1
|
Lawson ZR, Ciambriello L, Nieukirk BD, Howe J, Tang R, Servin IA, Gavioli L, Hughes RA, Neretina S. Light-Mediated Growth of Gold Nanoplates Carried Out in Total Darkness. ACS NANO 2025; 19:9378-9389. [PMID: 40007334 DOI: 10.1021/acsnano.5c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The plasmon-mediated growth of noble metal nanoplates through the reduction of metal precursors onto resonantly excited seeds lined with planar defects stands out as one of the triumphs of photochemistry and nanometal synthesis. Such growth modes are, however, not without their drawbacks and, with a lack of suitable alternatives, limitations remain on the use of light as a synthetic control. Herein, a two-reagent seed-mediated gold nanoplate synthesis is demonstrated as a photochemical pathway where the illumination of the growth solution, as opposed to the emerging nanoplates, is the key requirement for growth. With long-lived reaction products, it becomes possible to optically prime the growth solution prior to the insertion of substrate-immobilized seeds and then carry out a seemingly paradoxical synthesis in which light-mediated growth occurs in total darkness. The redox chemistry responsible for nanoplate growth can be induced either through the direct optical excitation of the growth solution using short-wavelength visible light or at longer wavelengths through the plasmonic excitation of spherical colloidal gold nanoparticles added to the growth solution. With the former acting as a high-level wavelength-dependent control over nanoplate synthesis and the latter demonstrating plasmon-mediated metal deposition that is spatially and temporally isolated from the resonant excitation, the study forwards the use of light as an external driver for nanostructure synthesis.
Collapse
Affiliation(s)
- Zachary R Lawson
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Luca Ciambriello
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - John Howe
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runze Tang
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Irvin A Servin
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Noetzel J, Schienbein P, Forbert H, Marx D. Solvation Properties of Neutral Gold Species in Supercritical Water Studied By THz Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202402120. [PMID: 38695846 DOI: 10.1002/anie.202402120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 06/05/2024]
Abstract
Supercritical water provides distinctly different solvation properties compared to what is known from liquid water. Despite its prevalence deep in the Earth's crust and its role in chemosynthetic ecosystems in the vicinity of hydrothermal vents, molecular insights into its solvation mechanisms are still very scarce compared to what is known for liquid water. Recently, neutral metal particles have been detected in hydrothermal fluids and proposed to explain the transport of gold species to ore deposits on Earth. Using ab initio molecular dynamics, we elucidate the solvation properties of small gold species at supercritical conditions. The neutral metal clusters themselves contribute enormous THz intensity not because of their intramolecular vibrations, but due to their pronounced electronic polarization coupling to the dynamical supercritical solvent, leading to a continuum absorption up to about 1000 cm-1. On top, long-lived interactions between the gold clusters and solvation water leads at these supercritical conditions to a sharp THz resonance that happens to be close to the one due to H-bonding in liquid water at ambient conditions. The resulting distinct resonances can be used to analyse the solvation properties of neutral metal particles in supercritical aqueous solutions.
Collapse
Affiliation(s)
- Jan Noetzel
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780, Bochum
| | - Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780, Bochum
- Present Address, Department of Physics, Imperial College London, Exhibition Rd, South Kensington, London, SW7 2AZ, United Kingdom
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, D-44780, Bochum
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780, Bochum
| |
Collapse
|
5
|
Plascencia-Villa G, Torrente D, Marucho M, José-Yacamán M. Biodirected synthesis and nanostructural characterization of anisotropic gold nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3527-36. [PMID: 25742562 DOI: 10.1021/acs.langmuir.5b00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gold nanoparticles with anisotropic structures have tunable absorption properties and diverse bioapplications as image contrast agents, plasmonics, and therapeutic-diagnostic materials. Amino acids with electrostatically charged side chains possess inner affinity for metal ions. Lysine (Lys) efficiently controlled the growing into star-shape nanoparticles with controlled narrow sizes (30-100 nm) and produced in high yields (85-95%). Anisotropic nanostructures showed tunable absorbance from UV to NIR range, with extraordinary colloidal stability (-26 to -42 mV) and surface-enhanced Raman scattering properties. Advanced electron microscopy characterization through ultra-high-resolution SEM, STEM, and HR-TEM confirmed the size, nanostructure, crystalline structure, and chemical composition. Molecular dynamics simulations revealed that Lys interacted preferentially with Au(I) through the -COOH group instead of their positive side chains with a binding free energy (BFE) of 3.4 kcal mol(-1). These highly monodisperse and colloidal stable anisotropic particles prepared with biocompatible compounds may be employed in biomedical applications.
