1
|
Mir RH, Maqbool M, Mir PA, Hussain MS, Din Wani SU, Pottoo FH, Mohi-Ud-Din R. Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer. Curr Pharm Des 2024; 30:2445-2467. [PMID: 38726783 DOI: 10.2174/0113816128291705240428060456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 09/05/2024]
Abstract
In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, Kashmir, India
| | - Mudasir Maqbool
- Pharmacy Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab 143001, India
| | - Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, Rajasthan, India
| | - Shahid Ud Din Wani
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| |
Collapse
|
2
|
Alshameri AW, Owais M, Altaf I, Farheen S. Rumex nervosus mediated green synthesis of silver nanoparticles and evaluation of its in vitro antibacterial, and cytotoxic activity. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM. Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 2022; 28:1419-1432. [DOI: 10.2174/1381612828666220509151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Nowadays, there is an urgent need to discover and develop long-term and effective antimicrobial and biofilm-inhibiting compounds. Employing combination therapies using novel drug delivery systems and also natural antimicrobial substances is a promising strategy in this field. Nanoparticles (NPs)-based materials have become well appreciated in recent times due to serve as antimicrobial agents or the carriers for promoting the bioavailability and effectiveness of antibiotics. Flavonoids belong to the promising groups of bioactive compounds abundantly found in fruits, vegetables, spices, and medicinal plants with strong antimicrobial features. Flavonoids and NPs have potential as alternatives to the conventional antimicrobial agents, both on their own as well as in combination. Different classes of flavonoid NPs may be particularly advantageous in handling microbial infections. The most important antimicrobial mechanisms of flavonoid NPs include oxidative stress induction, non-oxidative mechanisms, and metal ion release. However, the efficacy of flavonoid NPs against pathogens and drug-resistant pathogens changes according to their physicochemical characteristics as well as the particular structure of microbial cell wall and enzymatic composition. In this review, we provide an outlook on the antimicrobial mechanism of flavonoid-based NPs and the crucial factors that are involved.
Collapse
Affiliation(s)
- Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Croitoru A, Ficai D, Craciun L, Ficai A, Andronescu E. Evaluation and Exploitation of Bioactive Compounds of Walnut, Juglans regia. Curr Pharm Des 2020; 25:119-131. [PMID: 30931854 DOI: 10.2174/1381612825666190329150825] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
In the last few years, great importance has been given to natural materials (such as walnuts, peanuts, chestnuts) due to their medicinal and pharmaceutical uses induced by the presence of natural agents, including polyphenols. Juglans regia is a traditional plant that has been used since ancient times in traditional medicine for the treatment of various diseases like microbial infections, stomach ache, thyroid dysfunctions, cancer, heart diseases and sinusitis. Recently, scientific attention for the phytochemical profile of walnut by-products is increasing due to their valuable active constituents. Natural polyphenols are important compounds present in walnut with valuable properties that have been studied for the treatment of inflammation, cancer or anti-ageing effect. The use of nanocarriers as a drug delivery system is now a promising strategy to get more stable products and is easier to apply in a medical, therapeutic and pharmaceutical environment. The aim of this work was to review the latest information provided by scientific investigators regarding the nutritional value, bioactive compounds, antioxidant and antitumor activity of walnut by-product extracts. Moreover, this review provides comprehensive information on the nanoencapsulation of bioactive constituents for application in clinical medicine, particularly in cancer research.
