1
|
Pan X, Zhang YWQ, Dai C, Zhang J, Zhang M, Chen X. Applications of mRNA Delivery in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:3339-3361. [PMID: 40125430 PMCID: PMC11928443 DOI: 10.2147/ijn.s500520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is continually advancing, with immunotherapy gaining prominence as a standard modality that has markedly improved the management of various malignancies. Despite these advancements, the efficacy of immunotherapy remains variable, with certain cancers exhibiting limited response and patient outcomes differing considerably. Thus, enhancing the effectiveness of immunotherapy is imperative. A promising avenue is mRNA delivery, employing carriers such as liposomes, peptide nanoparticles, inorganic nanoparticles, and exosomes to introduce mRNA cargos encoding tumor antigens, immune-stimulatory, or immune-modulatory molecules into the tumor immune microenvironment (TIME). This method aims to activate the immune system to target and eradicate tumor cells. In this review, we introduce the characteristics and limitations of these carriers and summarize the application and mechanisms of currently prevalent cargos in mRNA-based tumor treatment. Additionally, given the significant clinical application of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR)-based cell therapies in solid tumors (including melanoma, non-small-cell lung cancer, head and neck squamous cell carcinoma, triple-negative breast cancer, gastric cancer) and leukemia, which have become first-line treatments, we highlight and discuss recent progress in combining mRNA delivery with ICIs, CAR-T, CAR-NK, and CAR-macrophage therapies. This combination enhances the targeting capabilities and efficacy of ICIs and CAR-cell-based therapies, while also mitigating the long-term off-target toxicities associated with conventional methods. Finally, we analyze the limitations of current mRNA delivery systems, such as nuclease-induced mRNA instability, immunogenicity risks, complex carrier production, and knowledge gaps concerning dosing and safety. Addressing these challenges is crucial for unlocking the potential of mRNA in cancer immunotherapy. Overall, exploring mRNA delivery enriches our comprehension of cancer immunotherapy and holds promise for developing personalized and effective treatment strategies, potentially enhancing the immune responses of cancer patients and extending their survival time.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yang-Wen-Qing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Junyu Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| |
Collapse
|
2
|
Noble JE, Vila-Gómez P, Rey S, Dondi C, Briones A, Aggarwal P, Hoose A, Baran M, Ryadnov MG. Folding-Mediated DNA Delivery by α-Helical Amphipathic Peptides. ACS Biomater Sci Eng 2023; 9:2584-2595. [PMID: 37014978 DOI: 10.1021/acsbiomaterials.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The renaissance gene therapy experiences these days requires specialist biomaterials and a systemic understanding of major factors influencing their ability to deliver genetic material. Peptide transfection systems represent a major class of such biomaterials. Several peptidic reagents have been commercialized to date. However, a comparative assessment of peptide sequences alone without auxiliary support or excipients against a common determinant for their ability to complex and deliver DNA has been lacking. This study cross-compares commercial and experimental transfection reagents from the same family of helical amphiphiles. Factors defining the efficacy of DNA delivery including cell uptake and gene expression are assessed along with cytotoxicity and DNA complexation. The results show that despite differences in sequence composition, length, and origin, peptide reagents of the same structural family exhibit similar characteristics and limitations with common variability trends. The cross-comparison revealed that functional DNA delivery is independent of the peptide sequence used but is mediated by the ability of the reagents to co-fold with DNA. Peptide folding proved to be the common determinant for DNA complexation and delivery by peptidic transfection reagents.
Collapse
Affiliation(s)
- James E Noble
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Paula Vila-Gómez
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Brain Sciences, Imperial College London, London W12 0TR, U.K
| | - Stephanie Rey
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Camilla Dondi
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Andrea Briones
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Purnank Aggarwal
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Alex Hoose
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Maryana Baran
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, King's College London, London WC2R 2LS, U.K
| |
Collapse
|
3
|
Rhys GG, Cross JA, Dawson WM, Thompson HF, Shanmugaratnam S, Savery NJ, Dodding MP, Höcker B, Woolfson DN. De novo designed peptides for cellular delivery and subcellular localisation. Nat Chem Biol 2022; 18:999-1004. [PMID: 35836017 DOI: 10.1038/s41589-022-01076-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Increasingly, it is possible to design peptide and protein assemblies de novo from first principles or computationally. This approach provides new routes to functional synthetic polypeptides, including designs to target and bind proteins of interest. Much of this work has been developed in vitro. Therefore, a challenge is to deliver de novo polypeptides efficiently to sites of action within cells. Here we describe the design, characterisation, intracellular delivery, and subcellular localisation of a de novo synthetic peptide system. This system comprises a dual-function basic peptide, programmed both for cell penetration and target binding, and a complementary acidic peptide that can be fused to proteins of interest and introduced into cells using synthetic DNA. The designs are characterised in vitro using biophysical methods and X-ray crystallography. The utility of the system for delivery into mammalian cells and subcellular targeting is demonstrated by marking organelles and actively engaging functional protein complexes.
