1
|
Bigot K, Gondouin P, Bénard R, Montagne P, Youale J, Piazza M, Picard E, Bordet T, Behar-Cohen F. Transferrin Non-Viral Gene Therapy for Treatment of Retinal Degeneration. Pharmaceutics 2020; 12:E836. [PMID: 32882879 PMCID: PMC7557784 DOI: 10.3390/pharmaceutics12090836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of iron metabolism is observed in animal models of retinitis pigmentosa (RP) and in patients with age-related macular degeneration (AMD), possibly contributing to oxidative damage of the retina. Transferrin (TF), an endogenous iron chelator, was proposed as a therapeutic candidate. Here, the efficacy of TF non-viral gene therapy based on the electrotransfection of pEYS611, a plasmid encoding human TF, into the ciliary muscle was evaluated in several rat models of retinal degeneration. pEYS611 administration allowed for the sustained intraocular production of TF for at least 3 and 6 months in rats and rabbits, respectively. In the photo-oxidative damage model, pEYS611 protected both retinal structure and function more efficiently than carnosic acid, a natural antioxidant, reduced microglial infiltration in the outer retina and preserved the integrity of the outer retinal barrier. pEYS611 also protected photoreceptors from N-methyl-N-nitrosourea-induced apoptosis. Finally, pEYS611 delayed structural and functional degeneration in the RCS rat model of RP while malondialdehyde (MDA) ocular content, a biomarker of oxidative stress, was decreased. The neuroprotective benefits of TF non-viral gene delivery in retinal degenerative disease models further validates iron overload as a therapeutic target and supports the continued development of pEY611 for treatment of RP and dry AMD.
Collapse
Affiliation(s)
- Karine Bigot
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Pauline Gondouin
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Romain Bénard
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Pierrick Montagne
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Jenny Youale
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, 75006 Paris, France;
| | - Marie Piazza
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Emilie Picard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, 75006 Paris, France;
| | - Thierry Bordet
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, 75006 Paris, France;
- Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
2
|
Kartavenka K, Panuwet P, Yakimavets V, Jaikang C, Thipubon K, D’Souza PE, Barr DB, Ryan PB. LC-MS Quantification of Malondialdehyde-Dansylhydrazine Derivatives in Urine and Serum Samples. J Anal Toxicol 2020; 44:470-481. [PMID: 31897465 PMCID: PMC8269965 DOI: 10.1093/jat/bkz112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/21/2019] [Accepted: 11/03/2019] [Indexed: 12/22/2022] Open
Abstract
We developed a robust analytical method for quantification of malondialdehyde (MDA) in urine and serum samples using dansylhydrazine (DH) as a derivatizing reagent. The derivatization procedure was partially carried out using an autosampler injection program to minimize errors associated with the low-volume addition of reagents and was optimized to yield a stable hydrazone derivative of MDA and its labeled d2-MDA analogue. The target MDA-DH derivatives were separated on an Agilent Zorbax Eclipse Plus Phenyl-Hexyl (3.0 × 100 mm, 3.5 μm) column. The mass-to-charge ratios of the target derivatives [(M+H)+ of 302 and 304 for MDA-DH and d2-MDA-DH, respectively] were analyzed in single ion monitoring mode using a single quadrupole mass spectrometer operated under positive electrospray ionization. The method limits of quantification were 5.63 nM (or 0.405 ng/mL) for urine analysis and 5.68 nM (or 0.409 ng/mL) for serum analysis. The quantification range for urine analysis was 5.63-500 nM (0.405-36.0 ng/mL) while the quantification range for serum analysis was 5.68-341 nM (0.409-24.6 ng/mL). The method showed good relative recoveries (98-103%), good accuracies (92-98%), and acceptable precisions (relative standard deviations 1.8-7.3% for inter-day precision; 1.8-6.1% for intra-day precision) as observed from the repeat analysis of quality control samples prepared at different concentrations. The method was used to measure MDA in individual urine samples (n = 287) and de-identified archived serum samples (n = 22) to assess the overall performance of the method. The results demonstrated that our method is capable of measuring urinary and serum levels of MDA, allowing its future application in epidemiologic investigations.
