1
|
Wang ZL, Cheng JK, Wang F. Iron-catalyzed C-7 Selective NH 2 Amination of Indoles. Angew Chem Int Ed Engl 2024; 63:e202412103. [PMID: 38979667 DOI: 10.1002/anie.202412103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
7-Aminoindoles are important synthetic intermediates to a broad range of bioactive molecules. Transition metal-catalyzed directed C-H amination is among the most straightforward route for their synthesis, whereas methods that could directly incorporate an NH2 group in a highly selective manner remains elusive. Moreover, there is still high demand for the development of earth-abundant metal catalysis for such attractive reactivity. We present here the first C-7 selective NH2 amination of indoles through a directed homolytic aromatic substitution (HAS) with iron-aminyl radical. The reaction exhibits broad substrate scope, tolerates variety of functional groups, and is readily scalable with catalyst loading down to 0.1 mol % and turnover number (TON) up to 4500.
Collapse
Affiliation(s)
- Zhan-Lin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Jin-Kai Cheng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
2
|
Naveed A, Bag D, Sawant SD. Modular synthesis of unsymmetrical indolyl diketones from ynediones via sequential aza-Michael addition/C-H functionalization. Org Biomol Chem 2024; 22:8152-8156. [PMID: 39279728 DOI: 10.1039/d4ob00946k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Herein, we disclose an efficient approach for the synthesis of unsymmetrical indolyl diketones from easily accessible 1,2-alkynediones involving a sequential aza-Michael addition/C-H Functionalization process. The two-step, one-pot strategy involves the aza-Michael addition of an aniline generating the N-aryl enaminones followed by iodine-mediated C-H functionalization.
Collapse
Affiliation(s)
- Abdul Naveed
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Debojyoti Bag
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune - 411008, India.
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu & Kashmir, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune - 411008, India.
| |
Collapse
|
3
|
Zheng Y, Chen C, Lu Y, Huang S. Recent advances in electrochemically enabled construction of indoles from non-indole-based substrates. Chem Commun (Camb) 2024; 60:8516-8525. [PMID: 39036971 DOI: 10.1039/d4cc03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Indole motifs are important heterocycles found in natural products, pharmaceuticals, agricultural chemicals, and materials. Although there are well-established classical name reactions for indole synthesis, these transformations often require harsh reaction conditions, have a limited substrate scope, and exhibit poor regioselectivity. As a result, organic synthesis chemists have been exploring efficient and practical methods, leading to numerous strategies for synthesizing a variety of functionalized indoles. In recent years, electrochemistry has emerged as an environmentally friendly and sustainable synthetic tool, with widespread applications in organic synthesis. This technology allows for elegant synthetic routes to be developed for the construction of indoles under external oxidant-free conditions. This feature article specifically focuses on recent advancements in indole synthesis from non-indole-based substrates, as well as the mechanisms underlying these transformations.
Collapse
Affiliation(s)
- Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunxi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Grosso C, Alves C, Sase TJ, Alves NG, Cardoso AL, Lemos A, Pinho e Melo TMVD. Selective Synthesis of 3-(1 H-Tetrazol-5-yl)-indoles from 2 H-Azirines and Arynes. ACS OMEGA 2024; 9:29282-29289. [PMID: 39005823 PMCID: PMC11238228 DOI: 10.1021/acsomega.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 07/16/2024]
Abstract
A new selective synthetic approach to indole derivatives bearing a tetrazole moiety has been developed. Arynes, generated in situ from o-(trimethylsilyl)aryl triflates and KF, reacted smoothly with 2-(2-benzyl-2H-tetrazol-5-yl)-2H-azirines to give 3-(2-benzyl-2H-tetrazol-5-yl)-indole derivatives with high selectivity. Deprotection of the tetrazole moiety gave 3-(1H-tetrazol-5-yl)-indole derivatives.
Collapse
Affiliation(s)
- Carla Grosso
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Cláudia Alves
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Terver J. Sase
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Nuno G. Alves
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Ana L. Cardoso
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| | - Américo Lemos
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
- FCT,
University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal
| | - Teresa M. V. D. Pinho e Melo
- University
of Coimbra, Coimbra Chemistry
Center−Institute of Molecular Sciences (CQC-IMS) and Department
of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
5
|
Weindl C, Hintermann L. Synthesis of Indolines via Base-Mediated C-H Activation and Defluorinative C-N Coupling, with no Need for Transition-Metals. Chemistry 2024; 30:e202401034. [PMID: 38693605 DOI: 10.1002/chem.202401034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Syntheses of (partially) aromatic nitrogen heterocycles increasingly rely on transition-metal catalyzed C-C- and C-N-cross-coupling reactions. Here we describe a different approach to the synthesis of indolines by a domino C(sp3)-H activation, 1,2-addition, and defluorinative SNAr-cyclization sequence to provide the target 1,2-diarylindolines (1,2-diaryl-2,3-dihydroindoles) from ortho-fluorinated methyl-arenes and N-aryl imines (benzylidene anilines) in a cyclocondensation that is mediated by potassium hexamethyldisilazide (KHMDS) as base exclusively. This transition-metal-free process via C-H and C-F bond activation provides a one-step entry into a wide array of indoline scaffolds (43 examples, up to 96 % yield). This privileged substructure is common in natural products and pharmaceuticals alike, and cannot be accessed by traditional condensation reactions.
