI targets (stainless steel, aluminum, indium-tin oxide glass and polymeric anchor chip). The structure of the deposited dioxide was investigated by electron microscopy, and different surfaces were compared and discussed in this study. Two standard proteins were used to test the enrichment capabilities of modified MALDI plates: casein and in-vitro phosphorylated trehalase. The enrichment of casein tryptic digest resulted in identification of 20 phosphopeptides (including miscleavages). Trehalase was used as a suitable model of larger protein that provided more complex peptide mixture after the trypsin digestion. All four possible phosphorylation sites in trehalase were identified and up to seven phosphopetides were found (including methionine oxidations and miscleavages). Two different mass spectrometers, MALDI-Fourier transform ion cyclotron resonance (FTICR) and MALDI-time of flight, were used to detect the phosphopeptides from modified MALDI plates after the enrichment procedure. It was observed that the desorption-ionization phenomena on the modified surfaces are not critically influenced by the parameters of the different MALDI ion sources (e.g. different pressure, different extraction voltages), and thus the presence of dioxide layer on the standard MALDI plate does not significantly interfere with the main MALDI processes. The detection of phosphopeptides after the enrichment could be done by both instruments. Desorption electrospray ionization coupled to the FTICR was also tested, but, unlike MALDI, it did not provide satisfactory results.
Collapse
Affiliation(s)
- Lukáš Krásný
- Institute of Microbiology of the ASCR, vvi, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhao L, Qin H, Hu Z, Zhang Y, Wu R, Zou H. A poly(ethylene glycol)-brush decorated magnetic polymer for highly specific enrichment of phosphopeptides. Chem Sci 2012. [DOI: 10.1039/c2sc20363d] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
23
|
Wang WH, Dong JL, Baker GL, Bruening ML. Bifunctional polymer brushes for low-bias enrichment of mono- and multi-phosphorylated peptides prior to mass spectrometry analysis. Analyst 2011; 136:3595-8. [PMID: 21776496 PMCID: PMC3814213 DOI: 10.1039/c1an15489c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymer brushes orthogonally derivatized with oxotitanium and nitrilotriacetate-Fe(III) groups enrich both mono- and multi-phosphorylated peptides for mass spectrometry analysis.
Collapse
Affiliation(s)
- Wei-Han Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. Fax:+1 517-353-1793; Tel: +1 517-355-9715 ext 237
| | - Jin-Lan Dong
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. Fax:+1 517-353-1793; Tel: +1 517-355-9715 ext 237
| | - Gregory L. Baker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. Fax:+1 517-353-1793; Tel: +1 517-355-9715 ext 237
| | - Merlin L. Bruening
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. Fax:+1 517-353-1793; Tel: +1 517-355-9715 ext 237
| |
Collapse
|
24
|
TiO2-functionalized mesoporous materials for sensitive analysis of multi-phosphopeptides. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4344-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Qiao L, Liu B, Girault HH. Nanomaterial-assisted laser desorption ionization for mass spectrometry-based biomedical analysis. Nanomedicine (Lond) 2010; 5:1641-52. [DOI: 10.2217/nnm.10.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanomaterials have been widely used to assist laser desorption ionization of biomolecules for mass spectrometry analysis. Compared with classical matrix-assisted laser desorption ionization, strategies based on nanomaterial-assisted ionization generate a clean background, which is of great benefit for the qualitative and quantitative analysis of small biomolecules, such as therapeutic and diagnostic molecules. As label-free platforms, they have successfully been used for high-throughput enzyme activity/inhibition monitoring and also for tissue imaging to map in situ the distribution of peptides, metabolites and drugs. In addition to widely used porous silicon nanomaterials, gold nanoparticles can be easily chemically modified by thiol-containing compounds, opening novel interesting perspectives. Such functionalized nanoparticles have been used both as probes to extract target molecules and as matrices to assist laser desorption ionization for developing new enzyme immunoassays or for studying DNA hybridization. More recently, semiconductor nanomaterials or quantum dots acting as photosensitive centers to induce in-source redox reactions for proteomics and to investigate biomolecule oxidation for metabolomics have been shown to offer new analytical strategies.
Collapse
Affiliation(s)
- Liang Qiao
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - BaoHong Liu
- Department of Chemistry, Fudan University, Shanghai, P.R. China
| | | |
Collapse
|