Collapse
|
6
|
Di Remigio R, Bast R, Frediani L, Saue T. Four-Component Relativistic Calculations in Solution with the Polarizable Continuum Model of Solvation: Theory, Implementation, and Application to the Group 16 Dihydrides H2X (X = O, S, Se, Te, Po). J Phys Chem A 2014; 119:5061-77. [DOI: 10.1021/jp507279y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto Di Remigio
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø
, N-9037 Tromsø, Norway
| | - Radovan Bast
- Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center
, S-10691 Stockholm, Sweden
- PDC Center for High Performance Computing, Royal Institute of Technology
, S-10044 Stockholm, Sweden
| | - Luca Frediani
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø
, N-9037 Tromsø, Norway
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), CNRS/Université de Toulouse III (Paul Sabatier)
, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
7
|
Chaudret R, Contreras-Garcia J, Delcey M, Parisel O, Yang W, Piquemal JP. Revisiting H 2O Nucleation around Au + and Hg 2+: The Peculiar "Pseudo-Soft" Character of the Gold Cation. J Chem Theory Comput 2014; 10:1900-1909. [PMID: 24860276 PMCID: PMC4025583 DOI: 10.1021/ct4006135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Indexed: 01/01/2023]
Abstract
In this contribution, we propose a deeper understanding of the electronic effects affecting the nucleation of water around the Au+ and Hg2+ metal cations using quantum chemistry. To do so, and in order to go beyond usual energetical studies, we make extensive use of state of the art quantum interpretative techniques combining ELF/NCI/QTAIM/EDA computations to capture all ranges of interactions stabilizing the well characterized microhydrated structures. The Electron Localization Function (ELF) topological analysis reveals the peculiar role of the Au+ outer-shell core electrons (subvalence) that appear already spatially preorganized once the addition of the first water molecule occurs. Thus, despite the addition of other water molecules, the electronic structure of Au(H2O)+ appears frozen due to relativistic effects leading to a maximal acceptation of only two waters in gold's first hydration shell. As the values of the QTAIM (Quantum Theory of Atoms in Molecules) cations's charge is discussed, the Non Covalent Interactions (NCI) analysis showed that Au+ appears still able to interact through longer range van der Waals interaction with the third or fourth hydration shell water molecules. As these types of interaction are not characteristic of either a hard or soft metal cation, we introduced the concept of a "pseudo-soft" cation to define Au+ behavior. Then, extending the study, we performed the same computations replacing Au+ with Hg2+, an isoelectronic cation. If Hg2+ behaves like Au+ for small water clusters, a topological, geometrical, and energetical transition appears when the number of water molecules increases. Regarding the HSAB theory, this transition is characteristic of a shift of Hg2+ from a pseudosoft form to a soft ion and appears to be due to a competition between the relativistic and correlation effects. Indeed, if relativistic effects are predominant, then mercury will behave like gold and have a similar subvalence/geometry; otherwise when correlation effects are predominant, Hg2+ behaves like a soft cation.
Collapse
Affiliation(s)
- Robin Chaudret
- Sorbonne
Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS,
UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Julia Contreras-Garcia
- Sorbonne
Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS,
UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
| | - Mickaël Delcey
- Sorbonne
Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS,
UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- Department
of Chemistry − Uppsala University, Ångström Laboratory, Theoretical Chemistry, Ångströmlaboratoriet
Lägerhyddsvägen 1751 20 Uppsala, Sweden
| | - Olivier Parisel
- Sorbonne
Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS,
UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
| | - Weitao Yang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jean-Philip Piquemal
- Sorbonne
Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
- CNRS,
UMR 7616, Laboratoire de Chimie Théorique, case courrier 137, 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
8
|
Farnesi Camellone M, Marx D. On the Impact of Solvation on a Au/TiO2 Nanocatalyst in Contact with Water. J Phys Chem Lett 2013; 4:514-518. [PMID: 26281748 DOI: 10.1021/jz301891v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Water, the ubiquitous solvent, is also prominent in forming liquid-solid interfaces with catalytically active surfaces, in particular, with promoted oxides. We study the complex interface of a gold nanocatalyst, pinned by an F-center on titania support, and water. The ab initio simulations uncover the microscopic details of solvent-induced charge rearrangements at the metal particle. Water is found to stabilize charge states differently from the gas phase as a result of structure-specific charge transfer from/to the solvent, thus altering surface reactivity. The metal cluster is shown to feature both "cationic" and "anionic" solvation, depending on fluctuation and polarization effects in the liquid, which creates novel active sites. These observations open up an avenue toward "solvent engineering" in liquid-phase heterogeneous catalysis.
Collapse
Affiliation(s)
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|