1
|
Abstract
Compartmentalisation is recognised to be a primary step for the assembly of non-living matter towards the construction of life-like microensembles. To date, a host of hollow microcompartments with various functionalities have been widely developed. Within this respect, given that dynamic behaviour is one of the fundamental features to distinguish living ensembles from those that are non-living, the design and construction of microcompartments with various dynamic behaviours are attracting considerable interest from a wide range of research communities. Significantly, the created dynamic microcompartments could also be widely used as chassis for further bottom-up design towards building protocell models by integrating and booting up necessary biological information. Herein, strategies to install the various motility behaviours into microcompartments, including haptotaxis, chemotaxis and gravitaxis, are summarized in the anticipation of inspiring more designs towards creating various advanced active microcompartments, and contributing new techniques to the ultimate goal of constructing a basic living unit entirely from non-living components.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| |
Collapse
|
2
|
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2015; 116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alaa Adawy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yongjun Men
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Angelova A, Angelov B, Drechsler M, Garamus VM, Lesieur S. Protein entrapment in PEGylated lipid nanoparticles. Int J Pharm 2013; 454:625-32. [DOI: 10.1016/j.ijpharm.2013.06.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 12/20/2022]
|
4
|
Angelova A, Angelov B, Drechsler M, Lesieur S. Neurotrophin delivery using nanotechnology. Drug Discov Today 2013; 18:1263-71. [PMID: 23891881 DOI: 10.1016/j.drudis.2013.07.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Deficits or overexpression of neurotrophins cause neurodegenerative diseases and psychiatric disorders. These proteins are required for the maintenance of the function, plasticity and survival of neurons in the central (CNS) and peripheral nervous systems. Significant efforts have been devoted to developing therapeutic delivery systems that enable control of neurotrophin dosage in the brain. Here, we suggest that nanoparticulate carriers favoring targeted delivery in specific brain areas and minimizing biodistribution to the systemic circulation should be developed toward clinical benefits of neuroregeneration. We also provide examples of improved targeted neurotrophin delivery to localized areas in the CNS.
Collapse
Affiliation(s)
- Angelina Angelova
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.B. Clément, F-92296 Châtenay-Malabry cedex, France; University Paris Sud 11, Faculté de Pharmacie, LabEx LERMIT, Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
5
|
Philosof-Mazor L, Dakwar GR, Popov M, Kolusheva S, Shames A, Linder C, Greenberg S, Heldman E, Stepensky D, Jelinek R. Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: New vehicles for magnetically targeted drug delivery. Int J Pharm 2013; 450:241-9. [DOI: 10.1016/j.ijpharm.2013.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/15/2023]
|
6
|
Géral C, Angelova A, Lesieur S. From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics 2013; 5:127-67. [PMID: 24300402 PMCID: PMC3834942 DOI: 10.3390/pharmaceutics5010127] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 01/01/2023] Open
Abstract
Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted.
Collapse
Affiliation(s)
- Claire Géral
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Angelina Angelova
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Sylviane Lesieur
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
7
|
|
8
|
Andriola Silva AK, Di Corato R, Gazeau F, Pellegrino T, Wilhelm C. Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors. Nanomedicine (Lond) 2012; 7:1713-27. [DOI: 10.2217/nnm.12.40] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: Most of the research efforts in magnetic targeting have been focused on the development of magnetic nanovectors, while the investigation of methods for tracking their magnetic targeting efficiency remains inappropriately addressed. We propose herein a miniaturized approach for appraising magnetophoretic mobility at the nanoscale. Materials & methods: A simple and easy-to-use chamber including a microtip as a magnetic attractor was developed to perform magnetophoretic measurement at the size scale of nano-objects, and under bright field or fluorescence microscopy. Different sets of magnetic nanocontainers were produced and their magnetophoretic mobility was investigated. Real-time observations of the Brownian motion of the nanocontainers were also carried out for simultaneous size determination. Results: Attraction of the nanocontainers at the microtip is demonstrated as a qualitative method that immediately distinguishes magnetically responsive nano-objects. The combination of the analysis of Brownian motion, together with the magnetophoretic mobility, inferred both the size, the magnetophoretic velocity and the magnetic content of the nanocontainers. Additionally, nanomagnetophoresis experiments under fluorescence microscopy provided information on the constitutive core/shell integrity of the nanocontainers and the co-internalization of a fluorescent cargo. Conclusion: This nanomagnetophoresis method represents a promising tool to estimate the feasibility of magnetic targeting in laboratory routine. Original submitted 28 November 2011; Revised submitted 28 February 2012; Published online 18 June 2012
Collapse
Affiliation(s)
- Amanda K Andriola Silva
- Laboratoire Matière & Systèmes Complexes, UMR 7057, CNRS & Université Paris Diderot, 10 rue Alice Domon & Léonie Duquet, 75205 Paris cedex 13, France
| | - Riccardo Di Corato
- Laboratoire Matière & Systèmes Complexes, UMR 7057, CNRS & Université Paris Diderot, 10 rue Alice Domon & Léonie Duquet, 75205 Paris cedex 13, France
- Instituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Florence Gazeau
- Laboratoire Matière & Systèmes Complexes, UMR 7057, CNRS & Université Paris Diderot, 10 rue Alice Domon & Léonie Duquet, 75205 Paris cedex 13, France
| | - Teresa Pellegrino
- Instituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
- Nanoscience Institute of CNR, National Nanotechnology Laboratory, Via Arnesano, 73100 Lecce, Italy
| | - Claire Wilhelm
- Laboratoire Matière & Systèmes Complexes, UMR 7057, CNRS & Université Paris Diderot, 10 rue Alice Domon & Léonie Duquet, 75205 Paris cedex 13, France
| |
Collapse
|
9
|
Tao Y, Han J, Dou H. Brain-targeting gene delivery using a rabies virus glycoprotein peptide modulated hollow liposome: bio-behavioral study. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31675g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Yim YS, Choi JS, Kim GT, Kim CH, Shin TH, Kim DG, Cheon J. A facile approach for the delivery of inorganic nanoparticles into the brain by passing through the blood–brain barrier (BBB). Chem Commun (Camb) 2012; 48:61-3. [DOI: 10.1039/c1cc15113d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
|
12
|
Salas G, Costo R, Morales MDP. Synthesis of Inorganic Nanoparticles. NANOBIOTECHNOLOGY - INORGANIC NANOPARTICLES VS ORGANIC NANOPARTICLES 2012. [DOI: 10.1016/b978-0-12-415769-9.00002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|