1
|
Fracassi A, Qiao H, Lowell AN, Cao J, Bode JW, Masai H, Yoshizawa-Sugata N, Zhou R, Yamakoshi Y. Natural and Synthetic LDL-Based Imaging Probes for the Detection of Atherosclerotic Plaques. ACS Pharmacol Transl Sci 2025; 8:578-591. [PMID: 39974638 PMCID: PMC11833727 DOI: 10.1021/acsptsci.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Low-density lipoprotein (LDL) is the primary natural carrier of lipids in the bloodstream and plays a central role in the development of atherosclerosis. By leveraging LDL's natural tendency to accumulate at sites of plaque formation, LDL can be employed as a carrier to selectively deliver the imaging probes to efficiently detect atherosclerotic plaques. In our previous studies, we reported several LDL-based magnetic resonance imaging contrast agents (MRI-CAs) formed by modifying natural LDL (nLDL) or developing LDL-mimetic (synthetic LDL, sLDL) from lipid nanoparticles (LNPs) utilizing chemical reactions on the nanoparticle surface, including preliminary MRI tests. In this study, we report the in vivo biological functionality of these LDLs (both nLDL and sLDL)-based Gd(III)-based contrast agents (GBCAs) by conducting detailed in vivo studies on two types of atherosclerosis murine models, namely, apoE -/- and LDLr -/- . We provide more comprehensive MRI data accompanied by ex vivo results, including microscopic analysis of aorta segments for LDL accumulation and whole-body cryoVIZ analysis for biodistribution of the probe. We also tested in vitro cellular internalization of sLDL on two cell lines (RAW 264.7 and THP-1), which are derived from macrophages and monocytes, respectively, in order to observe sLDL uptake by macrophages, which are often present at the vulnerable types of atherosclerotic plaques. In conclusion, our current study demonstrates that modified LDLs-both nLDL and sLDL-facilitate MRI detection of atheroplaques by efficient uptake by macrophages. Taken together with the high loading capacity of Gd(III)-chelate molecules on LDL, especially sLDL, the LDL-based MRI contrast agents reported here hold significant potential for the early detection of atherosclerosis, including vulnerable ones, and should be useful for preventive diagnosis strategies.
Collapse
Affiliation(s)
- Alessandro Fracassi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| | - Hui Qiao
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Andrew N. Lowell
- Department
of Chemistry, Virginia Polytechnic Institute and State University,
Davidson Hall, Virginia Tech, 1040 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Jianbo Cao
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey W. Bode
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| | - Hisao Masai
- Department
of Basic Medical Sciences, Tokyo Metropolitan
Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Naoko Yoshizawa-Sugata
- Research
Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Rong Zhou
- Department
of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, John Morgan 198, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Yoko Yamakoshi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, Zürich CH8093, Switzerland
| |
Collapse
|
2
|
Di L, Maiseyeu A. Low-density lipoprotein nanomedicines: mechanisms of targeting, biology, and theranostic potential. Drug Deliv 2021; 28:408-421. [PMID: 33594923 PMCID: PMC7894439 DOI: 10.1080/10717544.2021.1886199] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Native nanostructured lipoproteins such as low- and high-density lipoproteins (LDL and HDL) are powerful tools for the targeted delivery of drugs and imaging agents. While the cellular recognition of well-known HDL-based carriers occurs via interactions with an HDL receptor, the selective delivery and uptake of LDL particles by target cells are more complex. The most well-known mode of LDL-based delivery is via the interaction between apolipoprotein B (Apo-B) - the main protein of LDL - and the low-density lipoprotein receptor (LDLR). LDLR is expressed in the liver, adipocytes, and macrophages, and thus selectively delivers LDL carriers to these cells and tissues. Moreover, the elevated expression of LDLR in tumor cells indicates a role for LDL in the targeted delivery of chemotherapy drugs. In addition, chronic inflammation associated with hypercholesterolemia (i.e., high levels of endogenous LDL) can be abated by LDL carriers, which outcompete the deleterious oxidized LDL for uptake by macrophages. In this case, synthetic LDL nanocarriers act as 'eat-me' signals and exploit mechanisms of native LDL uptake for targeted drug delivery and imaging. Lastly, recent studies have shown that the delivery of LDL-based nanocarriers to macrophages via fluid-phase pinocytosis is a promising tool for atherosclerosis imaging. Hence, the present review summarizes the use of natural and synthetic LDL-based carriers for drug delivery and imaging and discusses various mechanisms of targeting.