Collapse
Affiliation(s)
- Kostya Kartavenka
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Volha Yakimavets
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Intavaroros Road, Sriphum Sub-district, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
| | - Kanitarin Thipubon
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, 110 Intavaroros Road, Sriphum Sub-district, Mueang Chiang Mai District, Chiang Mai 50200, Thailand
| | - Priya Esilda D’Souza
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| | - P Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Zhou X, Zhang Z, Liu X, Wu D, Ding Y, Li G, Wu Y. Typical reactive carbonyl compounds in food products: Formation, influence on food quality, and detection methods. Compr Rev Food Sci Food Saf 2020; 19:503-529. [DOI: 10.1111/1541-4337.12535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Xuxia Zhou
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Zhiwen Zhang
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Xiaoying Liu
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Di Wu
- Yangtze Delta Region Institute of Tsinghua University Zhejiang China
| | - Yuting Ding
- Department of Food Science and TechnologyZhejiang University of Technology Hangzhou China
| | - Guoliang Li
- School of Food and Biological EngineeringShaanxi University of Science and Technology Xian China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical ScienceChina National Center for Food Safety Risk Assessment Beijing China
| |
Collapse
|
4
|
Bioanalytical and Mass Spectrometric Methods for Aldehyde Profiling in Biological Fluids. TOXICS 2019; 7:toxics7020032. [PMID: 31167424 PMCID: PMC6630274 DOI: 10.3390/toxics7020032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Human exposure to aldehydes is implicated in multiple diseases including diabetes, cardiovascular diseases, neurodegenerative disorders (i.e., Alzheimer’s and Parkinson’s Diseases), and cancer. Because these compounds are strong electrophiles, they can react with nucleophilic sites in DNA and proteins to form reversible and irreversible modifications. These modifications, if not eliminated or repaired, can lead to alteration in cellular homeostasis, cell death and ultimately contribute to disease pathogenesis. This review provides an overview of the current knowledge of the methods and applications of aldehyde exposure measurements, with a particular focus on bioanalytical and mass spectrometric techniques, including recent advances in mass spectrometry (MS)-based profiling methods for identifying potential biomarkers of aldehyde exposure. We discuss the various derivatization reagents used to capture small polar aldehydes and methods to quantify these compounds in biological matrices. In addition, we present emerging mass spectrometry-based methods, which use high-resolution accurate mass (HR/AM) analysis for characterizing carbonyl compounds and their potential applications in molecular epidemiology studies. With the availability of diverse bioanalytical methods presented here including simple and rapid techniques allowing remote monitoring of aldehydes, real-time imaging of aldehydic load in cells, advances in MS instrumentation, high performance chromatographic separation, and improved bioinformatics tools, the data acquired enable increased sensitivity for identifying specific aldehydes and new biomarkers of aldehyde exposure. Finally, the combination of these techniques with exciting new methods for single cell analysis provides the potential for detection and profiling of aldehydes at a cellular level, opening up the opportunity to minutely dissect their roles and biological consequences in cellular metabolism and diseases pathogenesis.
Collapse
|
5
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
6
|
Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis. SENSORS 2017; 17:s17112689. [PMID: 29160798 PMCID: PMC5713634 DOI: 10.3390/s17112689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.
Collapse
|
7
|
Oh JA, Shin HS. Simple and sensitive determination of malondialdehyde in human urine and saliva using UHPLC-MS/MS after derivatization with 3,4-diaminobenzophenone. J Sep Sci 2017; 40:3958-3968. [DOI: 10.1002/jssc.201700490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jin-Aa Oh
- Water Environment Research Department, Water Quality Assessment Research Division; National Institute of Environmental Research, Environmental Research Complex; Seo-gu Republic of Korea
| | - Ho-Sang Shin
- Department of Environmental Education; Kongju National University; Kongju Republic of Korea
| |
Collapse
|
8
|
