1
|
Mathilakathu A, Borchert S, Wessolly M, Mairinger E, Beckert H, Steinborn J, Hager T, Christoph DC, Kollmeier J, Wohlschlaeger J, Mairinger T, Schmid KW, Walter RFH, Brcic L, Mairinger FD. Mitogen signal-associated pathways, energy metabolism regulation, and mediation of tumor immunogenicity play essential roles in the cellular response of malignant pleural mesotheliomas to platinum-based treatment: a retrospective study. Transl Lung Cancer Res 2021; 10:3030-3042. [PMID: 34430345 PMCID: PMC8350085 DOI: 10.21037/tlcr-21-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/15/2021] [Indexed: 11/06/2022]
Abstract
Background Malignant pleural mesothelioma (MPM) is a rare malignant tumor associated with asbestos exposure, with infaust prognosis and overall survival below 20 months in treated patients. Platinum is still the backbone of the chemotherapy protocols, and the reasons for the rather poor efficacy of platinum compounds in MPM remain largely unknown. Therefore, we aimed to analyze differences in key signaling pathways and biological mechanisms in therapy-naïve samples and samples after chemotherapy in order to evaluate the effect of platinum-based chemotherapy. Methods The study cohort comprised 24 MPM tumor specimens, 12 from therapy-naïve and 12 from patients after platinum-based therapy. Tumor samples were screened using the NanoString nCounter platform for digital gene expression analysis with an appurtenant custom-designed panel comprising a total of 366 mRNAs covering the most important tumor signaling pathways. Significant pathway associations were identified by gene set enrichment analysis using the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) Results We have found reduced activity of TNF (normalized enrichment score: 2.03), IL-17 (normalized enrichment score: 1.93), MAPK (normalized enrichment score: 1.51), and relaxin signaling pathways (normalized enrichment score: 1.42) in the samples obtained after platinum-based therapy. In contrast, AMPK (normalized enrichment score: –1.58), mTOR (normalized enrichment score: –1.50), Wnt (normalized enrichment score: –1.38), and longevity regulating pathway (normalized enrichment score: –1.31) showed significantly elevated expression in the same samples. Conclusions We could identify deregulated signaling pathways due to a directed cellular response to platinum-induced cell stress. Our results are paving the ground for a better understanding of cellular responses and escape mechanisms, carrying a high potential for improved clinical management of patients with MPM.
Collapse
Affiliation(s)
- Alexander Mathilakathu
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Daniel C Christoph
- Department of Medical Oncology, Evang. Kliniken Essen-Mitte, Essen, Germany
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Thomas Mairinger
- Department of Tissue Diagnostics, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Robert F H Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| |
Collapse
|
2
|
Wu S, Wu Z, Ge Q, Zheng X, Yang Z. Antitumor activity of tridentate pincer and related metal complexes. Org Biomol Chem 2021; 19:5254-5273. [PMID: 34059868 DOI: 10.1039/d1ob00577d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pincer complexes featuring tunable tridentate ligand frameworks are one of the most actively studied classes of metal-based complexes. Currently, growing attention is devoted to the cytotoxicity of pincer and related metal complexes. The antiproliferative activity of numerous pincer complexes has been reported. Pincer tridentate ligand scaffolds show different coordination modes and offer multiple options for directed structural modifications. This review summarizes the significant progress in the research studies of the antitumor activity of pincer and related platinum(ii), gold(iii), palladium(ii), copper(ii), iron(iii), ruthenium(ii), nickel(ii) and some other metal complexes, in order to provide a reference for designing novel metal coordination drug candidates with promising antitumor activity.
