1
|
Morihiro K, Tomida Y, Fukui D, Hasegawa M, Okamoto A. Nucleic Acid-to-Small Molecule Converter through Amplified Hairpin DNA Circuits. Angew Chem Int Ed Engl 2023; 62:e202306587. [PMID: 37704581 DOI: 10.1002/anie.202306587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Many microRNAs (miRNAs) are characteristically found in cancer cells, making miRNAs promising marker biomolecules for cancer diagnosis and therapeutics. However, it is challenging to use miRNA as a cancer signature because it is difficult to convert the nucleic acid sequence information into molecular functionality. To address this challenge, we realize nucleic acid-to-small molecule converters using hairpin DNA circuits. Harnessing a Staudinger reduction as a trigger for the conversion, we constructed hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) circuits that respond to oncogenic miR-21. Fluorophore and dye molecules were released in response to miR-21 through the HCR, providing fluorogenic and chromogenic readouts. Selective cytotoxicity in miR-21-abundant cells was realized by the CHA to release the anticancer drug SN-38. This would be the first example of selective activation of a small-molecule prodrug triggered by oncogenic miRNA in human living cells.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuhiro Tomida
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Fukui
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Manami Hasegawa
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
2
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
3
|
Janett E, Diep KL, Fromm KM, Bochet CG. A Simple Reaction for DNA Sensing and Chemical Delivery. ACS Sens 2020; 5:2338-2343. [PMID: 32804492 DOI: 10.1021/acssensors.0c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions templated by nucleic acids are currently at the heart of applications in biosensing and drug release. The number of chemical reactions selectively occurring only in the presence of the template, in aqueous solutions, and at room temperature and able to release a chemical moiety is still very limited. Here, we report the use of the p-nitrophenyl carbonate (NPC) as a new reactive moiety for DNA templated reactions releasing a colored reporter by reaction with a simple amine. The easily synthesized p-nitrophenyl carbonate was integrated in an oligonucleotide and showed a very good stability as well as a high reactivity toward amines, without the need for any supplementary reagent, quantitatively releasing the red p-nitrophenolate with a half-life of about 1 h.
Collapse
Affiliation(s)
- Elia Janett
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Kim-Long Diep
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Katharina M. Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Christian G. Bochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Abstract
Pseudouridine (1) was synthesized by functional group interconversions of the Heck adduct11from 2,4-dimethoxy-5-iodopyrimidine (8) and ribofuranoid glycal4.
Collapse
Affiliation(s)
- Cheng-Ping Yu
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Hsin-Yun Chang
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Tun-Cheng Chien
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
- Faculty of Pharmacy
| |
Collapse
|
5
|
Wang Y, Hu Y, Wu T, Zhang L, Liu H, Zhou X, Shao Y. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:645-650. [PMID: 26454091 DOI: 10.1016/j.saa.2015.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/26/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Yuehua Hu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Tao Wu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Lihua Zhang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Hua Liu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Xiaoshun Zhou
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Yong Shao
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Condie AG, Yan Y, Gerson SL, Wang Y. A Fluorescent Probe to Measure DNA Damage and Repair. PLoS One 2015; 10:e0131330. [PMID: 26309022 PMCID: PMC4550365 DOI: 10.1371/journal.pone.0131330] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/31/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage and repair is a fundamental process that plays an important role in cancer treatment. Base excision repair (BER) is a major repair pathway that often leads to drug resistance in DNA-targeted cancer chemotherapy. In order to measure BER, we have developed a near infrared (NIR) fluorescent probe. This probe binds to a key intermediate, termed apurinic/apyrimidinic (AP) site, in the BER pathway where DNA damage and repair occurs. We have developed an assay to show the efficacy of the probe binding to AP sites and have shown that it can distinguish AP sites in DNA extract from chemotherapy treated cells. This probe has potential application in monitoring patient response to chemotherapy and evaluating new drugs in development.
Collapse
Affiliation(s)
- Allison G Condie
- Department of Radiology, Chemistry, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yan Yan
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Stanton L Gerson
- Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Yanming Wang
- Department of Radiology, Chemistry, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
7
|
Nilforoushan A, Furrer A, Wyss LA, van Loon B, Sturla SJ. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct. J Am Chem Soc 2015; 137:4728-34. [PMID: 25786104 DOI: 10.1021/ja512547g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.
Collapse
Affiliation(s)
- Arman Nilforoushan
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Antonia Furrer
- ‡Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Wintherthurerstrasse 190, 8057 Zürich, Switzerland
| | - Laura A Wyss
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Barbara van Loon
- ‡Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Wintherthurerstrasse 190, 8057 Zürich, Switzerland
| | - Shana J Sturla
- §Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
8
|
Label-free and rapid colorimetric detection of DNA damage based on self-assembly of a hemin-graphene nanocomposite. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1245-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Michaelis J, Roloff A, Seitz O. Amplification by nucleic acid-templated reactions. Org Biomol Chem 2014; 12:2821-33. [DOI: 10.1039/c4ob00096j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nucleic acid-templated reactions that proceed with turnover provide a means for signal amplification, which facilitates the use and detection of biologically occurring DNA/RNA molecules.
Collapse
Affiliation(s)
- Julia Michaelis
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - Alexander Roloff
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| |
Collapse
|
10
|
Roloff A, Seitz O. The role of reactivity in DNA templated native chemical PNA ligation during PCR. Bioorg Med Chem 2013; 21:3458-64. [PMID: 23702395 DOI: 10.1016/j.bmc.2013.04.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
DNA templated fluorogenic reactions have been used as a diagnostic tool for the sequence specific detection of nucleic acids; and it has been shown that the native chemical ligation between thioester- and 1,2-aminothiol-modified PNA probes is amongst the most selective DNA detection methods reported. We explored whether a DNA templated reaction can be interfaced with the polymerase chain reaction (PCR). This endeavor posed a significant challenge. The reactive groups involved must be sufficiently stable to tolerate the high temperature applied in the PCR process. Nevertheless, the ligation reaction must proceed very rapidly and sequence specifically within the short time available in the annealing and primer extension steps before denaturation is used after approx. 1 min to commence the next PCR cycle. This required a careful optimization of the ternary complex architecture as well as adjustments of probe length and probe reactivities. Our results point to the prime importance of the ligation architecture. We show that once suitable annealing sites have been identified less reactive probe sets may be preferable if sequence specificity is of major concern. The reactivity tuning enabled the development of an in-PCR ligation, which was used for the single nucleotide specific typing of the V600E (T1799A) point mutation in the human BRaf gene. Showcasing the efficiency and sequence specificity of native chemical PNA ligation, attomolar template proofed sufficient to trigger signal while a 1000-fold higher load of single mismatched template failed to induce appreciable signal.
Collapse
Affiliation(s)
- Alexander Roloff
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | |
Collapse
|