Collapse
Affiliation(s)
- Christian Weindl
- School of Natural Science, Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching bei München, 85748, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, Garching bei München, 85748, Germany
| | - Lukas Hintermann
- School of Natural Science, Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching bei München, 85748, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, Garching bei München, 85748, Germany
| |
Collapse
|
6
|
Xu Q, Hoye TR. Free carbenes from complementarily paired alkynes. Nat Chem 2024; 16:1083-1092. [PMID: 38918579 DOI: 10.1038/s41557-024-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/02/2024] [Indexed: 06/27/2024]
Abstract
Carbenes (R1R2C:) like radicals, arynes and nitrenes constitute an important family of neutral, high-energy, reactive intermediates-fleeting chemical entities that undergo rapid reactions. An alkyne (R3C≡CR4) is a fundamental functional group that houses a high degree of potential energy; however, the substantial kinetic stability of alkynes renders them conveniently handleable as shelf-stable chemical commodities. The ability to generate metal-free carbenes directly from alkynes, fuelled by the high potential (that is, thermodynamic) energy of the latter, would constitute a considerable advance. We report here that this can be achieved simply by warming a mixture of a 2-alkynyl iminoheterocycle (a cyclic compound containing a nucleophilic nitrogen atom) with an electrophilic alkyne. We demonstrate considerable generality for the process: many shelf-stable alkyne electrophiles engage many classes of (2-alkynyl)heterocyclic nucleophiles to produce carbene intermediates that immediately undergo many types of transformations to provide facile and practical access to a diverse array of heterocyclic products. Key mechanistic aspects of the reactions are delineated.
Collapse
Affiliation(s)
- Qian Xu
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Chang MY, Ho CH, Chen HY. K 2CO 3-mediated annulation of 1,3-acetonedicarboxylates with 2-fluoro-1-nitroarenes: synthesis of indoles. Org Biomol Chem 2024; 22:4108-4122. [PMID: 38695833 DOI: 10.1039/d4ob00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The K2CO3-mediated one-pot reaction of 1,3-acetonedicarboxylates with 2 equiv. of substituted 2-fluoro-1-nitrobenzenes has been developed to synthesize various 2,3-dicarboxylate indoles via a tandem annulation pathway. In the effective reaction, one carbon-carbon double bond, one carbon-carbon single bond and one carbon-nitrogen single bond are formed under open-vessel conditions. DFT calculations are used to rationalize the plausible mechanisms.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chin-Huey Ho
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
8
|
Kar A, Rana G, Sahoo R, Ghosh S, Jana U. Design and Synthesis of Indazole-Indole Hybrid via tert-Butyl Nitrite Mediated Cascade Diazotization/Isomerization/Cyclization. J Org Chem 2024; 89:7295-7302. [PMID: 38662442 DOI: 10.1021/acs.joc.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In this report, a tert-butyl nitrite (TBN)-mediated straightforward metal-free approach has been presented for the synthesis of a diverse range of C-3-substituted indazole-indole hybrids using readily accessible 2-(indolin-3-ylidenemethyl)aniline derivatives. This strategy is proposed to occur via a diazonium salt intermediate that is capable of cascade isomerization and intramolecular C-N bond formation through a 5-endo-dig cyclization to achieve a wide variety of indazole-indole hybrids in good yields.
Collapse
Affiliation(s)
- Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032 West Bengal, India
| | - Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700032 West Bengal, India
| | - Rajkamal Sahoo
- Department of Chemistry, Jadavpur University, Kolkata 700032 West Bengal, India
| | - Sourav Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700032 West Bengal, India
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032 West Bengal, India
| |
Collapse
|
9
|
De Salvo A, Mancuso R, Wu XF. Carbonylative synthesis and functionalization of indoles. Beilstein J Org Chem 2024; 20:973-1000. [PMID: 38711593 PMCID: PMC11070973 DOI: 10.3762/bjoc.20.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Carbonylation processes have become widely recognized as a versatile, convenient, and low-cost method for the synthesis of high-value compounds. Given the great importance of heterocyclic compounds, the carbonylative approach has become increasingly important for their synthesis. In this mini-review, as a class of benzo-fused nitrogen-containing heterocyclic compounds, we summarized and discussed the recent achievements on the synthesis and functionalization of indole derivatives via carbonylative approaches.