Collapse
Affiliation(s)
- Guto G Rhys
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Jessica A Cross
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Harry F Thompson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Nigel J Savery
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK. .,School of Biochemistry, University of Bristol, Bristol, UK. .,BrisSynBio, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Hornemann A, Eichert DM, Hoehl A, Tiersch B, Ulm G, Ryadnov MG, Beckhoff B. Investigating Membrane‐Mediated Antimicrobial Peptide Interactions with Synchrotron Radiation Far‐Infrared Spectroscopy. Chemphyschem 2022; 23:e202100815. [PMID: 35032089 PMCID: PMC9303692 DOI: 10.1002/cphc.202100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Indexed: 11/30/2022]
Abstract
Synchrotron radiation‐based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio‐molecular phenomena including folding‐mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near‐THz 400–40 cm−1 range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature‐dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane‐induced and folding‐mediated activity of AMPs. The far‐FTIR study offers a direct and information‐rich probe of membrane‐related antimicrobial interactions.
Collapse
Affiliation(s)
- Andrea Hornemann
- Department 7.1 Radiometry with Synchrotron Radiation and Department 7.2 X-Ray Metrology with Synchrotron Radiation Physikalisch-Technische Bundesanstalt (PTB) Abbestr. 2–12 10587 Berlin Germany
| | - Diane M. Eichert
- ELETTRA – Sincrotrone Trieste S.S.14 Km 163.5 in Area Science Park 34149 Basovizza Trieste Italy
| | - Arne Hoehl
- Department 7.1 Radiometry with Synchrotron Radiation and Department 7.2 X-Ray Metrology with Synchrotron Radiation Physikalisch-Technische Bundesanstalt (PTB) Abbestr. 2–12 10587 Berlin Germany
| | - Brigitte Tiersch
- Universität Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam Germany
| | - Gerhard Ulm
- Department 7.1 Radiometry with Synchrotron Radiation and Department 7.2 X-Ray Metrology with Synchrotron Radiation Physikalisch-Technische Bundesanstalt (PTB) Abbestr. 2–12 10587 Berlin Germany
| | - Maxim G. Ryadnov
- National Physical Laboratory Hampton Rd Teddington Middlesex TW11 0LW UK
| | - Burkhard Beckhoff
- Department 7.1 Radiometry with Synchrotron Radiation and Department 7.2 X-Ray Metrology with Synchrotron Radiation Physikalisch-Technische Bundesanstalt (PTB) Abbestr. 2–12 10587 Berlin Germany
| |
Collapse
|
5
|
Vila-Gómez P, Noble JE, Ryadnov MG. Peptide Nanoparticles for Gene Packaging and Intracellular Delivery. Methods Mol Biol 2021; 2208:33-48. [PMID: 32856254 DOI: 10.1007/978-1-0716-0928-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient gene transfer is necessary for advanced biotechnologies ranging from gene therapy to synthetic biology. Peptide nanoparticles provide suitable packaging systems promoting targeted gene expression or silencing. Though these systems have yet to match the transfection efficacy of viruses, they are typically devoid of drawbacks characteristic of virus-based vectors, including insertional mutagenesis, low packaging capacities, and strong immune responses. Given the promise nanoparticle formulations hold for gene delivery, methods of their preparation and accurate analysis of their physicochemical and biological properties become indispensable for progress toward systems that seek to outperform viral vectors. Herein, we report a comprehensive protocol for the preparation and characterization of archetypal peptide nanoparticles resulting from nonspecific and noncovalent complexation with RNA and DNA.
