1
|
Yan P, Yu Z, Chen Z, Hu J, Wang W, Gong C. Sulfonated polyether ether ketone composite proton exchange membranes incorporated with a novel hierarchical‐structure hybrid nanofiller consisting solid superacid zirconium phosphate and
CNTs. J Appl Polym Sci 2022. [DOI: 10.1002/app.53348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pengjia Yan
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, School of Chemistry and Material Science Hubei Engineering University Xiaogan Hubei China
| | - Zhanghu Yu
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, School of Chemistry and Material Science Hubei Engineering University Xiaogan Hubei China
| | - Zhihong Chen
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, School of Chemistry and Material Science Hubei Engineering University Xiaogan Hubei China
- School of Physics and Electronic‐information Engineering Hubei Engineering University Xiaogan China
| | - Ji Hu
- School of Materials Science and Engineering School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology Luoyang China
| | - Wanhui Wang
- School of Materials Science and Engineering School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology Luoyang China
| | - Chunli Gong
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, School of Chemistry and Material Science Hubei Engineering University Xiaogan Hubei China
| |
Collapse
|
2
|
Wang G, Yang S, Kang NY, Lu M, Hua B, Wei H, Kang J, Tang W, Lee YM. Sulfonated graphene oxide doped sulfonated polybenzothiazoles for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Characterization and Modeling of Free Volume and Ionic Conduction in Multiblock Copolymer Proton Exchange Membranes. Polymers (Basel) 2022; 14:polym14091688. [PMID: 35566860 PMCID: PMC9100545 DOI: 10.3390/polym14091688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 01/26/2023] Open
Abstract
Free volume plays a key role on transport in proton exchange membranes (PEMs), including ionic conduction, species permeation, and diffusion. Positron annihilation lifetime spectroscopy and electrochemical impedance spectroscopy are used to characterize the pore size distribution and ionic conductivity of synthesized PEMs from polysulfone/polyphenylsulfone multiblock copolymers with different degrees of sulfonation (SPES). The experimental data are combined with a bundle-of-tubes model at the cluster-network scale to examine water uptake and proton conduction. The results show that the free pore size changes little with temperature in agreement with the good thermo-mechanical properties of SPES. However, the free volume is significantly lower than that of Nafion®, leading to lower ionic conductivity. This is explained by the reduction of the bulk space available for proton transfer where the activation free energy is lower, as well as an increase in the tortuosity of the ionic network.
Collapse
|
4
|
Shanmugam S, Ketpang K, Aziz MA, Oh K, Lee K, Son B, Chanunpanich N. Composite polymer electrolyte membrane decorated with porous titanium oxide nanotubes for fuel cell operating under low relative humidity. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Wang J, Xu Z, Chen J, Yang X, Ramakrishna S, Liu Y. Mesoscale Simulation on the Hydrated Morphologies of SPEEK Membrane. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jihao Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhiyang Xu
- Beijing Key Laboratory of Advanced Functional Polymer Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaozhen Yang
- State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Science Beijing 100190 China
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative National University of Singapore Singapore 11576 Singapore
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
6
|
Branched Sulfonimide-Based Proton Exchange Polymer Membranes from Poly(Phenylenebenzopheneone)s for Fuel Cell Applications. MEMBRANES 2021; 11:membranes11030168. [PMID: 33673539 PMCID: PMC7997320 DOI: 10.3390/membranes11030168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Improved proton conductivity and high durability are now a high concern for proton exchange membranes (PEMs). Therefore, highly proton conductive PEMs have been synthesized from branched sulfonimide-based poly(phenylenebenzophenone) (SI-branched PPBP) with excellent thermal and chemical stability. The branched polyphenylene-based carbon-carbon backbones of the SI-branched PPBP membranes were attained from the 1,4-dichloro-2,5-diphenylenebenzophenone (PBP) monomer using 1,3,5-trichlorobenzene as a branching agent (0.1%) via the Ni-Zn catalyzed C-C coupling reaction. The as-synthesized SI-branched PPBP membranes showed 1.00~1.86 meq./g ion exchange capacity (IEC) with unique dimensional stability. The sulfonimide groups of the SI-branched PPBP membranes had improved proton conductivity (75.9-121.88 mS/cm) compared to Nafion 117 (84.74 mS/cm). Oxidation stability by thermogravimetric analysis (TGA) and Fenton's test study confirmed the significant properties of the SI-branched PPBP membranes. Additionally, a very distinct microphase separation between the hydrophobic and hydrophilic moieties was observed using atomic force microscopic (AFM) analysis. The properties of the synthesized SI-branched PPBP membranes demonstrate their viability as an alternative PEM material.