Collapse
Affiliation(s)
- Alex De Salvo
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Liaoning, China
| |
Collapse
|
10
|
Mallick S, Mandal T, Kumari N, Roy L, De Sarkar S. Divergent Electrochemical Synthesis of Indoles through pK a Regulation of Amides: Synthetic and Mechanistic Insights. Chemistry 2024; 30:e202304002. [PMID: 38290995 DOI: 10.1002/chem.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
A divergent synthetic approach to access highly substituted indole scaffolds is illustrated. By virtue of a tunable electrochemical strategy, distinct control over the C-3 substitution pattern was achieved by employing two analogous 2-styrylaniline precursors. The chemoselectivity is governed by the fine-tuning of the acidity of the amide proton, relying on the appropriate selection of N-protecting groups, and assisted by the reactivity of the electrogenerated intermediates. Detailed mechanistic investigations based on cyclic voltametric experiments and computational studies revealed the crucial role of water additive, which assists the proton-coupled electron transfer event for highly acidic amide precursors, followed by an energetically favorable intramolecular C-N coupling, causing exclusive fabrication of the C-3 unsubstituted indoles. Alternatively, the implementation of an electrogenerated cationic olefin activator delivers the C-3 substituted indoles through the preferential nucleophilic nature of the N-acyl amides. This electrochemical approach of judicious selection of N-protecting groups to regulate pKa/E° provides an expansion in the domain of switchable generation of heterocyclic derivatives in a sustainable fashion, with high regio- and chemoselectivity.
Collapse
Affiliation(s)
- Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Nidhi Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus, Bhubaneswar, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
11
|
Pazur EJ, Tasker NR, Wipf P. C3-Functionalization of indoles with α-heteroaryl-substituted methyl alcohols. Org Biomol Chem 2023; 21:8651-8657. [PMID: 37873703 DOI: 10.1039/d3ob01432k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The transition metal-free Cs2CO3/Oxone®-mediated C3-alkylation of indoles proceeds in moderate to high yields with a variety of C4-C7 functionalized indoles and is applicable to 2-, 3- and 4-hydroxymethyl pyridines and related electron-deficient heterocycles, permitting novel late-stage drug functionalizations. Preliminary mechanistic studies support a hydrogen autotransfer-type chain process starting with an initial oxidation of the alcohol to the corresponding aldehyde, followed by a subsequent condensation onto indole and reduction/hydride delivery from another equivalent of the primary alcohol.
Collapse
Affiliation(s)
- Ethan J Pazur
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
12
|
Ma R, Wang YE, Xiong D, Mao J. A Tandem Madelung Indole Synthesis Mediated by a LiN(SiMe 3) 2/CsF System. Org Lett 2023; 25:7557-7561. [PMID: 37818792 DOI: 10.1021/acs.orglett.3c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A tandem Madelung indole synthesis by the reaction of methyl benzoate and N-methyl-o-toluidine has been discovered. The combination of LiN(SiMe3)2 with CsF is the key factor, which secures the high efficiency of such tandem transformations. Simply combining methyl benzoate, N-methyl-o-toluidine LiN(SiMe3)2, and CsF generated a diverse array of N-methyl-2-phenylindoles (31 examples, 50-90% yields). Furthermore, the scalability and the poststructural modifications of this indole synthesis were demonstrated.
Collapse
Affiliation(s)
- Ruyuan Ma
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
13
|
Bauer AK, Conrad J, Beifuss U. Efficient approach to 1,1'-bisindoles via copper(I)-catalyzed double domino reaction. Org Biomol Chem 2023; 21:8003-8019. [PMID: 37767762 DOI: 10.1039/d3ob01231j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A highly efficient copper(I)-catalyzed approach for the synthesis of 1,1'-bisindoles that is based on the formation of four bonds in one step has been developed. The unprecedented three component reaction between one molecule of a 1,2-bis(2-bromoaryl)hydrazine and two molecules of a 1,3-diketone employing 10 mol% CuI as a catalyst and Cs2CO3 as a base in DMSO at 100 °C for 24 h delivers substituted 1,1'-bisindoles with yields up to 92%. The new method proceeds as a double domino condensation/Ullmann type C-C coupling. It allows an efficient and practical access to substituted 1,1'-bisindoles in one step from easily available starting materials.
Collapse
Affiliation(s)
- Ann-Kathrin Bauer
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| | - Jürgen Conrad
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| | - Uwe Beifuss
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| |
Collapse
|
14
|
Hsia YT, Lu YL, Bai R, Badsara SS, Lee CF. Palladium-catalyzed synthesis of 2,3-disubstituted indoles via arylation of ortho-alkynylanilines with arylsiloxanes. Org Biomol Chem 2023; 21:7602-7610. [PMID: 37681659 DOI: 10.1039/d3ob00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In this study, we report the electrophilic cyclization of N,N-dimethyl-o-alkynylanilines with arylsiloxanes in the presence of [Pd(OAc)2] and Ag2O catalytic system, which leads to the efficient synthesis of indoles, similar to the one that is obtained through Larock indole synthesis. A range of aryl(trimethoxy)silanes with EDGs and EWGs were successfully utilized for the synthesis of a diverse variety of substituted indoles via the cleavage of the C-Si bond. This protocol exhibits good functional group tolerance and wide substrate scope to provide 2,3-diaryl-N-methylindoles in 26-88% yields.
Collapse
Affiliation(s)
- Yang-Ting Hsia
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
| | - Yu-Lin Lu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan 302004, India.
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China.