Collapse
Affiliation(s)
- Alexa Croitoru
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh Polizu St 1-7, 011061 Bucharest, Romania
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh Polizu St 1-7, 011061 Bucharest, Romania
| | - Luminiţa Craciun
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh Polizu St 1-7, 011061 Bucharest, Romania
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh Polizu St 1-7, 011061 Bucharest, Romania.,Academy of Romanian Scientists, Spl. Independenţei 54, Bucharest, Romania
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh Polizu St 1-7, 011061 Bucharest, Romania.,Academy of Romanian Scientists, Spl. Independenţei 54, Bucharest, Romania
| |
Collapse
|
5
|
Liu J, Yong H, Yao X, Hu H, Yun D, Xiao L. Recent advances in phenolic-protein conjugates: synthesis, characterization, biological activities and potential applications. RSC Adv 2019; 9:35825-35840. [PMID: 35528080 PMCID: PMC9074773 DOI: 10.1039/c9ra07808h] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023] Open
Abstract
Proteins and phenolic compounds are two types of food ingredients with distinct functionalities. In the past decade, many attempts have been made to conjugate phenolic compounds with proteins through covalent linkages. Four types of conjugation reactions including alkaline, free radical mediated grafting, enzyme catalyzed grafting and chemical coupling methods are frequently used to synthesize phenolic-protein conjugates. The synthesized phenolic-protein conjugates can be well characterized by several different instrumental methods, such as UV spectroscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy, circular dichroism, mass spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and differential scanning calorimetry. Importantly, phenolic-protein conjugates exhibit improved biological properties (e.g. antioxidant, anticancer and antimicrobial activities) as compared with native proteins. Moreover, the applications of native proteins can be greatly widened by conjugation with phenolic compounds. Phenolic-protein conjugates have been developed as antioxidant emulsions for nutraceutical delivery, edible films for food packaging, stabilizers for metal nanoparticles, and hydrogels and nanoparticles for controlled drug release. In this review, recent advances in the synthesis, characterization, biological properties and potential applications of phenolic-protein conjugates were summarized.
Collapse
Affiliation(s)
- Jun Liu
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China
| | - Xiyu Yao
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China
| | - Huixia Hu
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China
| | - Lixia Xiao
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 Jiangsu China
| |
Collapse
|
6
|
Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Rodríguez-León E, Íñiguez-Palomares RA, Navarro RE, Rodríguez-Beas C, Larios-Rodríguez E, Alvarez-Cirerol FJ, Íñiguez-Palomares C, Ramírez-Saldaña M, Hernández Martínez J, Martínez-Higuera A, Galván-Moroyoqui JM, Martínez-Soto JM. Silver nanoparticles synthesized with Rumex hymenosepalus extracts: effective broad-spectrum microbicidal agents and cytotoxicity study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1194-1206. [DOI: 10.1080/21691401.2017.1366332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ericka Rodríguez-León
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | - Rosa Elena Navarro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, México
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | | | | | | | | | - Aarón Martínez-Higuera
- Departamento de Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, México
| | | | | |
Collapse
|
8
|
Zhang Y, Zhai D, Xu M, Yao Q, Zhu H, Chang J, Wu C. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication 2017. [PMID: 28631614 DOI: 10.1088/1758-5090/aa6ed6] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacterial infection poses a significant risk with the wide application of bone graft materials. Designing bone grafts with good antibacterial performance and excellent bone-forming activity is of particular significance for bone tissue engineering. In our study, a 3D printing method was used to prepare β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Silver (Ag) nanoparticles were uniformly dispersed on graphene oxide (GO) to form a homogeneous nanocomposite (named Ag@GO) with different Ag-to-graphene oxide mass ratios, with this being synthesized via the liquid chemical reduction approach. Ag@GO nanocomposites were successfully modified on the β-TCP scaffolds by a simple soaking method to achieve bifunctional biomaterials with antibacterial and osteogenic activity. The prepared scaffolds possessed a connected network with triangle pore morphology and the surfaces of the β-TCP scaffolds were uniformly modified by the Ag@GO nanocomposite layers. The Ag content in the scaffolds was controlled by changing the coating times and concentration of the Ag@GO nanocomposites. The antibacterial activity of the scaffolds was assessed with Gram-negative bacteria (Escherichia coli, E. coli). The results demonstrated that the scaffolds with Ag@GO nanocomposites presented excellent antibacterial activity. In addition, the scaffolds coated with Ag@GO nanocomposites conspicuously accelerated the osteogenic differentiation of rabbit bone marrow stromal cells by improving their alkaline phosphatase activity and bone-related gene expression (osteopontin, runt-related transcription factor 2, osteocalcin and bone sialoprotein). This study demonstrates that bifunctional scaffolds with a combination of antibacterial and osteogenic activity can be achieved for the reconstruction of large-bone defects while preventing or treating infections.
