1
|
Deng Q, Zhou W, Wang H, Fu N, Wu X, Wu Y. Aspergillus Niger Derived Wrinkle-Like Carbon as Superior Electrode for Advanced Vanadium Redox Flow Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300640. [PMID: 37088735 PMCID: PMC10288236 DOI: 10.1002/advs.202300640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The scarcity of high electrocatalysis composite electrode materials has long been suppressing the redox reaction of V(II)/V(III) and V(IV)/V(V) couples in high performance vanadium redox flow batteries (VRFBs). Herein, through ingeniously regulating the growth of Aspergillus Niger, a wrinkle-like carbon (WLC) material that possesses edge-rich carbon, abundant heteroatoms, and nature wrinkle-like structure is obtained, which is subsequently successfully introduced and uniform dispersed on the surface of carbon fiber of graphite felt (GF). This composite electrode presents a lower overpotential and higher charge transfer ability, as the codoped multiheteroatoms increase the electrocatalysis activity and the wrinkled structure affords more abundant reaction area for vanadium ions in the electrolyte when compared with the pristine GF electrode, which is also supported by the density functional theory (DFT) calculations. Hence, the assembled battery using WLC electrodes achieves a high energy efficiency of 74.5% for 300 cycles at a high current density of 200 mA cm-2 , as well as the highest current density of 450 mA cm-2 . The WLC material not only uncovers huge potential in promoting the application of VRFBs, but also offers referential solution to synthesis microorganism-based high-performance electrode in other energy storage systems.
Collapse
Affiliation(s)
- Qi Deng
- CAS Key Laboratory of Molecular Nanostructure and NanotechnologyCAS Research/Education Center for Excellence in MolecularInstitute of Chemistry Chinese Academy of Sciences (CAS)Beijing100190P. R. China
- State Key Laboratory of Utilization of Woody Oil Resource of ChinaHunan Academy of ForestryChangshaHunan410018P. R. China
| | - Wei‐Bin Zhou
- State Key Laboratory of Utilization of Woody Oil Resource of ChinaHunan Academy of ForestryChangshaHunan410018P. R. China
| | - Hong‐Rui Wang
- School of Chemistry and Materials ScienceHunan Agricultural UniversityChangshaHunan410128P. R. China
| | - Na Fu
- Hunan Province Yinfeng New Energy Co., Ltd.ChangshaHunan410014P. R. China
| | - Xiong‐Wei Wu
- School of Chemistry and Materials ScienceHunan Agricultural UniversityChangshaHunan410128P. R. China
- Hunan Province Yinfeng New Energy Co., Ltd.ChangshaHunan410014P. R. China
- College of Electrical and Information EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Yu‐Ping Wu
- School of Energy and EnvironmentSoutheast UniversityNanjing211189P. R. China
| |
Collapse
|
2
|
Kusuma S, Patil KN, Srinivasappa PM, Chaudhari N, Soni A, Nabgan W, Jadhav AH. Ferrocene anchored activated carbon as a versatile catalyst for the synthesis of 1,5-benzodiazepines via one-pot environmentally benign conditions. RSC Adv 2022; 12:14740-14756. [PMID: 35702231 PMCID: PMC9112409 DOI: 10.1039/d2ra00202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules. Construction of such moieties with a new C–N bond under solvent-free and mild reaction conditions is challenging. Herein, we present a benign protocol for one pot synthesis of 1,5-benzodiazepine derivatives by using ferrocene (FC) supported activated carbon (AC) as a heterogeneous catalyst. The catalyst FC/AC was characterized by several analytical and spectroscopic techniques to reveal its physicochemical properties and for structural confirmation. The synthesized catalyst FC/AC was explored for its catalytic activity in the synthesis of 1,5-benzodiazepines through condensation of o-phenylenediamine (OPDA) and ketones (aromatic and aliphatic) under solvent-free conditions. The robust 10 wt% FC/AC catalyst demonstrated appreciable activity with 99% conversion of diamines and 91% selectivity towards the synthesis of the desired benzodiazepine derivatives under solvent-free conditions at 90 °C in 8 h. Additionally, several reaction parameters such as catalyst loading, reaction temperature, effect of reaction time and effect of different solvents on selectivity were also studied and discussed in-depth. To understand the scope of the reaction, several symmetrical and unsymmetrical ketones along with different substituted diamines were tested with the synthesized catalyst. All prepared reaction products were obtained in good to efficient yields and were isolated and identified as 1,5-benzodiazepines and no side products were observed. The obtained catalyst characterization data and the activity studies suggested that, the synergetic effect occurred due to the uniform dispersion of ferrocene over the AC surface with numerous acidic sites which triggered the reaction of diamine and ketone to form the corresponding benzodiazepine derivative and the same was illustrated in the plausible mechanism. Furthermore, the synthesized catalyst was tested for leaching and recyclability, and the results confirmed that catalyst can be used for up to six consecutive cycles without much loss in the catalytic activity and its morphology which makes the process sustainable and economical for scale-up production. The present method offered several advantages such as an ecofriendly method, excellent yields, sustainable catalytic transformation, easy work-up and isolation of products, and quick recovery of catalyst. 1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules.![]()