Hanff E, Eisenga MF, Beckmann B, Bakker SJL, Tsikas D. Simultaneous pentafluorobenzyl derivatization and GC-ECNICI-MS measurement of nitrite and malondialdehyde in human urine: Close positive correlation between these disparate oxidative stress biomarkers. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1043:167-175. [PMID: 27461359 DOI: 10.1016/j.jchromb.2016.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/05/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023]
Abstract
Urinary nitrite and malondialdehyde (MDA) are biomarkers of nitrosative and oxidative stress, respectively. At physiological pH values of urine and plasma, nitrite and MDA exist almost entirely in their dissociated forms, i.e., as ONO- (ONOH, pKa=3.4) and -CH(CHO)2 (CH2(CHO)2, pKa=4.5). Previously, we reported that nitrite and MDA react with pentafluorobenzyl (PFB) bromide (PFB-Br) in aqueous acetone. Here, we report on the simultaneous derivatization of nitrite and MDA and their stable-isotope labeled analogs O15NO- (4μM) and CH2(CDO)2 (1μM or 10μM) with PFB-Br (10μL) to PFBNO2, PFB15NO2, C(PFB)2(CHO)2), C(PFB)2(CDO)2 by heating acetonic urine (urine-acetone, 100:400μL) for 60min at 50°C. After acetone evaporation under a stream of nitrogen, derivatives were extracted with ethyl acetate (1mL). A 1-μL aliquot of the ethyl acetate phase dried over anhydrous Na2SO4 was injected in the splitless mode for simultaneous GC-MS analysis in the electron capture negative-ion chemical ionization mode. Quantification was performed by selected-ion monitoring (SIM) the anions [M-PFB]-m/z 46 for ONO-, m/z 47 for O15NO-, m/z 251 for -C(PFB)(CHO)2, and m/z 253 for -C(PFB)(CDO)2. The retention times were 3.18min for PFB-ONO2/PFB-O15NO2, and 7.13min for -C(PFB)(CHO)2/-C(PFB)(CDO)2. Use of CH2(CDO)2 at 1μM but not at 10μM was associated with an unknown interference with the C(PFB)2(CDO)2 peak. Endogenous MDA can be quantified using O15NO- (4μM) and CH2(CDO)2 (10μM) as the internal standards. The method is also useful for the measurement of nitrate and creatinine in addition to nitrite and MDA. Nitrite and MDA were measured by this method in urine of elderly healthy subjects (10 females, 9 males; age, 60-70 years; BMI, 25-30kg/m2). Creatinine-corrected excretion rates did not differ between males and females for MDA (62.6 [24-137] vs 80.2 [52-118]nmol/mmol, P=0.448) and for nitrite (102 [71-174] vs. 278 [110-721]nmol/mmol P=0.053). We report for the first time a close correlation (r=0.819, P<0.0001) between MDA and nitrite in human urine. This correlation is assumed to be due to involvement of myeloperoxidase which catalyzes the formation of hypochlorite (-OCl) from chloride and hydrogen peroxide. In turn, hypochlorite reacts both with nitrite and with polyunsaturated fatty acids such as arachidonic acid, with the later reaction generating MDA. The proposed mechanisms are supported by the literature but remain to be fully explored.
Collapse
Affiliation(s)
- Erik Hanff
- Centre of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Michele F Eisenga
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bibiana Beckmann
- Institute of Occupational Medicine, Hannover Medical School, Hannover, Germany
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Centre of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
9
|
Ruan ED, Aalhus J, Juárez M. A rapid, sensitive and solvent-less method for determination of malonaldehyde in meat by stir bar sorptive extraction coupled thermal desorption and gas chromatography/mass spectrometry with in situ derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2723-2728. [PMID: 25380494 DOI: 10.1002/rcm.7058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE The traditional methods for analysis of malonaldehyde (MDA), such as the thiobarbituric acid (TBA) assay, require strong acidity at high temperature for derivatization and lack specificity in analysis. Stir bar sorptive extraction (SBSE) coupled with thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) with in situ derivatization using pentafluorophenylhydrazine (PFPH) under mild conditions is an emerging technique for MDA analysis. METHODS MDA in meat was derivatized with PFPH at pH ~4 for 1 h at room temperature, forming a relative stable derivative of MDA-PFPH. The derivative of MDA-PFPH was simultaneously extracted using SBSE. Then, MDA-PFPH was thermally released and quantitatively analyzed by GC/MS in selected ion monitoring (SIM) mode. RESULTS The method of SBSE-TD-GC/MS for MDA analysis with in situ derivatization was optimized and validated with good linearity, specificity and limit of detection/quantification (LOD/LOQ). The method was successfully applied for analysis of MDA in raw and cooked meat (pork). CONCLUSIONS The SBSE-TD-GC/MS method was suitable to monitor and analyze MDA in meat samples at trace levels. The simple, sensitive and solvent-less method with moderated in situ derivatization can be applied for analysis of MDA in a wide variety of foods and biological samples.