Collapse
Affiliation(s)
| | - James E Noble
- National Physical Laboratory, Teddington, Middlesex, UK
| | | |
Collapse
|
6
|
Guyader CPE, Lamarre B, De Santis E, Noble JE, Slater NK, Ryadnov MG. Autonomously folded α-helical lockers promote RNAi. Sci Rep 2016; 6:35012. [PMID: 27721465 PMCID: PMC5056365 DOI: 10.1038/srep35012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.
Collapse
Affiliation(s)
- Christian P. E. Guyader
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | | | - James E. Noble
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Nigel K. Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| |
Collapse
|
7
|
De Santis E, Ryadnov MG. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev 2015; 44:8288-300. [PMID: 26272066 DOI: 10.1039/c5cs00470e] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Peptide self-assembly is an increasingly attractive tool for nanomaterials. Perfected in biology peptide self-assembling systems have impacted on nearly any conceivable nanomaterial type. However, with all the information available to us commercialisation of peptide materials remains in its infancy. In an attempt to better understand the reasons behind this shortcoming we categorise peptide self-assembled materials in relation to their non-peptide counterparts. A particular emphasis is placed on the versatility of peptide self-assembly in terms of modularity, responsiveness and functional diversity, which enables direct comparisons with more traditional material chemistries.
Collapse
Affiliation(s)
- Emiliana De Santis
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK.
| | | |
Collapse
|
8
|
Ravi J, Bella A, Correia AJV, Lamarre B, Ryadnov MG. Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides. Phys Chem Chem Phys 2015; 17:15608-14. [DOI: 10.1039/c5cp01185j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecular amphipathicity exposes antimicrobial propensity of host defence peptides.
Collapse
|
9
|
Rakowska PD, Lamarre B, Ryadnov MG. Probing label-free intracellular quantification of free peptide by MALDI-ToF mass spectrometry. Methods 2014; 68:331-7. [PMID: 24657280 DOI: 10.1016/j.ymeth.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022] Open
Abstract
Cell-penetrating peptides are promising reagents for gene and drug delivery. They can efficiently traverse the plasma membrane and deliver various cargo materials ranging from genes to nanoparticles. The functional efficiency of cargo often depends on the completeness of intracellular peptide uptake, which can be measured, but its quantification remains largely inconclusive. Existing approaches rely on the use of radioactive and fluorescent labels or tags which allow colorimetric, fluorescent or spectrometric detection, but lack the ability to detect free peptide. Herein we describe a generic label- and tag-free method to measure the concentration of internalised peptide by matrix-assisted laser desorption/ionisation time of flight mass spectrometry. Quantification is preceded by two-dimensional chromatography and is performed at benign temperatures for the lysates of human dermal fibroblasts transfected with cell penetrating peptides in free form. Isotopically labelled peptides of the same structure are used as internal standards to enable accurate determination of concentration of the recovered free peptide. The method offers a minimalistic approach for intracellular quantification, which can be used as a correlative measure for fluorescence-based imaging methods.
Collapse
Affiliation(s)
| | - Baptiste Lamarre
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; School of Physics and Astronomy, University of Edinburgh, EH9 3JZ, UK.
| |
Collapse
|
10
|
Chen JX, Xu XD, Yang S, Yang J, Zhuo RX, Zhang XZ. Self-Assembled BolA-like Amphiphilic Peptides as Viral-Mimetic Gene Vectors for Cancer Cell Targeted Gene Delivery. Macromol Biosci 2012; 13:84-92. [DOI: 10.1002/mabi.201200283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Indexed: 12/17/2022]
|
11
|
Zhao W, Wang R, Petitjean A. Z-formamidoximes in molecular folding and macrocycles. Org Biomol Chem 2011; 9:7647-51. [PMID: 21947031 DOI: 10.1039/c1ob06378b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The formamidoxime configurational Z isomer coupled with the pyridylbiscarboxamide conformational codon were used to fold planar, curved structures. When embedded into macrocycles, this folded motif promotes dimerization through π-π stacking and hydrogen-bonding and the formation of tubules akin to molecular channels in the solid state.
Collapse
Affiliation(s)
- Weiwen Zhao
- Department of Chemistry, Queen's University, Kingston, ON K7L3N6, Canada
| | | | | |
Collapse
|