Collapse
Affiliation(s)
- Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Clevehand, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Clevehand, OH, USA
| |
Collapse
|
3
|
Fracassi A, Cao J, Yoshizawa-Sugata N, Tóth É, Archer C, Gröninger O, Ricciotti E, Tang SY, Handschin S, Bourgeois JP, Ray A, Liosi K, Oriana S, Stark W, Masai H, Zhou R, Yamakoshi Y. LDL-mimetic lipid nanoparticles prepared by surface KAT ligation for in vivo MRI of atherosclerosis. Chem Sci 2020; 11:11998-12008. [PMID: 34094421 PMCID: PMC8162946 DOI: 10.1039/d0sc04106h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Low-density lipoprotein (LDL)-mimetic lipid nanoparticles (LNPs), decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachment of apolipoprotein-mimetic peptide (P), Gd(iii)-chelate (Gd), and sulforhodamine B (R) moieties on the LNP surface. The functionalized LNPs were prepared using the amide-forming potassium acyltrifluoroborate (KAT) ligation reaction. The KAT groups on the surface of LNPs were allowed to react with the corresponding hydroxylamine (HA) derivatives of P and Gd to provide bi-functionalized LNPs (PGd-LNP). The reaction proceeded with excellent yields, as observed by ICP-MS (for B and Gd amounts) and MALDI-TOF-MS data, and did not alter the morphology of the LNPs (mean diameter: ca. 50 nm), as shown by DLS and cryoTEM analyses. With the help of the efficient KAT ligation, a high payload of Gd(iii)-chelate on the PGd-LNP surface (ca. 2800 Gd atoms per LNP) was successfully achieved and provided a high r1 relaxivity (r1 = 22.0 s−1 mM−1 at 1.4 T/60 MHz and 25 °C; r1 = 8.2 s−1 mM−1 at 9.4 T/400 MHz and 37 °C). This bi-functionalized PGd-LNP was administered to three atherosclerotic apoE−/− mice to reveal the clear enhancement of atherosclerotic plaques in the brachiocephalic artery (BA) by MRI, in good agreement with the high accumulation of Gd in the aortic arch as shown by ICP-MS. The parallel in vivo MRI and ex vivo studies of whole mouse cryo-imaging were performed using triply functionalized LNPs with P, Gd, and R (PGdR-LNP). The clear presence of atherosclerotic plaques in BA was observed by ex vivo bright field cryo-imaging, and they were also observed by high emission fluorescent imaging. These directly corresponded to the enhanced tissue in the in vivo MRI of the identical mouse. LDL-mimetic lipid nanoparticles, decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachments of an apoB100-mimetic peptide, Gd(iii)-chelate, and rhodamine to enhance atherosclerosis in the in vivo imaging.![]()
Collapse
Affiliation(s)
- Alessandro Fracassi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Jianbo Cao
- Department of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania John Morgan 198, 3620 Hamilton Walk Philadelphia PA19104 USA
| | - Naoko Yoshizawa-Sugata
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa, Setagaya Tokyo 156-8506 Japan
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université dOrléans Rue Charles Sadron, 45071 Orléans Cedex 2 France
| | - Corey Archer
- Institut für Geochemie und Petrologie, ETH Zürich Clausiusstrasse 25 CH-8092 Zürich Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 CH-8093 Zurich Switzerland
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania 3400 Civic Center Boulevard Philadelphia PA19104 USA
| | - Soon Yew Tang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania 3400 Civic Center Boulevard Philadelphia PA19104 USA
| | - Stephan Handschin
- Scientific Center for Optical and Electron Microscopy, ETH Zürich Auguste-Piccard-Hof 1 Zürich CH-8093 Switzerland
| | - Jean-Pascal Bourgeois
- University of Applied Science and Arts Western Switzerland Bd de Pérolles 80 CH-1700 Fribourg Switzerland
| | - Ankita Ray
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Korinne Liosi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Sean Oriana
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Wendelin Stark
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 CH-8093 Zurich Switzerland
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa, Setagaya Tokyo 156-8506 Japan
| | - Rong Zhou
- Department of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania John Morgan 198, 3620 Hamilton Walk Philadelphia PA19104 USA
| | - Yoko Yamakoshi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
4
|
