1
|
Deumal M, Ribas-Ariño J, Roncero C, Robb MA. Real-Time CASSCF (Ehrenfest) Modeling of Electron Dynamics in Organic Semiconductors. Dynamics Reaction Paths Driven by Quantum Coherences. Application to a Radical Organic Semiconductor. J Phys Chem A 2024; 128:10555-10567. [PMID: 39601303 DOI: 10.1021/acs.jpca.4c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We present a strategy for the modeling of charge carrier dynamics in organic semiconductors using conventional quantum chemistry methods, including the analytic gradient for nuclear motion. The theoretical approach uses real-time CASSCF (Ehrenfest) all-electron dynamics coupled to classical nuclear dynamics for the special case of a small number (4-8) of molecular units. The objective is to obtain mechanistic/atomistic insight at the electronic structure level, relating to spin density dynamics, to the effect of crystal structure (e.g., slippage between spin/charge carriers), and to ferromagnetic and antiferromagnetic effects. The initial conditions for our simulations use the equilibrium structures of all the molecular units. At this geometry, a localized hole on one of the units corresponds to a coherent superposition of adiabatic states. We thus generate a dynamics reaction path driven by quantum coherences. Our aim is to inform experiment and to compare with parametrized theoretical models. The methodology is demonstrated for a perfectly π-stacked ethylene model (up to 8 eclipsed molecular units) for both hole transfer and localized exciton transfer. An application for hole transfer is presented for bisdithiazolyl (S,S) and bisdiselenazolyl (Se,Se) radicals for the special case of ferromagnetic coupling. For these examples, the embedded pyridine radical model organic chromophore (up to 6 eclipsed π-stacked molecular units) has been studied on its own as well as the target bisdithiazolyl (S,S) and bisdiselenazolyl (Se,Se) systems. A significant difference between these systems and the ethylene and pyridine stacks is that the (S,S) and (Se,Se) systems exhibit molecular slippage rather than being perfectly eclipsed. This slippage may result from crystal defects or intermolecular vibrations. For the model systems, the electron dynamics is dominated by the initial and final molecular units, irrespective of the length of the chain. The intervening units act as a "superexchange bridge". Our simulations reveal that, in the presence of slippage, charge migration cannot propagate across the entire system; instead, the coherence length is limited to 3 molecular units. The results also suggest that the mechanism of charge transport is different for bisdiselenazolyl (Se,Se) (superexchange-like A -[B]→ C) and bisdithiazolyl (S,S) (direct A → C). An analysis of the spin density suggests that, in the charge carrier dynamics, the additional charge carried by the Se versus S in the "scaffold" is small. Since we use a small number of molecular units, the coupled nuclear dynamics is seen to be complementary to the electron dynamics (i.e., creating a hole causes bond length contraction while filling a hole with an electron lengthens the bond). In all the cases studied, the mechanism of charge mobility is wave-like, rather than hopping, because we use the time dependent Schrödinger equation to propagate the electronic wave function.
Collapse
Affiliation(s)
- Mercè Deumal
- Departament de Ciència de Materials i Química Física & IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08820, Spain
| | - Jordi Ribas-Ariño
- Departament de Ciència de Materials i Química Física & IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08820, Spain
| | - Cristina Roncero
- Departament de Ciència de Materials i Química Física & IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08820, Spain
| | - Michael A Robb
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus 80 Wood Lane, W12 0BZ London, United Kingdom
| |
Collapse
|
2
|
Tran T, Ferté A, Vacher M. Simulating Attochemistry: Which Dynamics Method to Use? J Phys Chem Lett 2024; 15:3646-3652. [PMID: 38530933 PMCID: PMC11000647 DOI: 10.1021/acs.jpclett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Attochemistry aims to exploit the properties of coherent electronic wavepackets excited via attosecond pulses to control the formation of photoproducts. Such molecular processes can, in principle, be simulated with various nonadiabatic dynamics methods, yet the impact of the approximations underlying the methods is rarely assessed. The performances of widely used mixed quantum-classical approaches, Tully surface hopping, and classical Ehrenfest methods are evaluated against the high-accuracy DD-vMCG quantum dynamics. This comparison is conducted for the valence ionization of fluorobenzene. Analyzing the nuclear motion induced in the branching space of the nearby conical intersection, the results show that the mixed quantum-classical methods reproduce quantitatively the average motion of a quantum wavepacket when initiated on a single electronic state. However, they fail to properly capture the nuclear motion induced by an electronic wavepacket along the derivative coupling, the latter originating from the quantum electronic coherence property, key to attochemistry.