Collapse
Affiliation(s)
- Yongliang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China. Shanghai Engineering Research Center of Single Crystal Silicon Carbide, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci 2016; 17:E1534. [PMID: 27649147 PMCID: PMC5037809 DOI: 10.3390/ijms17091534] [Citation(s) in RCA: 1278] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.
Collapse
Affiliation(s)
- Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhi-Guo Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
10
|
Zaheer Z, Aazam ES, Hussain S. Reversible encapsulation of silver nanoparticles into the helix of amylose (water soluble starch). RSC Adv 2016. [DOI: 10.1039/c6ra09319a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural biodegradable polymeric starch capped Ag-nanoparticles (AgNPs) were prepared by using extract of Dioscorea deltoidea in the presence of starch.
Collapse
Affiliation(s)
- Zoya Zaheer
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Shokit Hussain
- Department of Chemistry
- Govt Degree College Poonch
- Higher Education Department
- India
| |
Collapse
|
11
|
Vedhanayagam M, Mohan R, Nair BU, Sreeram KJ. Nanorod mediated collagen scaffolds as extra cellular matrix mimics. Biomed Mater 2015; 10:065010. [DOI: 10.1088/1748-6041/10/6/065010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Hussain S, Khan Z. Epigallocatechin-3-gallate-capped Ag nanoparticles: preparation and characterization. Bioprocess Biosyst Eng 2013; 37:1221-31. [DOI: 10.1007/s00449-013-1094-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 01/27/2023]
|
13
|
Celebioglu A, Aytac Z, Umu OCO, Dana A, Tekinay T, Uyar T. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Carbohydr Polym 2013; 99:808-16. [PMID: 24274573 DOI: 10.1016/j.carbpol.2013.08.097] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/18/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022]
Abstract
One-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.
Collapse
Affiliation(s)
- Asli Celebioglu
- UNAM-Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | | | | | | | | | | |
Collapse
|
14
|
Mosaiab T, Jeong CJ, Shin GJ, Choi KH, Lee SK, Lee I, In I, Park SY. Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3786-94. [PMID: 23910278 DOI: 10.1016/j.msec.2013.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/28/2013] [Accepted: 05/03/2013] [Indexed: 11/17/2022]
Abstract
This paper introduces a facile method to make highly stable and recyclable antimicrobial magnetic nanoparticles (NPs). Initially, magnetic iron oxide nanoparticles (IONPs) were coated with poly (vinyl pyrrolidone) conjugated catechol (PVP-CCDP). Afterward, silver nanoparticles (Ag(0)) were deposited onto PVP-CCDP coated IONPs using remain catechol. The prepared nanoparticles showed long term (~4 weeks) colloidal stability and redispersibility, respectively, against external magnetic field and over a broad range of pH (4-12). The NPs were characterized by UV-vis, SEM, XPS, and XRD measurements. TEM and DLS analyses showed that the mean particle size of PVP-CCDP coated IONPs/Ag(0) were about 72 nm. The recyclable magnetic NPs possessed a high antibacterial effect against the model microbes Staphylococcus aureus and Escherichia coli and could be separated easily using magnet following antibacterial test for repeated uses and maintained 100% antibacterial efficiency during three cycles. In MTT assay, the magnetic nanoparticles possessed no measureable cytotoxicity to live cells.
Collapse
Affiliation(s)
- Tamim Mosaiab
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju-Si 380-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu X, Luo Y, Wu T, Huang J. Antibacterial activity of hierarchical nanofibrous titania–carbon composite material deposited with silver nanoparticles. NEW J CHEM 2012. [DOI: 10.1039/c2nj40730b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Banu K, Shimura T. Synthesis of large-scale transparent gold nanosheets sandwiched between stabilizers at a solid–liquid interface. NEW J CHEM 2012. [DOI: 10.1039/c2nj40478h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|