Lavin Plaza B, Theodoulou I, Rashid I, Hajhosseiny R, Phinikaridou A, Botnar RM. Molecular Imaging in Ischemic Heart Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019; 12:31. [PMID: 31281564 PMCID: PMC6557873 DOI: 10.1007/s12410-019-9500-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of Review The purpose of this paper is to review current and new modalities to image key biological processes in ischemic heart disease and after myocardial infarction non-invasively. Recent Findings New imaging targets have been developed to detect and quantify myocardial damage after ischemia. Although positron emission tomography (PET) has been leading the development of new probes in the past, continuous improvements of magnetic resonance imaging (MRI) together with the development of new novel MRI contrast agents opens new research avenues including the combination of both PET and MRI to obtain anatomic, functional, and molecular information simultaneously, which is not possible from a single imaging session. Summary This review summarizes the state of art of non-invasive molecular imaging of the myocardium during ischemia and after myocardial infarction using PET and MRI. We also describe the different contrast agents that have been developed to image the different phases of cardiac healing and the biological processes associated with each of those phases. Importantly, here we focus on imaging of inflammation as it is the key biological process that orchestrates clearance of dead cells, tissue remodeling, cardiac repair, and future outcome. We also focus on clinical translation of some of the novel contrast agents that have been tested in patients and discuss the need for larger, multi-center patient studies to fully validate the applicability of new imaging probes.
Collapse
Affiliation(s)
- Begoña Lavin Plaza
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Iakovos Theodoulou
- 2Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Imran Rashid
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Reza Hajhosseiny
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Alkystis Phinikaridou
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Rene M Botnar
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK.,3Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Oriana S, Fracassi A, Archer C, Yamakoshi Y. Covalent Surface Modification of Lipid Nanoparticles by Rapid Potassium Acyltrifluoroborate Amide Ligation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13244-13251. [PMID: 30343580 DOI: 10.1021/acs.langmuir.8b01945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Because of the recent increasing demand for the synthetic biomimetic nanoparticles as in vivo carriers of drugs and imaging probes, it is very important to develop reliable, stable, and orthogonal methods for surface functionalization of the particles. To address these issues, in this study, a recently reported chemoselective amide-forming ligation reaction [potassium acyltrifluoroborate (KAT) ligation] was employed for the first time, as a mean to provide the surface functionalization of particles for creating covalent attachments of bioactive molecules. A KAT derivative of oleic acid (OA-KAT, 1) was added to a mixture of three lipid components (triolein, phosphatidyl choline, and cholesteryl oleate), which have been commonly used as substrates for lipid nanoparticles. After sonication and extrusion in a buffer, successfully obtained lipid nanoparticles containing OA-KAT (NP-KAT) resulted to be well-dispersed with mean diameters of about 40-70 nm by dynamic light scattering. After preliminary confirmation of the fast and efficient KAT ligation in a solution phase using the identical reaction substrates, the "on-surface (on-particle)" KAT ligation on the NP-KAT was tested with an N-hydroxylamine derivative of fluorescein 2. The ligation was carried out in a phosphate buffer (10 mM, pH 5.2) at room temperature with reactant concentration ranges of 250 μM. Reaction efficiency was evaluated based on the amount of boron (determined by inductively coupled plasma mass spectrometry) and fluorescein (determined by fluorescence emission) in the particles before and after the reaction. As a result, the reaction proceeded in a significantly efficient way with ca. 40-50% conversion of the OA-KAT incorporated in the particles. Taken together with the fact that KAT ligation does not require any additional coupling reagents, these results indicated that the "on-surface" chemical functionalization of nanoparticles by KAT ligation is a useful method and represents a powerful and potentially versatile tool for the production of nanoparticles with a variety of covalently functionalized biomolecules and probes.