Collapse
Affiliation(s)
- Thierry Tran
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| | - Anthony Ferté
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| |
Collapse
|
3
|
Tran T, Worth GA, Robb MA. Control of nuclear dynamics in the benzene cation by electronic wavepacket composition. Commun Chem 2021; 4:48. [PMID: 36697520 PMCID: PMC9814899 DOI: 10.1038/s42004-021-00485-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/05/2021] [Indexed: 01/28/2023] Open
Abstract
The study of coupled electron-nuclear dynamics driven by coherent superpositions of electronic states is now possible in attosecond science experiments. The objective is to understand the electronic control of chemical reactivity. In this work we report coherent 8-state non-adiabatic electron-nuclear dynamics simulations of the benzene radical cation. The computations were inspired by the extreme ultraviolet (XUV) experimental results in which all 8 electronic states were prepared with significant population. Our objective was to study the nuclear dynamics using various bespoke coherent electronic state superpositions as initial conditions in the Quantum-Ehrenfest method. The original XUV measurements were supported by Multi-configuration time-dependent Hartree (MCTDH) simulations, which suggested a model of successive passage through conical intersections. The present computations support a complementary model where non-adiabatic events are seen far from a conical intersection and are controlled by electron dynamics involving non-adjacent adiabatic states. It proves to be possible to identify two superpositions that can be linked with two possible fragmentation paths.
Collapse
Affiliation(s)
- Thierry Tran
- Department of Chemistry, University College London, London, UK. .,Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Graham A Worth
- Department of Chemistry, University College London, London, UK.
| | - Michael A Robb
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
4
|
Haase D, Manz J, Tremblay JC. Attosecond Charge Migration Can Break Electron Symmetry While Conserving Nuclear Symmetry. J Phys Chem A 2020; 124:3329-3334. [DOI: 10.1021/acs.jpca.0c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dietrich Haase
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR7019, 57070 Metz, France
| |
Collapse
|
5
|
Mignolet B, Curchod BFE, Remacle F, Martínez TJ. Sub-Femtosecond Stark Control of Molecular Photoexcitation with Near Single-Cycle Pulses. J Phys Chem Lett 2019; 10:742-747. [PMID: 30695646 DOI: 10.1021/acs.jpclett.8b03814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electric fields can tailor molecular potential energy surfaces by interaction with the electronic state-dependent molecular dipole moment. Recent developments in optics have enabled the creation of ultrashort few-cycle optical pulses with precise control of the carrier envelope phase (CEP) that determines the offset of the maxima in the field and the pulse envelope. This opens news ways of controlling ultrafast molecular dynamics by exploiting the CEP. In this work, we show that the photoabsorption efficiency of oriented H2CSO (sulfine) can be controlled by tuning the CEP. We further show that this control emanates from a resonance condition related to Stark shifting of the electronic energy levels.
Collapse
Affiliation(s)
- Benoit Mignolet
- Theoretical Physical Chemistry, Research Unit Molecular Systems, B6c , University of Liège , B4000 Liège , Belgium
| | - Basile F E Curchod
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , United Kingdom
| | - Francoise Remacle
- Theoretical Physical Chemistry, Research Unit Molecular Systems, B6c , University of Liège , B4000 Liège , Belgium
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute , Stanford University , 333 Campus Drive , Stanford , California 94305 , United States
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| |
Collapse
|
6
|
Dsouza R, Cheng X, Li Z, Miller RJD, Kochman MA. Oscillatory Photoelectron Signal of N-Methylmorpholine as a Test Case for the Algebraic-Diagrammatic Construction Method of Second Order. J Phys Chem A 2018; 122:9688-9700. [DOI: 10.1021/acs.jpca.8b10241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raison Dsouza
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Xinxin Cheng
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging (CUI), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Zheng Li
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Bldg. 99 (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging (CUI), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michał Andrzej Kochman
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
7
|
Mignolet B, Curchod BFE. A walk through the approximations of ab initio multiple spawning. J Chem Phys 2018; 148:134110. [PMID: 29626896 DOI: 10.1063/1.5022877] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Collapse
Affiliation(s)
- Benoit Mignolet
- Theoretical Physical Chemistry, UR MolSYS, B6c, University of Liège, B4000 Liège, Belgium
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Jochim B, Siemering R, Zohrabi M, Voznyuk O, Mahowald JB, Schmitz DG, Betsch KJ, Berry B, Severt T, Kling NG, Burwitz TG, Carnes KD, Kling MF, Ben-Itzhak I, Wells E, de Vivie-Riedle R. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields. Sci Rep 2017; 7:4441. [PMID: 28667335 PMCID: PMC5493692 DOI: 10.1038/s41598-017-04638-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/18/2017] [Indexed: 11/10/2022] Open
Abstract
Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C2D2, C2D4 and C2D6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.