Collapse
Affiliation(s)
- Eric Dongliang Ruan
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB T4L 1W1, Canada; State Key Laboratory of Environmental and Biological Analysis, Chemistry Department, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, China
| | | | | |
Collapse
|
10
|
Positive relationship between total antioxidant status and chemokines observed in adults. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:693680. [PMID: 25254081 PMCID: PMC4164799 DOI: 10.1155/2014/693680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 12/24/2022]
Abstract
Objective. Human evidence is limited regarding the interaction between oxidative stress biomarkers and chemokines, especially in a population of adults without overt clinical disease. The current study aims to examine the possible relationships of antioxidant and lipid peroxidation markers with several chemokines in adults. Methods. We assessed cross-sectional associations of total antioxidant status (TAS) and two lipid peroxidation markers malondialdehyde (MDA) and thiobarbituric acid reactive substances (TBARS) with a suite of serum chemokines, including CXCL-1 (GRO-α), CXCL-8 (IL-8), CXCL-10 (IP-10), CCL-2 (MCP-1), CCL-5 (RANTES), CCL-8 (MCP-2), CCL-11 (Eotaxin-1), and CCL-17 (TARC), among 104 Chinese adults without serious preexisting clinical conditions in Beijing before 2008 Olympics. Results. TAS showed significantly positive correlations with MCP-1 (r = 0.15751, P = 0.0014), MCP-2 (r = 0.3721, P = 0.0001), Eotaxin-1 (r = 0.39598, P < 0.0001), and TARC (r = 0.27149, P = 0.0053). The positive correlations remained unchanged after controlling for age, sex, body mass index, smoking, and alcohol drinking status. No associations were found between any of the chemokines measured in this study and MDA or TBARS. Similar patterns were observed when the analyses were limited to nonsmokers. Conclusion. Total antioxidant status is positively associated with several chemokines in this adult population.
Collapse
|
11
|
A chemiluminescence method to detect malondialdehyde in plasma and urine. Anal Biochem 2013; 443:16-21. [DOI: 10.1016/j.ab.2013.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 11/24/2022]
|
12
|
Kloos DP, Lingeman H, Niessen WM, Deelder AM, Giera M, Mayboroda OA. Evaluation of different column chemistries for fast urinary metabolic profiling. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:90-6. [DOI: 10.1016/j.jchromb.2013.02.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 11/15/2022]
|
13
|
Yuan L, Lan Y, Han M, Bao J, Tu W, Dai Z. Label-free and facile electrochemical biosensing using carbon nanotubes for malondialdehyde detection. Analyst 2013; 138:3131-4. [DOI: 10.1039/c3an00041a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Il'yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clin Chim Acta 2012; 413:1446-53. [PMID: 22683781 DOI: 10.1016/j.cca.2012.06.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/03/2012] [Indexed: 02/07/2023]
Abstract
Oxidative damage produced by reactive oxygen species (ROS) has been implicated in the etiology and pathology of many health conditions, including a large number of chronic diseases. Urinary biomarkers of oxidative status present a great opportunity to study redox balance in human populations. With urinary biomarkers, specimen collection is non-invasive and the organic/metal content is low, which minimizes the artifactual formation of oxidative damage to molecules in specimens. Also, urinary levels of the biomarkers present intergraded indices of redox balance over a longer period of time compared to blood levels. This review summarizes the criteria for evaluation of biomarkers applicable to epidemiological studies and evaluation of several classes of biomarkers that are formed non-enzymatically: oxidative damage to lipids, proteins, DNA, and allantoin, an oxidative product of uric acid. The review considers formation, metabolism, and exertion of each biomarker, available data on validation in animal and clinical models of oxidative stress, analytical approaches, and their intra- and inter-individual variation. The recommended biomarkers for monitoring oxidative status over time are F₂-isoprostanes and 8-oxodG. For inter-individual comparisons, F₂-isoprostanes are recommended, whereas urinary 8-oxodG levels may be confounded by differences in the DNA repair capacity. Promising urinary biomarkers include allantoin, acrolein-lysine, and dityrosine.
Collapse
Affiliation(s)
- Dora Il'yasova
- Duke Cancer Institute, Duke University Medical Center, Box 2715, Durham, NC 27710, USA.
| | | | | |
Collapse
|
15
|
Recent Advancements in the LC- and GC-Based Analysis of Malondialdehyde (MDA): A Brief Overview. Chromatographia 2012; 75:433-440. [PMID: 22593603 PMCID: PMC3336054 DOI: 10.1007/s10337-012-2237-1] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/23/2012] [Indexed: 11/05/2022]
Abstract
Malondialdehyde (MDA) is an end-product of lipid peroxidation and a side product of thromboxane A2 synthesis. Moreover, it is not only a frequently measured biomarker of oxidative stress, but its high reactivity and toxicity underline the fact that this molecule is more than “just” a biomarker. Additionally, MDA was proven to be a mutagenic substance. Having said this, it is evident that there is a major interest in the highly selective and sensitive analysis of this molecule in various matrices. In this review, we will provide a brief overview of the most recent developments and techniques for the liquid chromatography (LC) and gas chromatography (GC)-based analysis of MDA in different matrices. While the 2-thiobarbituric acid assay still is the most prominent methodology for determining MDA, several advanced techniques have evolved, including GC–MS(MS), LC–MS(MS) as well as several derivatization-based strategies.
Collapse
|