Collapse
Affiliation(s)
- Shulei Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zaoduan Wu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, Affiliated Nanhua Hospital, University of South China, 28 Western Changsheng Road, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
3
|
Zhang Q, Wang S, Zhu Y, Zhang C, Cao H, Ma W, Tian X, Wu J, Zhou H, Tian Y. Functional Platinum(II) Complexes with Four-Photon Absorption Activity, Lysosome Specificity, and Precise Cancer Therapy. Inorg Chem 2021; 60:2362-2371. [PMID: 33494602 DOI: 10.1021/acs.inorgchem.0c03245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiphoton materials are in special demand in the field of photodynamic therapy and multiphoton fluorescence imaging. However, rational design methodology for these brands of materials is still nascent. This is despite transition-metal complexes favoring optimized nonlinear-optical (NLO) activity and heavy-atom-effected phosphorescent emission. Here, three four-photon absorption (4PA) platinum(II) complexes (Pt1-Pt3) are achieved by the incorporation of varied functionalized C^N^C ligands with high yields. Pt1-Pt3 exhibit triplet metal-to-ligand charge-transfer transitions at ∼460 nm, which are verified multiple times by transient absorption spectra, time-dependent density functional theory calculations, and low-temperature emission spectra. Further, Pt1-Pt3 undergo 4PA. Notably, one of the complexes, Pt2, has maximum 4PA cross-sectional values of up to 15.2 × 10-82 cm8 s3 photon-3 under excitation of a 1600 nm femtosecond laser (near-IR II window). The 4PA cross sections vary when Pt2 is binding to lecithin and when it displays its lysosome-specific targeting behavior. On the basis of the excellent 4PA property of Pt2, we believe that those 4PA platinum(II) complexes have great potential applications in cancer theranostics.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Shujing Wang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Yingzhong Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Chengkai Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Wen Ma
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Jieying Wu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
4
|
Xu L, Huang L, Lu Y, Chen X. Luminescent In(III)‐based coordination polymer for selectively sensing Cr
2
O
7
2−
, antibacterial and anti‐inflammatory effect on the infectious abortion. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lin‐Fen Xu
- Department of GynaecologyFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Ling‐Na Huang
- Department of GynaecologyFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Yan‐Fang Lu
- Department of LaboratoryFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical University Fuzhou Fujian China
| | - Xiu‐Juan Chen
- Department of GynaecologyFujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical University Fuzhou Fujian China
| |
Collapse
|
5
|
Zhu Y, Zhang M, Luo L, Gill MR, De Pace C, Battaglia G, Zhang Q, Zhou H, Wu J, Tian Y, Tian X. NF-κB hijacking theranostic Pt(ll) complex in cancer therapy. Am J Cancer Res 2019; 9:2158-2166. [PMID: 31149035 PMCID: PMC6531303 DOI: 10.7150/thno.30886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Platinum complexes have been used for anti-cancer propose for decades, however, their high side effects resulting from damage to healthy cells cannot be neglected and prevent further clinical utilisation. Here, we designed a cyclometalated platinum (II) complex that can bind the endogenous nuclear factor-κB (NF-κB) protein. Employing detailed colocalization studies in co-culture cell line models, we show that by binding to NF-κB, the platinum (II) complex is capable of upregulated nuclear translocation specifically in cancer but not normal cells, thereby impairing cancer proliferation without disturbing healthy cells. In a murine tumour model, the platinum (II) complex prevents tumour growth to a greater extent than cisplatin and with considerably lower side-effects and kidney damage. Considering its weak damage to normal cells combined with high toxicity to cancer cells, this NF-κB-binding platinum complex is a potential anti-cancer candidate and acts to verify the strategy of hijacking endogenous trans-nuclear proteins to achieve cancer-cell specificity and enhance therapeutic indices.
Collapse
|
6
|
Yang C, Wang W, Li GD, Zhong HJ, Dong ZZ, Wong CY, Kwong DWJ, Ma DL, Leung CH. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Sci Rep 2017; 7:42860. [PMID: 28225008 PMCID: PMC5320473 DOI: 10.1038/srep42860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
The hypoxia inducible factor (HIF) pathway has been considered to be an attractive anti-cancer target. One strategy to inhibit HIF activity is through the disruption of the HIF-1α–p300 protein-protein interaction. We report herein the identification of an osmium(II) complex as the first metal-based inhibitor of the HIF-1α–p300 interaction. We evaluated the effect of complex 1 on HIF-1α signaling pathway in vitro and in cellulo by using the dual luciferase reporter assay, co-immunoprecipitation assay, and immunoblot assay. Complex 1 exhibited a dose-dependent inhibition of HRE-driven luciferase activity, with an IC50 value of 1.22 μM. Complex 1 interfered with the HIF-1α–p300 interaction as revealed by a dose-dependent reduction of p300 co-precipitated with HIF-1α as the concentration of complex 1 was increased. Complex 1 repressed the phosphorylation of SRC, AKT and STAT3, and had no discernible effect on the activity of NF-κB. We anticipate that complex 1 could be utilized as a promising scaffold for the further development of more potent HIF-1α inhibitors for anti-cancer treatment.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guo-Dong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chun-Yuen Wong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Daniel W J Kwong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
7
|
Kang TS, Mao Z, Ng CT, Wang M, Wang W, Wang C, Lee SMY, Wang Y, Leung CH, Ma DL. Identification of an Iridium(III)-Based Inhibitor of Tumor Necrosis Factor-α. J Med Chem 2016; 59:4026-31. [DOI: 10.1021/acs.jmedchem.6b00112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tian-Shu Kang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Zhifeng Mao
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Chan-Tat Ng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Modi Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Wanhe Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - Chunming Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Simon Ming-Yuen Lee
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Yitao Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Chung-Hang Leung
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Taipa, Macao, P. R. China
| | - Dik-Lung Ma
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| |
Collapse
|
8
|
Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity. Sci Rep 2015; 5:14544. [PMID: 26416333 PMCID: PMC4586517 DOI: 10.1038/srep14544] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022] Open
Abstract
Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus.
