1
|
Wang J, Lou X, Tang J, Yang Y. Color‐tunable
room temperature phosphorescence mediated by
host–guest
chemistry and
stimuli‐responsive
polymer matrices. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Wang
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, College of Chemistry Jilin University Changchun People's Republic of China
| | - Xin‐Yue Lou
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, College of Chemistry Jilin University Changchun People's Republic of China
| | - Jun Tang
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, College of Chemistry Jilin University Changchun People's Republic of China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry, College of Chemistry Jilin University Changchun People's Republic of China
| |
Collapse
|
2
|
A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211:711-728. [PMID: 35588976 DOI: 10.1016/j.ijbiomac.2022.05.087] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
Abstract
Carbohydrate polymers with unique chemical composition, molecular weight and functional chemical groups show multiple potentials in drug delivery. Most carbohydrate polymers such as plant polysaccharides exhibit advantages of biodegradability, ease of modification, low immunogenicity and low toxicity. They can be conjugated, cross-linked or functionally modified, and then used as nanocarrier materials. Polysaccharide drug delivery system can avoid the phagocytosis of the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting effective therapeutic effects. Therefore, they have been fully explored. In this paper, we reviewed the construction methods of drug delivery systems based on carbohydrate polymers (astragalus polysaccharide, angelica polysaccharide, lycium barbarum polysaccharide, ganoderma lucidum polysaccharide, bletilla polysaccharide, glycyrrhiza polysaccharide, and epimedium polysaccharides, etc). The application of polysaccharide drug delivery systems to deliver small molecule chemotherapeutic drugs, gene drugs, and metal ion drugs was also briefly introduced. At the same time, the role of the polysaccharide drug delivery system in tumor treatment, targeted therapy, and wound healing was discussed. In addition, the research of polysaccharide delivery systems based on the therapeutic efficacy of traditional Chinese medicine was also summarized and prospected.
Collapse
|
3
|
He H, Xie C, Yao L, Ning G, Wang Y. A Sensitive Fluorescent Assay for Tetracycline Detection Based on Triple-helix Aptamer Probe and Cyclodextrin Supramolecular Inclusion. J Fluoresc 2021; 31:63-71. [PMID: 33070269 DOI: 10.1007/s10895-020-02631-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Herein, an effective pyrene excimer signaled fluorescent biosensor for the determination of tetracycline based on triple-helix aptamer probe (TAP) and supramolecular inclusion of cyclodextrin was reported. The TAP was devised containing an aptamer loop, two DNA segment stems and a triplex-forming oligonucleotide (signal probe) labeled with pyrenes at 5' and 3' ends. The presence of target could result in its binding towards aptamer with a mighty affinity, leading to a conformation change of the TAP and whereupon the release of the signal probe. This liberty of signal probe enabled the formation of pyrene excimer, generating fluorescence signals. Further, signal amplification was fulfilled through the addition of γ-cyclodextrin which could interact with pyrene dimer, thus leading to an enhanced "on-state" of the sensing ensemble. In contrast, when the target was absent, the sensing ensemble remained "off-state" because of the long distance between two pyrene molecules. When the conditions were properly optimized, the increasing signal kept a linear dependence on target concentrations ranging from 5.0 nM to 100 nM, and the detection limit reached as low as 1.6 nM. In this way, a newly-constructed, simple, and economically affordable protocol enjoys desirable efficiency, sensitivity, specificity in biosensing. Also, its universality as another attractive behalf in assaying diverse targets was envisioned with only the need of matched aptamer replacement.
Collapse
Affiliation(s)
- Hui He
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chuchu Xie
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Liu Yao
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
4
|
Zhang X, Ma X, Wang K, Lin S, Zhu S, Dai Y, Xia F. Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems. Macromol Rapid Commun 2018; 39:e1800142. [DOI: 10.1002/marc.201800142] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/13/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Xin Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Kang Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Shijun Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Shitai Zhu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education; Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 People's Republic of China
| |
Collapse
|
5
|
Jones CD, Steed JW. Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 2018; 45:6546-6596. [PMID: 27711667 DOI: 10.1039/c6cs00435k] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in the field of supramolecular chemistry have made it possible, in many situations, to reliably engineer soft materials to address a specific technological problem. Particularly exciting are "smart" gels that undergo reversible physical changes on exposure to remote, non-invasive environmental stimuli. This review explores the development of gels which are transformed by heat, light and ultrasound, as well as other mechanical inputs, applied voltages and magnetic fields. Focusing on small-molecule gelators, but with reference to organic polymers and metal-organic systems, we examine how the structures of gelator assemblies influence the physical and chemical mechanisms leading to thermo-, photo- and mechano-switchable behaviour. In addition, we evaluate how the unique and versatile properties of smart materials may be exploited in a wide range of applications, including catalysis, crystal growth, ion sensing, drug delivery, data storage and biomaterial replacement.