Collapse
Affiliation(s)
- Sean Oriana
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 3 , CH8093 Zürich , Switzerland
- Institut für Geochemie und Petrologie , ETH Zürich , Clausiusstrasse 25 , CH8092 Zürich , Switzerland
| | - Alessandro Fracassi
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 3 , CH8093 Zürich , Switzerland
- Institut für Geochemie und Petrologie , ETH Zürich , Clausiusstrasse 25 , CH8092 Zürich , Switzerland
| | - Corey Archer
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 3 , CH8093 Zürich , Switzerland
- Institut für Geochemie und Petrologie , ETH Zürich , Clausiusstrasse 25 , CH8092 Zürich , Switzerland
| | - Yoko Yamakoshi
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 3 , CH8093 Zürich , Switzerland
- Institut für Geochemie und Petrologie , ETH Zürich , Clausiusstrasse 25 , CH8092 Zürich , Switzerland
| |
Collapse
|
6
|
Lehofer B, Golub M, Kornmueller K, Kriechbaum M, Martinez N, Nagy G, Kohlbrecher J, Amenitsch H, Peters J, Prassl R. High Hydrostatic Pressure Induces a Lipid Phase Transition and Molecular Rearrangements in Low-Density Lipoprotein Nanoparticles. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2018; 35:1800149. [PMID: 30283212 PMCID: PMC6166783 DOI: 10.1002/ppsc.201800149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Low-density lipoproteins (LDL) are natural lipid transporter in human plasma whose chemically modified forms contribute to the progression of atherosclerosis and cardiovascular diseases accounting for a vast majority of deaths in westernized civilizations. For the development of new treatment strategies, it is important to have a detailed picture of LDL nanoparticles on a molecular basis. Through the combination of X-ray and neutron small-angle scattering (SAS) techniques with high hydrostatic pressure (HHP) this study describes structural features of normolipidemic, triglyceride-rich and oxidized forms of LDL. Due to the different scattering contrasts for X-rays and neutrons, information on the effects of HHP on the internal structure determined by lipid rearrangements and changes in particle shape becomes accessible. Independent pressure and temperature variations provoke a phase transition in the lipid core domain. With increasing pressure an inter-related anisotropic deformation and flattening of the particle are induced. All LDL nanoparticles maintain their structural integrity even at 3000 bar and show a reversible response toward pressure variations. The present work depicts the complementarity of pressure and temperature as independent thermodynamic parameters and introduces HHP as a tool to study molecular assembling and interaction processes in distinct lipoprotein particles in a nondestructive manner.
Collapse
Affiliation(s)
- Bernhard Lehofer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Maksym Golub
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS + CEA, IBS, 38000 Grenoble, France
| | - Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Nicolas Martinez
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS + CEA, IBS, 38000 Grenoble, France
| | - Gergely Nagy
- Paul Scherrer Institut, 5232 Villigen, Switzerland; Wigner Research Centre for Physics, 1121 Budapest, Hungary; European Spallation Source ERIC, 22363 Lund, Sweden
| | | | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Judith Peters
- Institut Laue-Langevin, 71 avenue des Martyrs, 38044 Grenoble, France; Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| |
Collapse
|
7
|
Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M, Najafi M, Abbasi H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Lavin Plaza B, Gebhardt P, Phinikaridou A, Botnar RM. Atherosclerotic Plaque Imaging. PROTOCOLS AND METHODOLOGIES IN BASIC SCIENCE AND CLINICAL CARDIAC MRI 2018:261-300. [DOI: 10.1007/978-3-319-53001-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Sinha S, Tong WY, Williamson NH, McInnes SJP, Puttick S, Cifuentes-Rius A, Bhardwaj R, Plush SE, Voelcker NH. Novel Gd-Loaded Silicon Nanohybrid: A Potential Epidermal Growth Factor Receptor Expressing Cancer Cell Targeting Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42601-42611. [PMID: 29154535 DOI: 10.1021/acsami.7b14538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Continuing our research efforts in developing mesoporous silicon nanoparticle-based biomaterials for cancer therapy, we employed here porous silicon nanoparticles as a nanocarrier to deliver contrast agents to diseased cells. Nanoconfinement of small molecule Gd-chelates (L1-Gd) enhanced the T1 contrast dramatically compared to distinct Gd-chelate (L1-Gd) by virtue of its slow tumbling rate, increased number of bound water molecules, and their occupancy time. The newly synthesized Gd-chelate (L1-Gd) was covalently grafted on silicon nanostructures and conjugated to an antibody specific for epidermal growth factor receptor (EGFR) via a hydrazone linkage. The salient feature of this nanosized contrast agent is the capability of EGFR targeted delivery to cancer cells. Mesoporous silicon nanoparticles were chosen as the nanocarrier because of their high porosity, high surface area, and excellent biodegradability. This type of nanosized contrast agent also performs well in high magnetic fields.