Collapse
|
7
|
Li Z, Guan Z, Wang C, Quan B, Zhao L. Addition of modified hollow mesoporous organosilica in anhydrous SPEEK/IL composite membrane enhances its proton conductivity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Barjola A, Escorihuela J, García-Bernabé A, Sahuquillo Ó, Giménez E, Compañ V. Diffusivity and free anion concentration of ionic liquid composite polybenzimidazole membranes. RSC Adv 2021; 11:26379-26390. [PMID: 35479428 PMCID: PMC9037350 DOI: 10.1039/d1ra05364g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
PBI composite membranes containing 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIM-NTf2) at 1, 5, 10, 20 and 50 wt% have been prepared and the conductivity has been analyzed by electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Arturo Barjola
- Instituto de Tecnología de Materiales
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica
- Universitat de València
- 46100 Valencia
- Spain
| | - Abel García-Bernabé
- Departamento de Termodinámica Aplicada
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Óscar Sahuquillo
- Instituto de Tecnología de Materiales
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Enrique Giménez
- Instituto de Tecnología de Materiales
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| |
Collapse
|
9
|
Yurova PA, Aladysheva US, Stenina IA, Yaroslavtsev AB. Transport Properties of MF-4SK Membranes Doped with Sulfonated Zirconia. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193519110156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Nambi Krishnan N, Konovalova A, Aili D, Li Q, Park HS, Jang JH, Kim HJ, Henkensmeier D. Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117218] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Sulfonated poly (ether sulfone) composite membranes customized with polydopamine coated molybdenum disulfide nanosheets for renewable energy devices. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Bae I, Oh KH, Yun M, Kang MK, Song HH, Kim H. Nanostructured composite membrane with cross-linked sulfonated poly(arylene ether ketone)/silica for high-performance polymer electrolyte membrane fuel cells under low relative humidity. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Novel composite polymer electrolyte membrane using solid superacidic sulfated zirconia - Functionalized carbon nanotube modified chitosan. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.131] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Oh K, Son B, Sanetuntikul J, Shanmugam S. Polyoxometalate decorated graphene oxide/sulfonated poly(arylene ether ketone) block copolymer composite membrane for proton exchange membrane fuel cell operating under low relative humidity. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Synthesis of superhydrophilic Nafion based nanocomposite hollow fiber membranes for water vapor separation. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
|
17
|
Kwon T, Cho H, Lee JW, Henkensmeier D, Kang Y, Koo CM. Sulfonated Copper Phthalocyanine/Sulfonated Polysulfone Composite Membrane for Ionic Polymer Actuators with High Power Density and Fast Response Time. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29063-29070. [PMID: 28782936 DOI: 10.1021/acsami.7b07572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA) are assembled into bending ionic polymer actuators. CuPCSA is an organic filler with very high sulfonation degree (IEC = 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane, probably due to its good dispersibility in SPAES-containing solutions. SPAES/CuPCSA actuators exhibit larger ion conductivity (102 mS cm-1), tensile modulus (208 MPa), strength (101 MPa), and strain (1.21%), exceptionally faster response to electrical stimuli, and larger mechanical power density (3028 W m-3) than ever reported for ion-conducting polymer actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next-generation transducers with high power density, which are currently developed, e.g., for underwater propulsion and endoscopic surgery.
Collapse
Affiliation(s)
- Taehoon Kwon
- Department of Chemistry, Research Institute for Natural Sciences, Institute of Nano Science and Technology, Hanyang University , Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | | | - Jang-Woo Lee
- Future Technology R&D Team, Petrochemical Division, Daelim Industrial Company, Limited , Sinsungnam-ro 106, Yuseong-gu, Daejeon 34108, Republic of Korea
| | - Dirk Henkensmeier
- ET-GT, KIST School, University of Science and Technology , Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Green School, Korea University , Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Youngjong Kang
- Department of Chemistry, Research Institute for Natural Sciences, Institute of Nano Science and Technology, Hanyang University , Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chong Min Koo
- KU-KIST Graduate School of Science and Technology, Korea University , Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Nanomaterials Science and Engineering, University of Science and Technology , Gajeong-ro 217, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
18
|
Shin DW, Guiver MD, Lee YM. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chem Rev 2017; 117:4759-4805. [DOI: 10.1021/acs.chemrev.6b00586] [Citation(s) in RCA: 582] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Dong Won Shin
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Fuel
Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Michael D. Guiver
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- State
Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Young Moo Lee
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
19
|
Ogawa T, Tamaki T, Yamaguchi T. Proton Conductivity of Organic–Inorganic Electrolyte for Polymer Electrolyte Fuel Cell. CHEM LETT 2017. [DOI: 10.1246/cl.160935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Adv Colloid Interface Sci 2017; 240:15-30. [PMID: 28024645 DOI: 10.1016/j.cis.2016.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022]
Abstract
In the context of many applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during the last decade, due to its excellent electrical, mechanical, and thermal properties. The presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization makes it a good candidate for diversified applications. The main objectives for developing a GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly. Research carried on this topic may be divided into protocols for covalent grafting of functional groups on GO matrix, preparation of free-standing PEM or choice of suitable polymer matrix, covalent or hydrogen bonding between GO and polymer matrix etc. Herein, we present a brief literature survey on GO based nano-hybrid PEM for fuel cell applications. Different protocols were adopted to produce functionalized GO based materials and prepare their free-standing film or disperse these materials in various polymer matrices with suitable interactions. This review article critically discussed the suitability of these PEMs for fuel cell applications in terms of the dependency of the intrinsic properties of nanohybrid PEMs. Potential applications of these nanohybrid PEMs, and current challenges are also provided along with future guidelines for developing GO based nanohybrid PEMs as promising materials for fuel cell applications.