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City 402, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, Republic of China
| |
Collapse
|
15
|
Jagtap PA, Lokolkar MS, Bhanage BM. Cu-Mediated Tandem 2,3-Disubstituted Indole Synthesis from Simple Anilines and Internal Alkynes via C-H Annulation. J Org Chem 2023. [PMID: 37463299 DOI: 10.1021/acs.joc.3c00954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A simple, cost-effective, and straightforward method for the synthesis of 2,3-disubstituted indole scaffolds has been developed. The present protocol involves copper-mediated tandem hydroamination followed by C-H annulation of unprotected anilines with a wide range of internal alkynes. In the presence of Cu(OAc)2·H2O and trifluoroacetic acid (TFA), the reaction proceeds well to afford a variety of substituted indole derivatives in moderate to good yields. This process was found to be compatible with both primary and secondary anilines coupled with aromatic/aliphatic alkynes. High-purity copper nanoparticles can be recovered after the reaction, revealing the cost-effectiveness and environmentally benign feature of the current protocol.
Collapse
Affiliation(s)
- Prafull A Jagtap
- Department of Chemistry, Institute of Chemical Technology, Mumbai 400019, India
| | | | | |
Collapse
|
16
|
Simek Tosino H, Jung A, Fuhr O, Muhle‐Goll C, Jung N, Bräse S. F‐Tag Induced Acyl Shift in the Photochemical Cyclization of
o
‐Alkynylated
N
‐Alkyl‐
N
‐acylamides to Indoles**. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Helena Simek Tosino
- Institute of Biological and Chemical Systems (IBCS-FMS) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - André Jung
- Institute of Biological and Chemical Systems (IBCS-FMS) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Olaf Fuhr
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Claudia Muhle‐Goll
- Institute for Biological Interfaces 4 Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems (IBCS-FMS) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS-FMS) Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
17
|
Zhao B, Li X, Wang X, Jiang L, Li Z, Du Y. Synthesis of 3-Haloindoles via Cascade Oxidative Cyclization/Halogenation of 2-Alkenylanilines Mediated by PIDA and LiBr/KI. J Org Chem 2023; 88:1493-1503. [PMID: 36631394 DOI: 10.1021/acs.joc.2c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The treatment of 2-alkenylanilines with phenyliodine(III) diacetate (PIDA) and LiBr or KI in HFIP was found to afford the corresponding 3-haloindoles via cascade oxidative cyclization/halogenation encompassing oxidative C-N/C-X (X = Br, I) bond formations. A plausible mechanism involving the in situ formation of the reactive AcO-X (X = Br, I) from the reaction of PIDA and LiBr/KI was postulated.
Collapse
Affiliation(s)
- Bingyue Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoxian Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaofan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Luchen Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhe Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Mathada BS, Yernale NG. Current Advances in Transition Metal-Free Access to Indoles. A Review. ORG PREP PROCED INT 2023. [DOI: 10.1080/00304948.2022.2151810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Wang Z, Zhang Z, Li Z. Switchable Synthesis of 2-Methylene-3-aminoindolines and 2-Methyl-3-aminoindoles Using Calcium Carbide as a Solid Alkyne Source. Org Lett 2022; 24:8067-8071. [DOI: 10.1021/acs.orglett.2c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zeshuai Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| |
Collapse
|
20
|
Zheng CHM, Balatsky DA, DiPucchio RC, Schafer LL. The Catalytic Synthesis of N-Aryl Indoles Featuring an Alternative Disconnection. Hydroaminoalkylation for a Telescoped Reaction Sequence. Org Lett 2022; 24:6571-6575. [PMID: 36069521 DOI: 10.1021/acs.orglett.2c02510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A tricatalytic telescoped synthesis toward C3-methyl-N-aryl indoline and indole products is reported. An in situ generated tantalum(V) ureate catalyst is used for the hydroaminoalkylation of o-chlorostyrene with N-methylaniline to first make a Csp3─Csp3 bond. Subsequent nickel-catalyzed C-N coupling forms N-aryl indolines, and if desired, subsequent oxidation to N-aryl indoles can be achieved using catalytic [Cu(MeCN)4]BF4 and tert-butylperoxy-2-ethylhexyl carbonate as the terminal oxidant. This strategy highlights an alternative C-C bond disconnection for the synthesis of indoles, which is enabled by the atom-economic hydroaminoalkylation reaction. The method was streamlined using a three-step, two-pot approach to afford up to 73% overall isolated yield of variously substituted C3-methyl-N-aryl indoles.
Collapse
Affiliation(s)
- Cameron H M Zheng
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia Canada V6T 1Z1
| | - Daria A Balatsky
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia Canada V6T 1Z1
| | - Rebecca C DiPucchio
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia Canada V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia Canada V6T 1Z1
| |
Collapse
|
21
|
Kundal S, Rana G, Kar A, Jana U. The synthesis of indole-3-carbinols (I3C) and their application to access unsymmetrical bis(3-indolyl)methanes (BIMs) bearing a quaternary sp 3-carbon. Org Biomol Chem 2022; 20:5234-5238. [PMID: 35713472 DOI: 10.1039/d2ob00502f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study, the novel synthesis of tert-indole-3-carbinols is reported through the DDQ-mediated oxidation of the allylic C-H bond/aromatization/hydroxylation at the indolyl carbon using water as the hydroxyl source. The reaction is highly efficient and high yielding and it works under mild reaction conditions. Furthermore, the synthetic value of such indole-based tert-carbinols is explored through their use as excellent electrophilic methylene surrogates to develop medicinally important unsymmetrical bis(3-indolyl)methanes containing an all carbon quaternary center.