Collapse
Affiliation(s)
- Sougata Sinha
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Wing Yin Tong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nathan H Williamson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Steven J P McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Simon Puttick
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland , St. Lucia, Brisbane, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clayton, Victoria Australia
| | - Anna Cifuentes-Rius
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Richa Bhardwaj
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Sally E Plush
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5000, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clayton, Victoria Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , Clayton, Victoria 3168, Australia
- Monash Institute of Medical Engineering, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Thaxton CS, Rink JS, Naha PC, Cormode DP. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 2016; 106:116-131. [PMID: 27133387 PMCID: PMC5086317 DOI: 10.1016/j.addr.2016.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy.
Collapse
Affiliation(s)
- C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA; International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Almer G, Mangge H, Zimmer A, Prassl R. Lipoprotein-Related and Apolipoprotein-Mediated Delivery Systems for Drug Targeting and Imaging. Curr Med Chem 2016; 22:3631-51. [PMID: 26180001 PMCID: PMC5403973 DOI: 10.2174/0929867322666150716114625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 06/19/2015] [Accepted: 07/13/2015] [Indexed: 01/27/2023]
Abstract
The integration of lipoprotein-related or apolipoprotein-targeted nanoparticles as pharmaceutical carriers opens new therapeutic and diagnostic avenues in nanomedicine. The concept is to exploit the intrinsic characteristics of lipoprotein particles as being the natural transporter of apolar lipids and fat in human circulation. Discrete lipoprotein assemblies and lipoprotein-based biomimetics offer a versatile nanoparticle platform that can be manipulated and tuned for specific medical applications. This article reviews the possibilities for constructing drug loaded, reconstituted or artificial lipoprotein particles. The advantages and limitations of lipoproteinbased delivery systems are critically evaluated and potential future challenges, especially concerning targeting specificity, concepts for lipoprotein rerouting and design of innovative lipoprotein mimetic particles using apolipoprotein sequences as targeting moieties are discussed. Finally, the review highlights potential medical applications for lipoprotein-based nanoparticle systems in the fields of cardiovascular research, cancer therapy, gene delivery and brain targeting focusing on representative examples from literature.
Collapse
Affiliation(s)
| | | | | | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/6, A-8010 Graz, Austria.
| |
Collapse
|
12
|
Palekar RU, Jallouk AP, Lanza GM, Pan H, Wickline SA. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine (Lond) 2016; 10:1817-32. [PMID: 26080701 DOI: 10.2217/nnm.15.26] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease.
Collapse
Affiliation(s)
- Rohun U Palekar
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Andrew P Jallouk
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
13
|
Tarin C, Carril M, Martin-Ventura JL, Markuerkiaga I, Padro D, Llamas-Granda P, Moreno JA, García I, Genicio N, Plaza-Garcia S, Blanco-Colio LM, Penades S, Egido J. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep 2015; 5:17135. [PMID: 26616677 PMCID: PMC4663748 DOI: 10.1038/srep17135] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/09/2015] [Indexed: 12/23/2022] Open
Abstract
CD163 is a membrane receptor expressed by macrophage lineage. Studies performed in atherosclerosis have shown that CD163 expression is increased at inflammatory sites, pointing at the presence of intraplaque hemorrhagic sites or asymptomatic plaques. Hence, imaging of CD163 expressing macrophages is an interesting strategy in order to detect atherosclerotic plaques. We have prepared a targeted probe based on gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody for the specific detection of CD163 by MRI. Firstly, the specificity of the targeted probe was validated in vitro by incubation of the probe with CD163(+) or (-) macrophages. The probe was able to selectively detect CD163(+) macrophages both in human and murine cells. Subsequently, the targeted probe was injected in 16 weeks old apoE deficient mice developing atherosclerotic lesions and the pararenal abdominal aorta was imaged by MRI. The accumulation of probe in the site of interest increased over time and the signal intensity decreased significantly 48 hours after the injection. Hence, we have developed a highly sensitive targeted probe capable of detecting CD163-expressing macrophages that could provide useful information about the state of the atheromatous lesions.