Collapse
Affiliation(s)
| | - Jonathan W Steed
- Department of Chemistry, Durham University, South Road, DH1 3LE, UK.
| |
Collapse
|
6
|
Zhang X, Wang K, Lin S, Dai Y, Xia F. Supramolecular Vesicles Prepared by Photodimerization of Coumarins in the Cavity of γ-Cyclodextrin. ChemistrySelect 2017. [DOI: 10.1002/slct.201701739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaojin Zhang
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Kang Wang
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Shijun Lin
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Yu Dai
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Fan Xia
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| |
Collapse
|
7
|
Peng L, Liu S, Feng A, Yuan J. Polymeric Nanocarriers Based on Cyclodextrins for Drug Delivery: Host–Guest Interaction as Stimuli Responsive Linker. Mol Pharm 2017; 14:2475-2486. [DOI: 10.1021/acs.molpharmaceut.7b00160] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Liao Peng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Senyang Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Anchao Feng
- College
of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Du XY, Liu SS, Wang CF, Wu G, Chen S. Facile synthesis of self-healing gel via magnetocaloric bottom-ignited frontal polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering; Nanjing Tech University; No. 5 Xin Mofan Road Nanjing 210009 People's Republic of China
| | - Si-Si Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering; Nanjing Tech University; No. 5 Xin Mofan Road Nanjing 210009 People's Republic of China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering; Nanjing Tech University; No. 5 Xin Mofan Road Nanjing 210009 People's Republic of China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering; Nanjing Tech University; No. 5 Xin Mofan Road Nanjing 210009 People's Republic of China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering; Nanjing Tech University; No. 5 Xin Mofan Road Nanjing 210009 People's Republic of China
| |
Collapse
|
9
|
Peng L, Feng A, Liu S, Huo M, Fang T, Wang K, Wei Y, Wang X, Yuan J. Electrochemical Stimulated Pickering Emulsion for Recycling of Enzyme in Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29203-29207. [PMID: 27740743 DOI: 10.1021/acsami.6b09920] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Potential-stimulated Pickering emulsions, using electrochemical responsive microgels as particle stabilizers, are prepared and used for biocatalysis. The microgels are constructed from cyclodextrin functionalized 8-arm poly(ethylene glycol) (8A PEG-CD) and ferrocene modified counterparts (8A PEG-Fc) via CD/Fc host-guest chemistry. Taking advantage of the redox reaction of Fc, the formation and deformation of the microgels and corresponding Pickering emulsions can be reversibly stimulated by external potential, and have been used for the hydrolysis of triacetin and kinetic resolution reaction of (R,S)-1-phenylethanol catalyzed by lipases. Potential stimulated destabilization of the emulsion realizes an effective separation of the products and enzyme recycling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute of Nanotechnology (WIN), University of Waterloo , Waterloo, Canada N2L 3G1
| | | |
Collapse
|
10
|
Zhang X, Dai Y, Chen X, Zhuo R. UV-Responsive Supramolecular Vesicles with Double Hydrophobic Chains. Macromol Rapid Commun 2016; 37:888-93. [DOI: 10.1002/marc.201600077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaojin Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry; Wuhan University; Wuhan 430072 China
| | - Yu Dai
- Faculty of Material Science and Chemistry; China University of Geosciences; Wuhan 430074 China
| | - Xin Chen
- School of Chemical Engineering and Technology; Shanxi Key Laboratory of Energy Chemical Process Intensification; Xi'an Jiao Tong University; Xi'an 710049 China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education; Department of Chemistry; Wuhan University; Wuhan 430072 China
| |
Collapse
|
11
|
Star amphiphilic supramolecular copolymer based on host–guest interaction for electrochemical controlled drug delivery. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Liu BW, Zhou H, Zhou ST, Yuan JY. Macromolecules based on recognition between cyclodextrin and guest molecules: Synthesis, properties and functions. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Peng L, Zhang H, Feng A, Huo M, Wang Z, Hu J, Gao W, Yuan J. Electrochemical redox responsive supramolecular self-healing hydrogels based on host–guest interaction. Polym Chem 2015. [DOI: 10.1039/c5py00296f] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Wen Y, Oh JK. Recent Strategies to Develop Polysaccharide-Based Nanomaterials for Biomedical Applications. Macromol Rapid Commun 2014; 35:1819-32. [DOI: 10.1002/marc.201400406] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Yifen Wen