Collapse
Affiliation(s)
- Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
22
|
Mikhalyonok SG, Kuz’menok NM, Bezborodov VS, Arol AS. Synthesis of 1,2,6-trisubstituted indoles from 6-propargylcyclohex-2-enones and primary amines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Rani M, Utreja D, Sharma S. Role of Indole Derivatives in Agrochemistry: Synthesis and Future Insights. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220426103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Heterocycles constitute a wider class of organic compounds which contribute significantly in every facet of pure and applied chemistry. Indole, one of the bicyclic heterocyclic compounds containing nitrogen atom, witnessed unparalleled biological activity such as antiviral, antibacterial, anticancer, anti-depressant and antifungal activities. Different biological activities exhibited by indole derivatives provide the impulsion to explore its activity against anti-phytopathogenic microbes to save the plants from pests and disease, as food security will once again become a rigid demand. This review mainly focuses on various methods related to the synthesis of indole derivatives and its role in agriculture.
Collapse
Affiliation(s)
- Manisha Rani
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
24
|
Murugan S, Zhong HJ, Wu CY, Pan HW, Chen C, Lee GH. Camphorsulfonic Acid-Mediated One-Pot Tandem Consecutive via the Ugi Four-Component Reaction for the Synthesis of Functionalized Indole and 2-Quinolone Derivatives by Switching Solvents. ACS OMEGA 2022; 7:5713-5729. [PMID: 35224332 PMCID: PMC8867550 DOI: 10.1021/acsomega.1c05460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
A camphorsulfonic acid-mediated one-pot tandem consecutive approach was developed to synthesize functionalized indole and 2-quinolone derivatives from the Ugi four-component reaction by switching solvents. A reaction of the Ugi adduct in an aprotic solvent undergoes 5-exo-trig cyclization to form an indole ring. In a protic solvent, however, the Ugi adduct undergoes an alkyne-carbonyl metathesis reaction to form a 2-quinolone ring.
Collapse
Affiliation(s)
- Sivan
Perumal Murugan
- Department
of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
| | - Hong-Jie Zhong
- Department
of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
| | - Chih-Yu Wu
- Department
of Nursing, Tzu Chi University of Science
and Technology, Hualien 970302, Taiwan
| | - Hao-Wei Pan
- Department
of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
| | - Chinpiao Chen
- Department
of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
- Department
of Nursing, Tzu Chi University of Science
and Technology, Hualien 970302, Taiwan
| | - Gene-Hsian Lee
- Instrumentation
Center, College of Science, National Taiwan
University, Taipei 10617, Taiwan
| |
Collapse
|
25
|
Hochberger-Roa F, García-Ríos PH, López-Cortés JG, Ortega-Alfaro MC, Daran JC, Gouygou M, Urrutigoïty M. Interrupted Intramolecular Hydroaminomethylation of N-Protected-2-vinyl Anilines: Novel Access to 3-Substitued Indoles or Indoline-2-ols. Molecules 2022; 27:molecules27031074. [PMID: 35164340 PMCID: PMC8840357 DOI: 10.3390/molecules27031074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
A new synthetic alternative to the synthesis of 3-methyl indoles and 3-methyl indoline-2-ols with an excellent atomic economy is presented in this study. It is demonstrated that the intramolecular interrupted hydroaminomethylation (HAM) reaction is a powerful tool for the formation of these compounds, which exhibit wide-ranging biological activity. Several N-Protected-2-vinyl anilines were synthesized and involved in the reaction producing the corresponding 3-methylindole or 3-methyl indoline-2-ol depending on the nature of the N-protecting groups.
Collapse
Affiliation(s)
- Frank Hochberger-Roa
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Perla H. García-Ríos
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - José G. López-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - M. Carmen Ortega-Alfaro
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., Ciudad de Mexico 04510, Mexico;
| | - Jean-Claude Daran
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Maryse Gouygou
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique, Université de Toulouse, 31030 Toulouse, France; (F.H.-R.); (P.H.G.-R.); (J.-C.D.); (M.G.)
- Correspondence:
| |
Collapse
|
26
|
Ge D, Sun LW, Yu ZL, Luo XL, Xu P, Shen ZL. Regioselective synthesis of 6-nitroindole derivatives from enaminones and nitroaromatic compounds via transition metal-free C-C and C-N bond formation. Org Biomol Chem 2022; 20:1493-1499. [PMID: 35107115 DOI: 10.1039/d1ob02443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Few methods are known for the synthesis of nitroindole derivatives. A simple and practical Cs2CO3-promoted method for the synthesis of 6-nitroindole derivatives from enaminones and nitroaromatic compounds has been developed. Two new C-C and C-N bonds were formed in a highly regioselective manner under transition metal-free conditions.