Collapse
Affiliation(s)
- Carlos Tarin
- Laboratorio de Patología Vascular y Renal. IIS Fundación Jiménez Díaz, Universidad Autónoma. Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Monica Carril
- Laboratorio de Gliconanotecnología. Biofunctional Nanomaterials Unit. CIC biomaGUNE. Paseo Miramón, 182, 20009, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Jose Luis Martin-Ventura
- Laboratorio de Patología Vascular y Renal. IIS Fundación Jiménez Díaz, Universidad Autónoma. Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Irati Markuerkiaga
- Molecular Imaging Unit, CIC biomaGUNE, PaseoMiramón 182, 20009, San Sebastián, Spain
| | - Daniel Padro
- Molecular Imaging Unit, CIC biomaGUNE, PaseoMiramón 182, 20009, San Sebastián, Spain
| | - Patricia Llamas-Granda
- Laboratorio de Patología Vascular y Renal. IIS Fundación Jiménez Díaz, Universidad Autónoma. Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Juan Antonio Moreno
- Laboratorio de Patología Vascular y Renal. IIS Fundación Jiménez Díaz, Universidad Autónoma. Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Isabel García
- Laboratorio de Gliconanotecnología. Biofunctional Nanomaterials Unit. CIC biomaGUNE. Paseo Miramón, 182, 20009, San Sebastián, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Nuria Genicio
- Laboratorio de Gliconanotecnología. Biofunctional Nanomaterials Unit. CIC biomaGUNE. Paseo Miramón, 182, 20009, San Sebastián, Spain
| | - Sandra Plaza-Garcia
- Molecular Imaging Unit, CIC biomaGUNE, PaseoMiramón 182, 20009, San Sebastián, Spain
| | - Luis Miguel Blanco-Colio
- Laboratorio de Patología Vascular y Renal. IIS Fundación Jiménez Díaz, Universidad Autónoma. Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Soledad Penades
- Laboratorio de Gliconanotecnología. Biofunctional Nanomaterials Unit. CIC biomaGUNE. Paseo Miramón, 182, 20009, San Sebastián, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Jesus Egido
- Laboratorio de Patología Vascular y Renal. IIS Fundación Jiménez Díaz, Universidad Autónoma. Av. Reyes Católicos 2, 28040, Madrid, Spain
| |
Collapse
|
14
|
Nörenberg D, Ebersberger HU, Diederichs G, Hamm B, Botnar RM, Makowski MR. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease. Eur Radiol 2015; 26:910-20. [DOI: 10.1007/s00330-015-3881-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/27/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
|
15
|
Abstract
This review presents an accessible discussion of the application of trivalent lanthanide ions in both optical and magnetic resonance imaging.
Collapse
|
16
|
den Adel B, Daemen MJ, Poelmann RE, van der Weerd L. Molecular Magnetic Resonance Imaging for the Detection of Vulnerable Plaques: Is It Possible?: Retracted. Arterioscler Thromb Vasc Biol 2013:ATVBAHA.112.300108. [PMID: 23413424 DOI: 10.1161/atvbaha.112.300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/13/2013] [Indexed: 11/16/2022]
Abstract
Recent advances in molecular resonance imaging of atherosclerosis enable to visualize atherosclerotic plaques in vivo using molecular targeted contrast agents. This offers opportunities to study atherosclerosis development and plaque vulnerability noninvasively. In this review, we discuss MRI contrast agents targeted toward atherosclerotic plaques and illustrate how these new imaging platforms could assist in our understanding of atherogenesis and atheroprogression. In particular, we highlight the challenges and limitations of the different contrast agents and hurdles for clinical application. We describe the most promising existing compounds to detect atherosclerosis and plaque vulnerability. Of particular interest are the fibrin-targeted compounds that detect thrombi and, furthermore, the contrast agents targeted to integrins that allow to visualize plaque neovascularization. Moreover, vascular cell adhesion molecule 1-targeted iron oxides seem promising for early detection of atherosclerosis. These targeted MRI contrast agents, however promising and well characterized in (pre)clinical models, lack specificity for plaque vulnerability.