Collapse
Affiliation(s)
- Suman Kusuma
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India .,Aragen Life Science Pvt. Ltd. (GVK Bioscience Pvt. Ltd.) Plot No. 284-A(Part) Bengaluru-562106 India
| | - Komal N Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India
| | | | - Nitin Chaudhari
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University Gandhinagar Gujarat 382007 India
| | - Ajay Soni
- Aragen Life Science Pvt. Ltd. (GVK Bioscience Pvt. Ltd.) Plot No. 284-A(Part) Bengaluru-562106 India
| | - Walid Nabgan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia Johor 81310 Malaysia.,Departament d'Enginyeria Quimica, Universitat Rovira i Virgili Av Paisos Catalans 26 43007 Tarragona Spain
| | - Arvind H Jadhav
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India
| |
Collapse
|
3
|
A Non-Enzymatic Sensor Based on Fc-CHIT/CNT@Cu Nanohybrids for Electrochemical Detection of Glucose. Polymers (Basel) 2020; 12:polym12102419. [PMID: 33092222 PMCID: PMC7589752 DOI: 10.3390/polym12102419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/26/2022] Open
Abstract
Herein, a composite structure, consisting of Cu nanoparticles (NPs) deposited onto carbon nanotubes and modified with ferrocene-branched chitosan, was prepared in order to develop a nonenzymatic electrochemical glucose biosensor ferrocene-chitosan/carbon nanotube@ Cu (Fc-CHIT/CNT@Cu). The elemental composition of the carbon nanohybrids, morphology and structure were characterized by various techniques. Electrochemical impedance spectroscopy (EIS) was used to study the interfacial properties of the electrodes. Cyclic voltammetry (CV) and chronoamperometry methods in alkaline solution were used to determine glucose biosensing properties. The synergy effect of Cu NPs and Fc on current responses of the developed electrode resulted in good glucose sensitivity, including broad linear detection between 0.2 mM and 22 mM, a low detection limit of 13.52 μM and sensitivity of 1.256 μA mM−1cm−2. Moreover, the modified electrode possessed long-term stability and good selectivity in the presence of ascorbic acid, dopamine and uric acid. The results indicated that this inexpensive electrode had potential application for non-enzymatic electrochemical glucose detection.
Collapse
|
4
|
Hadi R, Rahimpour K, Payami E, Teimuri‐Mofrad R. Design and green synthesis of 1‐(4‐ferrocenylbutyl)piperazine chemically grafted reduced graphene oxide for supercapacitor application. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Keshvar Rahimpour
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
5
|
Hadi R, Abbasi H, Payami E, Ahadzadeh I, Teimuri‐Mofrad R. Synthesis, Characterization and Electrochemical Properties of 4‐Azidobutylferrocene‐Grafted Reduced Graphene Oxide‐Polyaniline Nanocomposite for Supercapacitor Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raha Hadi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Hassan Abbasi
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Elmira Payami
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Iraj Ahadzadeh
- Department of Physical Chemistry Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz 29 Bahman Blvd., Tabriz Iran
| |
Collapse
|
6
|
Teimuri-Mofrad R, Hadi R, Abbasi H, Payami E, Neshad S. Green synthesis of carbon nanotubes@tetraferrocenylporphyrin/copper nanohybrid and evaluation of its ability as a supercapacitor. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
de Sousa DP, Yu JH, Miller CJ, Chang Y, McKenzie CJ, Waite TD. Redox- and EPR-Active Graphene Diiron Complex Nanocomposite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12339-12349. [PMID: 31470693 DOI: 10.1021/acs.langmuir.9b01526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A mixed valence diiron(II/III) complex with the ligand 2,6-bis{bis[(2-pyridinylmethyl)amino]methyl}phenol (bppH) has been covalently anchored onto graphene using a mild in situ microwave-assisted diazonium coupling through an aryl amino precursor and isoamyl nitrite. A dinuclear iron complex is then formed by complexation of the grafted bppH-graphene material with iron(II) in the presence of dioxygen. X-ray photoelectron spectroscopy (XPS), atomic force microscopy, cyclic voltammetry, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy confirm the formation of the anchored ligand and derivative diiron complexes. Semiquantitative XPS analysis shows an average bppH ligand bulk loading of 0.33 mmol/g, corresponding to a significant 20.7 wt % of the functionalized material consisting of grafted moieties. EPR measurements reveal the existence of a strong isotropic S = 1/2 spin center associated with the graphene lattice, together with a much weaker S = 5/2 signal, associated with the iron(III) center of the grafted complex. The grafted complex is redox-active with surface-confined FeIIFeII → FeIIFeIII (+0.56 V vs NHE), FeIIFeIII → FeIIIFeIII (+0.73 V), and FeIIIFeIII → FeIIIFeIV (+0.95 V) redox processes accessible, with an estimated surface coverage of 58 pmol cm-2 established from the electrochemical measurements.