Collapse
Affiliation(s)
- Danhua Ge
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Li-Wen Sun
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zi-Lun Yu
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin-Long Luo
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhi-Liang Shen
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
27
|
Fatima A, Khanum G, Sharma A, Verma I, Arora H, Siddiqui N, Javed S. Experimental Spectroscopic, Computational, Hirshfeld Surface, Molecular Docking Investigations on 1H-Indole-3-Carbaldehyde. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2026989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aysha Fatima
- S.O.S in chemistry, Jiwaji University, Gwalior, M. P., India
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra, U.P., India
| | - Ghazala Khanum
- S.O.S in chemistry, Jiwaji University, Gwalior, M. P., India
| | - Arun Sharma
- S.O.S in chemistry, Jiwaji University, Gwalior, M. P., India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, U.P., India
| | - Himanshu Arora
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Gurugram, Haryana, India
| | | | - Saleem Javed
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra, U.P., India
| |
Collapse
|
28
|
Kong Y, Wei K, Yan G. Radical coupling reactions of hydrazines via photochemical and electrochemical strategies. Org Chem Front 2022. [DOI: 10.1039/d2qo01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazines are versatile building blocks in organic synthesis.
Collapse
Affiliation(s)
- Yilin Kong
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Kangning Wei
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Guobing Yan
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
29
|
Ghorai J, Ramachandran K, Anbarasan P. Rhodium-Catalyzed Annulation of N-Acetoxyacetanilide with Substituted Alkynes: Conversion of Nitroarenes to Substituted Indoles. J Org Chem 2021; 86:14812-14825. [PMID: 34623800 DOI: 10.1021/acs.joc.1c01604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general and efficient rhodium-catalyzed redox-neutral annulation of N-acetoxyacetanilides, readily accessible from nitroarenes, with alkynes has been accomplished for the synthesis of substituted indole derivatives. A wide range of substituted 2,3-diarylindoles were achieved from various substituted N-acetoxyacetanilides and symmetrical/unsymmetrical alkynes in good to excellent yields. The developed method was successfully integrated with the synthesis of N-acetoxyacetanilides for the efficient one-pot synthesis of indoles from nitroarenes. The important features are the introduction of N-acetoxyacetamide as a new directing group, redox-neutral annulation, an additive-free approach, wide functional group tolerance, an intramolecular version, and a one-pot reaction of nitroarenes. The method was further extended to the synthesis of potent higher analogues of indole, viz., pyrrolo[3,2-f]indoles and dibenzo[a,c]carbazoles. In addition, a plausible mechanism was proposed based on the isolation and stoichiometric study of a potential aryl-Rh intermediate.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
30
|
Sarkar D, Amin A, Qadir T, Sharma PK. Synthesis of Medicinally Important Indole Derivatives: A Review. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2021. [DOI: 10.2174/1874104502015010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indoles constitute a widely occurring functional group in nature and are present in an extensive number of bioactive natural products and medicinally important compounds. As a result, exponential increases in the development of novel methods for the formation of indole core along with site-specific indoles have been established. Conventional methods for the synthesis of indoles are getting replaced with green methods involving ionic liquids, water as a solvent, solid acid catalyst, microwave irradiation and the use of nanoparticles under solvent-free conditions. In addition, there are immense applications of the substituted indoles in diverse fields.
Collapse
|
31
|
Ghosh P, Das S. The C-H functionalization of N-alkoxycarbamoyl indoles by transition metal catalysis. Org Biomol Chem 2021; 19:7949-7969. [PMID: 34490862 DOI: 10.1039/d1ob01121a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Indole and its congeners are ubiquitous nitrogen-containing organic scaffolds present in a plethora of natural products, marketed drugs, and other organic functional molecules. Recent years have witnessed tremendous advances in the diversification of this motif and its biological applications via transition-metal-catalyzed auxiliary assisted site-selective inert C-H functionalization. In this burgeoning field, N-methoxy/ethoxy/pivaloxy amide functionality has emerged as a most potent auxiliary/DG (directing group) for a wide range of C-C and C-heteroatom bond formations, providing a new advance for forging structurally fabricated polycyclic indole frameworks. This review aims to highlight evolved transformations, like arylation, alkylation, alkenylation, allylation, amidation, difluorovinylation, deuteration, hydroarylation, etc., and the applications of N-alkoxycarbamoyl indole derivatives made within the period of 2014-August 2021. Additionally, explicit mechanistic underpinnings have also been provided in the appropriate places.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| |
Collapse
|
32
|
Li J, Zhao Q, Gou C, Li Q, Leng H, Huang Q, Liu Y. Construction of Indole‐Fused Heterocycles Starting from 2‐Thioxoindolines, Iminoindolines, and Their Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jun‐Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Chuan Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qing‐Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Hai‐Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Qian‐Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| |
Collapse
|
33
|
Chakraborty N, Dahiya A, Rakshit A, Modi A, Patel BK. An expedient route to tricyanovinylindoles and indolylmaleimides from o-alkynylanilines utilising DMSO as a one-carbon synthon. Org Biomol Chem 2021; 19:6847-6857. [PMID: 34318852 DOI: 10.1039/d1ob01086g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd(ii)/Cu(ii) catalysed domino synthesis of tricyanovinylindoles has been achieved using DMSO as a one-carbon synthon. The reaction proceeds via the construction of 2-aryl-3-formyl indole followed by sequential addition of malononitrile and a CN resulting in two C-C, one C[double bond, length as m-dash]C and one C-N bonds in the final product. Furthermore, post-synthetic modification results in the unprecedented formation of 4-cyano-3-indolylmaleimides. Photophysical studies of selected compounds show emission in the visible range.