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec Canada
| |
Collapse
|
15
|
Controlled co-delivery nanocarriers based on mixed micelles formed from cyclodextrin-conjugated and cross-linked copolymers. Colloids Surf B Biointerfaces 2014; 123:486-92. [PMID: 25311963 DOI: 10.1016/j.colsurfb.2014.09.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/02/2014] [Accepted: 09/23/2014] [Indexed: 01/13/2023]
Abstract
The combination of multiple drugs within a single nanocarrier can provide significant advantages for disease therapy and it is desirable to introduce a second drug based on host-guest interaction in these co-delivery systems. In this study, a core-stabilized mixed micellar system consisting of β-cyclodextrin-conjugated poly(lactic acid)-b-poly(ethylene glycol) (β-CD-PLA-mPEG) and DL-Thioctic acid (TA) terminated PLA-mPEG (TA-PLA-mPEG) was developed for the co-delivery of DOX and fluorescein isothiocyanate labeled adamantane (FA). DOX can be loaded within the hydrophobic segment of PLA and FA may form stable complexation with β-CD in the core. The mixed micelles (MM) are based on well-accepted medical materials and can be easily cross-linked by adding 1,4-dithio-D,L-threitol (DTT), which can enhance the stability of the system. Drug-loaded MM system was characterized in terms of particle size, morphology, drug loading and in vitro release profile. Cytotoxicity test showed that blank MM alone showed negligible cytotoxicity whereas the drug-loaded MM remained relatively high cytotoxicity for HeLa cancer cells. Confocal laser scanning microscopy (CLSM) demonstrated that the MM could efficiently deliver and release DOX and FA in the same tumor cells to effectively improve drugs' bioavailability. These results suggested that the core-stabilized MM are highly promising for intracellular co-delivery of multiple drugs.
Collapse
|
16
|
Peng L, Feng A, Huo M, Yuan J. Ferrocene-based supramolecular structures and their applications in electrochemical responsive systems. Chem Commun (Camb) 2014; 50:13005-14. [DOI: 10.1039/c4cc05192k] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Tan S, Ladewig K, Fu Q, Blencowe A, Qiao GG. Cyclodextrin-Based Supramolecular Assemblies and Hydrogels: Recent Advances and Future Perspectives. Macromol Rapid Commun 2014; 35:1166-84. [DOI: 10.1002/marc.201400080] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/07/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Shereen Tan
- Polymer Science Group, Department of Chemical and Biomolecular Engineering; University of Melbourne; VIC 3010 Australia
| | - Katharina Ladewig
- Polymer Science Group, Department of Chemical and Biomolecular Engineering; University of Melbourne; VIC 3010 Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering; University of Melbourne; VIC 3010 Australia
| | - Anton Blencowe
- Polymer Science Group, Department of Chemical and Biomolecular Engineering; University of Melbourne; VIC 3010 Australia
- Mawson Institute, Division of ITEE; The University of South Australia; Mawson Lakes SA 5095 Australia
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering; University of Melbourne; VIC 3010 Australia
| |
Collapse
|
18
|
Rizzo C, D'Anna F, Marullo S, Vitale P, Noto R. Two-Component Hydrogels Formed by Cyclodextrins and Dicationic Imidazolium Salts. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Zhang ZX, Liu KL, Li J. A Thermoresponsive Hydrogel Formed from a Star-Star Supramolecular Architecture. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Zhang ZX, Liu KL, Li J. A Thermoresponsive Hydrogel Formed from a Star-Star Supramolecular Architecture. Angew Chem Int Ed Engl 2013; 52:6180-4. [DOI: 10.1002/anie.201301956] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Indexed: 11/07/2022]
|
21
|
Asoh TA, Kikuchi A. Rapid fabrication of reconstructible hydrogels by electrophoretic microbead adhesion. Chem Commun (Camb) 2013; 48:10019-21. [PMID: 22945492 DOI: 10.1039/c2cc35634a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogel constructs were rapidly fabricated via the electrophoretic adhesion of oppositely charged microbeads. The reversible preparation of hydrogel constructs was achieved by the reconstruction of microbead networks.
Collapse
Affiliation(s)
- Taka-Aki Asoh
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | | |
Collapse
|
22
|
Liu C, Zhang Z, Liu X, Ni X, Li J. Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release. RSC Adv 2013. [DOI: 10.1039/c3ra42532k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|