Collapse
Affiliation(s)
- Bethany Jochim
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - R Siemering
- Department für Chemie, Ludwig-Maximilians-Universität München, Butenandt-Strasse 11, D-81377, München, Germany
| | - M Zohrabi
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - O Voznyuk
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - J B Mahowald
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - D G Schmitz
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - K J Betsch
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Ben Berry
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - T Severt
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Nora G Kling
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.,Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
| | - T G Burwitz
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - K D Carnes
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - M F Kling
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.,Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
| | - I Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - E Wells
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA.
| | - R de Vivie-Riedle
- Department für Chemie, Ludwig-Maximilians-Universität München, Butenandt-Strasse 11, D-81377, München, Germany.
| |
Collapse
|
9
|
Ding H, Jia D, Manz J, Yang Y. Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI+. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1287967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Ding
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| |
Collapse
|
10
|
Mignolet B, Curchod BFE, Martínez TJ. Communication: XFAIMS-eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. J Chem Phys 2017; 145:191104. [PMID: 27875877 DOI: 10.1063/1.4967761] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attoscience is an emerging field where attosecond pulses or few cycle IR pulses are used to pump and probe the correlated electron-nuclear motion of molecules. We present the trajectory-guided eXternal Field Ab Initio Multiple Spawning (XFAIMS) method that models such experiments "on-the-fly," from laser pulse excitation to fragmentation or nonadiabatic relaxation to the ground electronic state. For the photoexcitation of the LiH molecule, we show that XFAIMS gives results in close agreement with numerically exact quantum dynamics simulations, both for atto- and femtosecond laser pulses. We then show the ability of XFAIMS to model the dynamics in polyatomic molecules by studying the effect of nuclear motion on the photoexcitation of a sulfine (H2CSO).
Collapse
Affiliation(s)
- Benoit Mignolet
- Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
11
|
Jia D, Manz J, Paulus B, Pohl V, Tremblay JC, Yang Y. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Kraus PM, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka EF, Grassi G, Tolstikhin OI, Schneider J, Jensen F, Madsen LB, Bandrauk AD, Remacle F, Wörner HJ. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 2015; 350:790-5. [DOI: 10.1126/science.aab2160] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/25/2015] [Indexed: 11/02/2022]
|
13
|
Oliveira MJT, Mignolet B, Kus T, Papadopoulos TA, Remacle F, Verstraete MJ. Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory. J Chem Theory Comput 2015; 11:2221-33. [DOI: 10.1021/acs.jctc.5b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Micael J. T. Oliveira
- Department
of Physics, University of Liège, European Theoretical Spectroscopy Facility, B-4000, Liège, Belgium
| | - Benoit Mignolet
- Department
of Chemistry, University of Liège, B-4000, Liège, Belgium
| | - Tomasz Kus
- Department
of Chemistry, University of Liège, B-4000, Liège, Belgium
| | - Theodoros A. Papadopoulos
- Department
of Natural Sciences, University of Chester, Thornton Science Park, CH2 4NU, Chester, U. K
| | - F. Remacle
- Department
of Chemistry, University of Liège, B-4000, Liège, Belgium
| | - Matthieu J. Verstraete
- Department
of Physics, University of Liège, European Theoretical Spectroscopy Facility, B-4000, Liège, Belgium
| |
Collapse
|
14
|
Nguyen-Dang TT, Couture-Bienvenue É, Viau-Trudel J, Sainjon A. Time-dependent quantum chemistry of laser driven many-electron molecules. J Chem Phys 2014; 141:244116. [DOI: 10.1063/1.4904102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | - Amaury Sainjon
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
15
|
Vacher M, Bearpark MJ, Robb MA. Communication: Oscillating charge migration between lone pairs persists without significant interaction with nuclear motion in the glycine and Gly-Gly-NH-CH3 radical cations. J Chem Phys 2014; 140:201102. [DOI: 10.1063/1.4879516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