Collapse
Affiliation(s)
- Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | | | | | | | | |
Collapse
|
34
|
Vosáhlo P, Radal L, Labonde M, Císařová I, Roger J, Pirio N, Hierso JC, Štěpnička P. Synthesis and Catalytic Use of Polar Phosphinoferrocene Amidosulfonates Bearing Bulky Substituents at the Ferrocene Backbone. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Petr Vosáhlo
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic
| | - Léa Radal
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) UMR CNRS 6302, Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
| | - Marine Labonde
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) UMR CNRS 6302, Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic
| | - Julien Roger
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) UMR CNRS 6302, Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
| | - Nadine Pirio
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) UMR CNRS 6302, Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
| | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) UMR CNRS 6302, Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
| | - Petr Štěpnička
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic
| |
Collapse
|
35
|
Li X, Zhang B, Zhang J, Wang X, Zhang D, Du Y, Zhao K. Synthesis of
3‐Methylthioindoles
via
Intramolecular Cyclization of
2‐Alkynylanilines
Mediated by
DMSO
/
DMSO
‐
d
6
and
SOCl
2
. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Jingran Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Dongke Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Kang Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
36
|
Ohno H, Inuki S. Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Org Biomol Chem 2021; 19:3551-3568. [PMID: 33908430 DOI: 10.1039/d0ob02577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic natural product synthesis is generally straightforward and efficient because of its established feasibility in nature and utility in comprehensive synthesis, and the cost-effectiveness of naturally derived starting materials. On the other hand, nonbiomimetic strategies can be an important option in natural product synthesis since (1) nonbiomimetic synthesis offers more flexibility and can demonstrate the originality of chemists, and (2) the structures of derivatives accessible by nonbiomimetic synthesis can be considerably different from those that are synthesised in nature. This review summarises nonbiomimetic total syntheses of indole alkaloids using alkyne chemistry for constructing core structures, including ergot alkaloids, monoterpene indole alkaloids (mainly corynanthe, aspidosperma, strychnos, and akuammiline), and pyrroloindole and related alkaloids. To clarify the differences between alkyne-based strategies and biosynthesis, the alkynes in nature and the biosyntheses of indole alkaloids are also outlined.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
37
|
|
38
|
Ghosh B, Balhara R, Jindal G, Mukherjee S. Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2021; 60:9086-9092. [PMID: 33555647 DOI: 10.1002/anie.202017268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/14/2022]
Abstract
The first catalytic enantioselective Fischer indolization of prochiral diketones containing enantiotopic carbonyl groups is developed and shown to proceed through dynamic kinetic resolution (DKR). Catalyzed by the combination of a spirocyclic chiral phosphoric acid and ZnCl2 (Lewis acid assisted Brønsted acid), this direct approach combines 2,2-disubstituted cyclopentane-1,3-diones with N-protected phenylhydrazines to furnish cyclopenta[b]indole derivatives containing an all-carbon quaternary stereocenter with good to excellent enantioselectivities.
Collapse
Affiliation(s)
- Biki Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
39
|
Kaur G, Kumar R, Saroch S, Gupta VK, Banerjee B. Mandelic Acid: An Efficient Organo-catalyst for the Synthesis of 3-substituted-3- Hydroxy-indolin-2-ones and Related Derivatives in Aqueous Ethanol at Room Temperature. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999200713145440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:
Indoles and various indolyl derivatives are very common in naturally occurring
biologically active compounds. Many methods are being developed for the synthesis of various
bioactive indole derivatives.
Objective:
Synthesis of biologically promising structurally diverse indole derivatives under mild and
environmentally benign conditions.
Methods:
Synthesis of 3-hydroxy-3-(5-(trifluoromethoxy)-1H-indol-3-yl)indolin-2-one was achieved
by the reaction of an equimolar mixture of isatin and 3-(trifluoromethoxy)-1H-indol using 20 mol% of
mandelic acid as catalyst in aqueous ethanol at room temperature. Under the same optimized reaction
conditions, synthesis of 3-(3-hydroxy-2-oxoindolin-3-yl)chroman-2,4-diones was accomplished via the
reactions of substituted isatins and 4-hydroxycoumarin. On the other hand, 2-hydroxy-2-(indol-3-yl)-
indene-1,3-diones and 10-hydroxy-10-(5-methoxy-1H-indol-3- yl)phenanthren-9(10H)-one were synthesized
from the reactions of indoles and ninhydrin or 9,10-phenanthrenequinone respectively using
the same 20 mol% of mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature.