Collapse
|
21
|
Reyes-Rodriguez JL, Escorihuela J, García-Bernabé A, Giménez E, Solorza-Feria O, Compañ V. Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Adv 2017. [DOI: 10.1039/c7ra10484g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel composite membranes, based on sulfonated poly(ether ketone) (SPEEK) with a graphene oxide (GO) layer, were prepared.
Collapse
Affiliation(s)
- Jose Luis Reyes-Rodriguez
- Departamento de Química – Centro de Investigación y de Estudios Avanzados del I.P.N
- 07360 México D.F
- Mexico
| | - Jorge Escorihuela
- Escuela Técnica Superior de Ingenieros Industriales – Departamento de Termodinámica Aplicada
- Universitat Politècnica de València
- 46020 Valencia
- Spain
| | - Abel García-Bernabé
- Escuela Técnica Superior de Ingenieros Industriales – Departamento de Termodinámica Aplicada
- Universitat Politècnica de València
- 46020 Valencia
- Spain
| | - Enrique Giménez
- Escuela Técnica Superior de Ingenieros Industriales – Departamento de Ingeniería Mecánica y de Materiales
- Universitat Politècnica de València
- 46020 Valencia
- Spain
| | - Omar Solorza-Feria
- Departamento de Química – Centro de Investigación y de Estudios Avanzados del I.P.N
- 07360 México D.F
- Mexico
| | - Vicente Compañ
- Escuela Técnica Superior de Ingenieros Industriales – Departamento de Termodinámica Aplicada
- Universitat Politècnica de València
- 46020 Valencia
- Spain
| |
Collapse
|
22
|
Fe(III)–Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: Application of isotherm, kinetic and thermodynamics. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.116] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
|
24
|
Efficient water management of composite membranes operated in polymer electrolyte membrane fuel cells under low relative humidity. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.06.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ketpang K, Son B, Lee D, Shanmugam S. Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.03.096] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Wang J, He Y, Zhao L, Li Y, Cao S, Zhang B, Zhang H. Enhanced proton conductivities of nanofibrous composite membranes enabled by acid–base pairs under hydrated and anhydrous conditions. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.02.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Ketpang K, Lee K, Shanmugam S. Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16734-16744. [PMID: 25203667 DOI: 10.1021/am503789d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe a facile route to fabricate mesoporous metal oxide (TiO2, CeO2 and ZrO1.95) nanotubes for efficient water retention and migration in a Nafion membrane operated in polymer electrolyte fuel cell under low relative humidity (RH). Porous TiO2 nanotubes (TNT), CeO2 nanotubes (CeNT), and ZrO1.95 (ZrNT) were synthesized by calcining electrospun polyacrylonitrile nanofibers embedded with metal precursors. The nanofibers were prepared using a conventional single spinneret electrospinning technique under an ambient atmosphere. Their porous tubular morphology was observed by SEM and TEM analyses. HR-TEM results revealed a porous metal oxide wall composed of small particles joined together. The mesoporous structure of the samples was analyzed using BET. The tubular morphology and outstanding water absorption ability of the TNT, CeNT, and ZrNT fillers resulted in the effective enhancement of proton conductivity of Nafion composite membranes under both fully humid and dry conditions. Compared to a commercial membrane (Nafion, NRE-212) operated under 100% RH at 80 °C, the Nafion-TNT composite membrane delivered approximately 1.29 times higher current density at 0.6 V. Compared to the Nafion-TiO2 nanoparticles membrane, the Nafion-TNT membrane also generated higher current density at 0.6 V. Additionally, compared to a NRE-212 membrane operated under 50% RH at 80 °C, the Nafion-TNT composite membrane exhibited 3.48 times higher current density at 0.6 V. Under dry conditions (18% RH at 80 °C), the Nafion-TNT, Nafion-CeNT, and Nafion-ZrNT composite membranes exhibited 3.4, 2.4, and 2.9 times higher maximum power density, respectively, than the NRE-212 membrane. The remarkably high performance of the Nafion composite membrane was mainly attributed to the reduction of ohmic resistance by the mesoporous hygroscopic metal oxide nanotubes, which can retain water and effectively enhance water diffusion through the membrane.