16
|
|
17
|
Kuś T, Mignolet B, Levine RD, Remacle F. Pump and Probe of Ultrafast Charge Reorganization in Small Peptides: A Computational Study through Sudden Ionizations. J Phys Chem A 2013; 117:10513-25. [DOI: 10.1021/jp407295t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- T. Kuś
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | - B. Mignolet
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | - R. D. Levine
- Fritz Haber Research
Centre for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - F. Remacle
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
- Fritz Haber Research
Centre for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
18
|
Mendive-Tapia D, Vacher M, Bearpark MJ, Robb MA. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection. J Chem Phys 2013; 139:044110. [DOI: 10.1063/1.4815914] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Neidel C, Klei J, Yang CH, Rouzée A, Vrakking MJJ, Klünder K, Miranda M, Arnold CL, Fordell T, L'Huillier A, Gisselbrecht M, Johnsson P, Dinh MP, Suraud E, Reinhard PG, Despré V, Marques MAL, Lépine F. Probing time-dependent molecular dipoles on the attosecond time scale. PHYSICAL REVIEW LETTERS 2013; 111:033001. [PMID: 23909314 DOI: 10.1103/physrevlett.111.033001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Indexed: 06/02/2023]
Abstract
Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small- and medium-sized neutral molecules (N(2), CO(2), and C(2)H(4)), monitoring time-dependent variations of the parent molecular ion yield in the ionization by an attosecond pulse, and thereby probing the time-dependent dipole induced by a moderately strong near-infrared laser field. This approach can be generalized to other molecular species and may be regarded as a first example of molecular attosecond Stark spectroscopy.
Collapse
Affiliation(s)
- Ch Neidel
- Max-Born Institut, Max-Born Strasse 2A, 12489 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Loh ZH, Leone SR. Capturing Ultrafast Quantum Dynamics with Femtosecond and Attosecond X-ray Core-Level Absorption Spectroscopy. J Phys Chem Lett 2013; 4:292-302. [PMID: 26283437 DOI: 10.1021/jz301910n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent technical advances in ultrafast laser sources enable the generation of femtosecond and attosecond soft X-ray pulses in tabletop laser setups as well as accelerator-based synchrotron and free-electron laser sources. These new light sources can be harnessed via pump-probe spectroscopy to elucidate ultrafast quantum dynamics in atoms, molecules, and condensed matter with unprecedented time resolution and chemical sensitivity. Employing such ultrashort pulses in transient X-ray absorption spectroscopy combines the unique advantages of core-level absorption probing of chemical environments and oxidation states with the ability to obtain ultimately freeze-frame snapshots of electronic and nuclear dynamics. In this Perspective, we provide an overview of the progress in applying the recently developed technique of femtosecond to attosecond time-resolved soft X-ray transient absorption spectroscopy to the study of ultrafast phenomena, including some of our own efforts to elucidate the interaction of intense laser pulses with atoms and molecules in the strong-field, nonperturbative limit. Possible avenues for future work are outlined.
Collapse
Affiliation(s)
- Zhi-Heng Loh
- †Division of Chemistry and Biological Chemistry, and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Stephen R Leone
- ‡Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States
- §Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Imaging Orbitals by Ionization or Electron Attachment: The Role of Dyson Orbitals. IMAGING AND MANIPULATING MOLECULAR ORBITALS 2013. [DOI: 10.1007/978-3-642-38809-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Muskatel BH, Remacle F, Levine RD. Ultrafast Predissociation Mechanism of the 1Πu States of 14N2 and Its Isotopomers upon Attosecond Excitation from the Ground State. J Phys Chem A 2012; 116:11311-8. [DOI: 10.1021/jp305354h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- B. H. Muskatel
- The Fritz Haber Research Center, Hebrew University, Jerusalem 91904, Israel
| | - F. Remacle
- The Fritz Haber Research Center, Hebrew University, Jerusalem 91904, Israel
- Director FNRS, Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | - R. D. Levine
- The Fritz Haber Research Center, Hebrew University, Jerusalem 91904, Israel
- Department of Chemistry
and Biochemistry, Crump Institute for Molecular Imaging,
and Department of Molecular and Medical Pharmacology, University of California, Los Angeles,
California 90095, United States
| |
Collapse
|