Results:
Mild, safe and clean reaction profiles, energy efficiency, high atom-economy, use of naturally
occurring non-toxic organo-catalyst, easy isolation procedure by avoiding column chromatographic
purification and gram scale production are some the major advantages of this developed protocol.
Conclusion:
A simple, straightforward and eco-friendly protocol has been developed for the efficient
synthesis of biologically promising novel 3-hydroxy-3-(5-(trifluoromethoxy)-1H-indol- 3-yl)indolin-2-
one, 3-(3-hydroxy-2-oxoindolin-3-yl)chroman-2,4-diones, 2-hydroxy-2-(indol-3- yl)-indene-1,3-diones
and 10-hydroxy-10-(5-methoxy-1H-indol-3-yl)phenanthren-9(10H)-one using a catalytic amount of
mandelic acid in aqueous ethanol at room temperature.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| | - Rajat Kumar
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| | - Shivam Saroch
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu Tawi-180006, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| |
Collapse
|
40
|
Ghosh B, Balhara R, Jindal G, Mukherjee S. Catalytic Enantioselective Desymmetrizing Fischer Indolization through Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Biki Ghosh
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Reena Balhara
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Garima Jindal
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
41
|
Chen Z, Nie XD, Sun JT, Yang AM, Wei BG. Zn(OTf) 2-catalyzed hydroamination of ynamides with aromatic amines. Org Biomol Chem 2021; 19:2492-2501. [PMID: 33656504 DOI: 10.1039/d0ob02603d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Zn(OTf)2-catalyzed hydroamination of ynamides 2a-2l with aromatic amines 1a-1r was developed. This protocol features broad substrate scope of aromatic amines, good functional group tolerance for ynamides, and excellent regioselectivities. As a result, a variety of substituted amidine compounds 3aa-3oa, 3ab-3al and 3pa-3rk were prepared in moderate to excellent yields and with high regioselectivities.
Collapse
Affiliation(s)
- Zhuo Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Misal Castro LC, Sultan I, Nishi K, Tsurugi H, Mashima K. Direct Synthesis of Indoles from Azoarenes and Ketones with Bis(neopentylglycolato)diboron Using 4,4′-Bipyridyl as an Organocatalyst. J Org Chem 2021; 86:3287-3299. [DOI: 10.1021/acs.joc.0c02661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Luis C. Misal Castro
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ibrahim Sultan
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kohei Nishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
44
|
Yuan L, Chen L, Yan X, Gao K, Wang X. Palladium catalyzed reductive Heck coupling and its application in total synthesis of (−)-17-nor-excelsinidine. RSC Adv 2021; 11:7570-7574. [PMID: 35423278 PMCID: PMC8694955 DOI: 10.1039/d1ra00015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Monoterpene indole alkaloids, bearing a highly substituted piperidine ring, are a structurally diverse class of bioactive natural products, found in various parts of the world. Herein, we reported the construction of the key piperidine ring via palladium catalyzed reductive Heck coupling with a good syn selective manner, avoiding the usage of stoichiometric, highly toxic, air sensitive and moisture sensitive Ni(COD)2. To further showcase the value of this methodology, we realized the total synthesis of the structurally unique zwitterionic monoterpene indole alkaloid (−)-17-nor-excelsinidine in 9 steps, in which the key ammonium–acetate connection (N4–C16) of (−)-17-nor-excelsinidine was constructed via oxidative coupling in excellent yield and high regioselectivity under NBS/pyridine from the enolate of geissoschizine. 17-nor-Excelsinidine was constructed via oxidative coupling in excellent yield and high regioselectivity under NBS/pyridine from the enolate of geissoschizine.![]()
Collapse
Affiliation(s)
- Lisi Yuan
- College of Chemistry and Chemical Engineering
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Linrong Chen
- College of Chemistry and Chemical Engineering
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiaoxiao Yan
- College of Chemistry and Chemical Engineering
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Kun Gao
- College of Chemistry and Chemical Engineering
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiaolei Wang
- College of Chemistry and Chemical Engineering
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
45
|
The one-pot four-component eco-friendly synthesis of spirooxindoles in deep eutectic solvent. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1730-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
FeCl3 catalyzed intermolecular reaction between enol ethers and anilines: Access to 2,3-substituted indoles through aryl group migration. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Devi TJ, Singh TP, Singh RR, Singh EH, Singh OM. Deep Eutectic Solvent Promoted Regioselective Synthesis of Densely Functionalized Mono and Bisindolylalkenes from
β
‐Ketodithioesters. ChemistrySelect 2020. [DOI: 10.1002/slct.202003779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Er(OTf)3-catalyzed approach to 3-alkenylindoles through regioselective addition of ynamides and indoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
|
50
|
Kinoshita J, Baralle A, Yoshida A, Yanagi T, Nogi K, Yorimitsu H. A Route to Indoles via Modified Fischer Indole Intermediates from Sulfonanilides and Ketene Dithioacetal Monoxides. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jun Kinoshita
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Alexandre Baralle
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Akira Yoshida
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Tomoyuki Yanagi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Keisuke Nogi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|