Collapse
Affiliation(s)
- Brigit den Adel
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (B.d.A., R.E.P., L.v.d.W.)
| | | | | | | |
Collapse
|
17
|
Self-gated CINE MRI for combined contrast-enhanced imaging and wall-stiffness measurements of murine aortic atherosclerotic lesions. PLoS One 2013; 8:e57299. [PMID: 23472079 PMCID: PMC3589480 DOI: 10.1371/journal.pone.0057299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/22/2013] [Indexed: 01/06/2023] Open
Abstract
Background High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. Methods and Results We applied a 2D-FLASH retrospective-gated CINE MRI method at 9.4T to characterize atherosclerotic plaques and vessel wall distensibility in the aortic arch of aged ApoE−/− mice after injection of a contrast agent. The method enabled detection of contrast enhancement in atherosclerotic plaques in the aortic arch after I.V. injection of micelles and iron oxides resulting in reproducible plaque enhancement. Both contrast agents were taken up in the plaque, which was confirmed by histology. Additionally, the retrospective-gated CINE method provided images of the aortic wall throughout the cardiac cycle, from which the vessel wall distensibility could be calculated. Reduction in plaque size by statin treatment resulted in lower contrast enhancement and reduced wall stiffness. Conclusions The retrospective-gated CINE MRI provides a robust and simple way to detect and quantify contrast enhancement in atherosclerotic plaques in the aortic wall of ApoE−/− mice. From the same scan, plaque-related changes in stiffness of the aortic wall can be determined. In this mouse model, a correlation between vessel wall stiffness and atherosclerotic lesions was found.
Collapse
|
18
|
Fay F, Sanchez-Gaytan BL, Cormode DP, Skajaa T, Fisher EA, Fayad ZA, Mulder WJM. Nanocrystal Core Lipoprotein Biomimetics for Imaging of Lipoproteins and Associated Diseases. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 6:45-54. [PMID: 23687557 DOI: 10.1007/s12410-012-9181-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lipoproteins are natural nanoparticles composed of phospholipids and apolipoproteins that transport lipids throughout the body. As key effectors of lipid homeostasis, the functions of lipoproteins have been demonstrated to be crucial during the development of cardiovascular diseases. Therefore various strategies have been used to study their biology and detect them in vivo. A recent approach has been the production of lipoprotein biomimetic particles loaded with diagnostically active nanocrystals in their core. These include, but are not limited to: quantum dots, iron oxide or gold nanocrystals. Inclusion of these nanocrystals enables the utilization of lipoproteins as probes for a variety of imaging modalities (computed tomography, magnetic resonance imaging, fluorescence) while preserving their biological activity. Furthermore as some lipoproteins naturally accumulate in atherosclerotic plaque or specific tumor tissues, nanocrystal core lipoprotein biomimetics have been developed as contrast agents for early diagnosis of these diseases.
Collapse
Affiliation(s)
- Francois Fay
- Translational and Molecular Imaging, Institute, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Li J, Jiang H, Yu Z, Xia H, Zou G, Zhang Q, Yu Y. Multifunctional Uniform Core-Shell Fe3O4@mSiO2Mesoporous Nanoparticles for Bimodal Imaging and Photothermal Therapy. Chem Asian J 2012; 8:385-91. [DOI: 10.1002/asia.201201033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 12/22/2022]
|
20
|
Geninatti Crich S, Alberti D, Orio L, Stefania R, Longo D, Aime S. Lipid-Based Nanoparticles in Cardiovascular Molecular Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012. [DOI: 10.1007/s12410-012-9180-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Lowell AN, Qiao H, Liu T, Ishikawa T, Zhang H, Oriana S, Wang M, Ricciotti E, FitzGerald GA, Zhou R, Yamakoshi Y. Functionalized low-density lipoprotein nanoparticles for in vivo enhancement of atherosclerosis on magnetic resonance images. Bioconjug Chem 2012; 23:2313-9. [PMID: 23075169 DOI: 10.1021/bc300561e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To allow visualization of macrophage-rich and miniature-sized atheromas by magnetic resonance (MR) imaging, we have converted low-density lipoprotein (LDL) into MR-active nanoparticles via the intercalation of a 1,4,7,10-tetraazacyclodecane-1,4,7-triacetic acid (DO3A) derivative and the subsequent coordination reaction with Gd(3+). After careful removal of nonchelated Gd(3+), an MR-active LDL (Gd(3+)-LDL) with a remarkably high payload of Gd(3+) (in excess of 200 Gd(3+) atoms per particle) and a high relaxivity (r(1) = 20.1 s(-1) mM(-1) per Gd(3+) or 4040 s(-1) mM(-1) per LDL) was obtained. Dynamic light-scattering photon correlation spectroscopy (DLS) and cryo transmission electron microscope (cryoTEM) images showed that Gd(3+)-LDL particles did not aggregate and remained of a similar size (25-30 nm) to native LDL. Intravenous injection of Gd(3+)-LDL into an atherosclerotic mouse model (ApoE(-/-)) resulted in an extremely high enhancement of the atheroma-bearing aortic walls at 48 h after injection. Free Gd(3+) dissociation from Gd(3+)-LDL was not detected over the imaging time window (96 h). Because autologous LDL can be isolated, modified, and returned to the same patient, our results suggest that MR-active LDL can potentially be used as a noninfectious and nonimmunogenic imaging probe for the enhancement of atheroplaques presumably via the uptake into macrophages inside the plaque.