Collapse
|
9
|
Yam VWW, Au VKM, Leung SYL. Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem Rev 2015; 115:7589-728. [DOI: 10.1021/acs.chemrev.5b00074] [Citation(s) in RCA: 1065] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vivian Wing-Wah Yam
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vonika Ka-Man Au
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
10
|
Zou T, Liu J, Lum CT, Ma C, Chan RCT, Lok CN, Kwok WM, Che CM. Luminescent Cyclometalated Platinum(II) Complex Forms Emissive Intercalating Adducts with Double-Stranded DNA and RNA: Differential Emissions and Anticancer Activities. Angew Chem Int Ed Engl 2014; 53:10119-23. [DOI: 10.1002/anie.201405384] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/21/2022]
|
11
|
Zou T, Liu J, Lum CT, Ma C, Chan RCT, Lok CN, Kwok WM, Che CM. Luminescent Cyclometalated Platinum(II) Complex Forms Emissive Intercalating Adducts with Double-Stranded DNA and RNA: Differential Emissions and Anticancer Activities. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
|
13
|
|
14
|
Lin IWS, Lok CN, Yan K, Che CM. A silver complex of N,N′-disubstituted cyclic thiourea as an anti-inflammatory inhibitor of IκB kinase. Chem Commun (Camb) 2013; 49:3297-9. [DOI: 10.1039/c3cc00063j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Berenguer JR, Lalinde E, Moreno MT, Sánchez S, Torroba J. Facile Metalation of Hbzq by [cis-Pt(C6F5)2(thf)2]: A Route to a Pentafluorophenyl Benzoquinolate Solvate Complex That Easily Coordinates Terminal Alkynes. Spectroscopic and Optical Properties. Inorg Chem 2012; 51:11665-79. [DOI: 10.1021/ic301563u] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jesús R. Berenguer
- Departamento
de Química—Grupo de Síntesis
Química de La Rioja, UA-CSIC, Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento
de Química—Grupo de Síntesis
Química de La Rioja, UA-CSIC, Universidad de La Rioja, 26006 Logroño, Spain
| | - M. Teresa Moreno
- Departamento
de Química—Grupo de Síntesis
Química de La Rioja, UA-CSIC, Universidad de La Rioja, 26006 Logroño, Spain
| | - Sergio Sánchez
- Departamento
de Química—Grupo de Síntesis
Química de La Rioja, UA-CSIC, Universidad de La Rioja, 26006 Logroño, Spain
| | - Javier Torroba
- Departamento
de Química—Grupo de Síntesis
Química de La Rioja, UA-CSIC, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
16
|
Fuertes S, Woodall CH, Raithby PR, Sicilia V. Heteropolynuclear Pt(II)–M(I) Clusters with a C∧N∧C Biscyclometalated Ligand. Organometallics 2012. [DOI: 10.1021/om300170j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sara Fuertes
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Paul R. Raithby
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Violeta Sicilia
- Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Departamento de Química
Inorgánica, Escuela de Ingeniería y Arquitectura de
Zaragoza, Campus Río Ebro, Edificio Torres Quevedo, 50018,
Zaragoza, Spain
| |
Collapse
|