Collapse
Affiliation(s)
- Kriangsak Ketpang
- Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST) 50-1, Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun, Daegu, Republic of Korea , 711-873
| | | | | |
Collapse
|
28
|
Wu B, Pan J, Ge L, Wu L, Wang H, Xu T. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Sci Rep 2014; 4:4334. [PMID: 25082522 PMCID: PMC4118289 DOI: 10.1038/srep04334] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/14/2014] [Indexed: 11/24/2022] Open
Abstract
The novel oriented electrospun nanofiber membrane composed of MOFs and SPPESK has been synthesized for proton exchange membrane fuel cell operating at high temperature and anhydrous conditions. It is clear that the oriented nanofiber membrane displays the higher proton conductivity than that of the disordered nanofiber membrane or the membrane prepared by conventional solvent-casting method (without nanofibers). Nanofibers within the membranes are significantly oriented. The proton conductivity of the oriented nanofiber membrane can reach up to (8.2 ± 0.16) × 10−2 S cm−1 at 160°C under anhydrous condition for the highly orientation of nanofibers. Moreover, the oxidative stability and resistance of methanol permeability of the nanofibers membrane are obviously improved with an increase in orientation of nanofibers. The observed methanol permeability of 0.707 × 10−7 cm2 s−1 is about 6% of Nafion-115. Consequently, orientated nanofibers membrane is proved to be a promising material as the proton exchange membrane for potential application in direct methanol fuel cells.
Collapse
Affiliation(s)
- Bin Wu
- CAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026(P.R. China)
| | - Jiefeng Pan
- CAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026(P.R. China)
| | - Liang Ge
- CAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026(P.R. China)
| | - Liang Wu
- CAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026(P.R. China)
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026(P.R. China)
| |
Collapse
|
29
|
Sim WJ, Lee MS, Choi YW. Electrochemical and Mechanical Durability of Cast Membranes and a Reinforced Membrane Based on Sulfonated Poly(arylene ether sulfone) for Polymer Electrolyte Fuel Cells. CHEM LETT 2014. [DOI: 10.1246/cl.131152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Woo-Jong Sim
- Fuel Cell Research Center, Korea Institute of Energy Research (KIER)
| | - Mi-Soon Lee
- Fuel Cell Research Center, Korea Institute of Energy Research (KIER)
| | - Young-Woo Choi
- Fuel Cell Research Center, Korea Institute of Energy Research (KIER)
| |
Collapse
|
30
|
Pan J, Wang S, Xiao M, Hickner M, Meng Y. Layered zirconium phosphate sulfophenylphosphonates reinforced sulfonated poly (fluorenyl ether ketone) hybrid membranes with high proton conductivity and low vanadium ion permeability. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.04.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Si Z, Gu F, Guo J, Yan F. Phosphoric acid-doped imidazolium ionomers with enhanced stability for anhydrous proton-exchange membrane applications. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhihong Si
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 People's Republic of China
| | - Fenglou Gu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 People's Republic of China
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 People's Republic of China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 People's Republic of China
| |
Collapse
|
32
|
A study on sulfonated poly(arylene ether sulfone) membranes containing two different types of SiO2 for a high temperature and low-humidified polymer electrolyte fuel cell. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-012-0120-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Na T, Shao K, Zhu J, Liu Z, Sun H, Lew CM, Zhang Z, Zhang G. Fluorinated naphthalene-based poly(arylene ether ketone)s containing pendant groups for direct methanol fuel cells. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Kim T, Lee J, Yang TH, Yoon YG, Park SH, Yim SD. Novel catalyst layer synthesized by an in situ sol–gel process with tetraethoxysilane in a Nafion ionomer solution with Pt/C for PEFCs: the effect of self-assembled Nafion–SiO2 on Pt ORR activity and an increased water content in the polymer membranes. RSC Adv 2012. [DOI: 10.1039/c2ra20796f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Kim T, Yim SD, Choi YW, Yang TH, Yoon YG, Park SH, Kim CS, Sung IK. A significant improvement of oxygen diffusion in catalyst layer based on hydrocarbon ionomer containing dimethyl silicone oil for PEM fuel cells. Electrochem commun 2011. [DOI: 10.1016/j.elecom.2011.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Ahn WJ, Yim SD, Choi YW, Sohn YJ, Park SH, Yoon YG, Park GG, Yang TH, Kim KB. Performance and durability of sulfonated poly(arylene ether sulfone) membrane-based membrane electrode assemblies fabricated by decal method for polymer electrolyte fuel cells. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.05.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|