Collapse
Affiliation(s)
- Andrew N Lowell
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 6:11-24. [PMID: 23539505 DOI: 10.1007/s12410-012-9177-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one killer in the Western world, and threatens to become the major cause of morbidity and mortality worldwide. It is therefore paramount to develop non-invasive methods for the detection of high-risk, asymptomatic individuals before the onset of clinical symptoms or events. In the recent past, great strides have been made in the understanding of the pathological mechanisms involved in the atherosclerotic cascade down to the molecular details. This has allowed the development of contrast agents that can aid in the in vivo characterization of these processes. Gadolinium chelates are among the contrast media most commonly used in MR imaging. Originally used for MR angiography for the detection and quantification of vascular stenosis, more recently they have been applied to improve characterization of atherosclerotic plaques. In this manuscript, we will briefly review gadolinium-chelates (Gd) based contrast agents for non-invasive MR imaging of atherosclerosis. We will first describe Gd-based non-targeted FDA approved agents, used routinely in clinical practice for the evaluation of neovascularization in other diseases. Secondly, we will describe non-specific and specific targeted contrast agents, which have great potential for dissecting specific biological processes in the atherosclerotic cascade. Lastly, we will briefly compare Gd-based agents to others commonly used in MRI and to other imaging modalities.
Collapse
|
23
|
Phinikaridou A, Andia ME, Shah AM, Botnar RM. Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology. Am J Physiol Heart Circ Physiol 2012; 303:H1397-410. [PMID: 23064836 DOI: 10.1152/ajpheart.00583.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Science and Biomedical Engineering, King's College London, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Kanwar RK, Chaudhary R, Tsuzuki T, Kanwar JR. Emerging engineered magnetic nanoparticulate probes for targeted MRI of atherosclerotic plaque macrophages. Nanomedicine (Lond) 2012; 7:735-49. [DOI: 10.2217/nnm.12.46] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammation is known to present at all stages of atherosclerotic lesion/plaque development, which often progresses silently for decades, before the occurrence of acute clinical events. Rupture of mature complex plaques with ongoing inflammation can lead to thrombosis, and many adverse acute clinical events such as stroke, myocardial infarction and/or sudden coronary death. Among new-generation noninvasive imaging modalities, molecular MRI with target-specific novel nanoparticulate contrast agents has shown great promise for the visualization of atherosclerosis at the molecular and cellular level in both animals and humans. Considering the key role macrophages play in atherosclerotic inflammation from lesion initiation to plaque rupture, this article reviews the recently engineered magnetic nanoparticulate probes targeting macrophages, their phagocytic activities, surface receptors and molecular products such as neutrophil gelatinase-associated lipocalin. The usefulness of some of these probes as multimodal and drug monitoring agents is also reviewed along with the challenges and future perspectives of the present developments for clinical benefit.
Collapse
Affiliation(s)
- Rupinder K Kanwar
- Nanomedicine–Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre for Biotechnology & Interdisciplinary Biosciences & Institute for Frontier Materials (IFM), Australia
| | - Rajneesh Chaudhary
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Takuya Tsuzuki
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine–Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre for Biotechnology & Interdisciplinary Biosciences & Institute for Frontier Materials (IFM), Australia
| |
Collapse
|
25
|
|