Collapse
Affiliation(s)
- David P de Sousa
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| | - Jeffrey Huijie Yu
- School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Yingyue Chang
- School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| | - T David Waite
- School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
8
|
Roushani M, Rahmati Z, Hoseini SJ, Hashemi Fath R. Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle. Colloids Surf B Biointerfaces 2019; 183:110451. [PMID: 31472389 DOI: 10.1016/j.colsurfb.2019.110451] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
In this research work, a biosensor with a dual recognition system was fabricated and founded on a combination of aptasensing and the molecular imprinting union of the chloramphenicol (CAP) selective detection. CAP, is an antibiotic, was applied in veterinary and human in order to treat gram-positive and gram-negative infections. It is worth mentioning that CAP residue brings about earnest side effects on human health. According to this, in this sensing system, 3-aminomethyl pyridine functionalized graphene oxide (GO) (3-ampy-RGO) has been coated on the surface of GCE. Afterwards, the silver nanoparticle (AgNPs) was coated on the 3-ampy-RGO/GCE and, then, the CAP complex-amino-aptamer (NH2-Apt[CAP]) was attached to the AgNP/3-ampy-RGO/GCE using a kind of bonding formation of Ag-N. In this sense, it is worth noting that the resorcinol electropolymerization around the complex of aptamer/CAP would confine the complex and, then, retain the aptamer. Following the CAP removal, the MIP cavity, as it was supposed, synergistically acted with that of the embedded aptamer in order to construct a nanohybrid receptor. Interestingly, the double exact property of the molecular imprinting polymers and aptamers led to the superb sensing properties. In the mentioned system it was illustrated that the linear range was from 1.0 pM to 1.0 nM with the detection limit of 0.3 pM; consequently, as observed, it was better than or as good as other similar assays. Moreover, the mentioned system whose activity was observed in the various interferences presence showed great selectivity in detected the CAP. Finally, the designed sensor exhibited outstanding results when applied to detect CAP in milk samples.
Collapse
Affiliation(s)
| | | | - S Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran
| | - Roghayeh Hashemi Fath
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj 7591874831, Iran
| |
Collapse
|
9
|
Barrejón M, Arellano LM, D'Souza F, Langa F. Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. NANOSCALE 2019; 11:14978-14992. [PMID: 31372604 DOI: 10.1039/c9nr04388h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years there has been a growing interest in finding materials revealing bidirectional charge-transfer characteristics, that is, materials behaving as an electron donor or an acceptor in the presence of redox and photoactive addends, for optoelectronic applications. In this respect, carbon-based nanostructures, such as graphene and carbon nanotubes, have emerged as promising nanomaterials for the development of hybrid systems for bidirectional charge transfer, whose behaviour can be switched from donor-type to acceptor-type by simply changing the electroactive counterpart to which they are anchored. In this review we provide an overview of the main advances that have been made over the past few years in carbon-based hybrid architectures involving different types of carbon nanostructures and photosensitizers. In particular, carbon nanotube and graphene-based hybrid systems will be highlighted.
Collapse
Affiliation(s)
- Myriam Barrejón
- Universidad de Castilla-La Manch, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), 45071-Toledo, Spain.
| | | | | | | |
Collapse
|
10
|
Synthesis and characterization of ferrocene-functionalized reduced graphene oxide nanocomposite as a supercapacitor electrode material. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Jiang X, Deng Y, Liu W, Li Y, Huang X. Preparation of graphene/poly(2-acryloxyethyl ferrocenecarboxylate) nanocompositeviaa “grafting-onto” strategy. Polym Chem 2018. [DOI: 10.1039/c7py01932g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the construction of GS-PAEFC nanohybrids with excellent dispersibility and redox-responsibilityviaATNRC chemistry.
Collapse
Affiliation(s)
- Xue Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Yan Deng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence
- Shanghai Research Institute of Criminal Science and Technology
- Shanghai 200083
- People's Republic of China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
12
|
Ashwin Karthick N, Thangappan R, Arivanandhan M, Gnanamani A, Jayavel R. A Facile Synthesis of Ferrocene Functionalized Graphene Oxide Nanocomposite for Electrochemical Sensing of Lead. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0744-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Fath RH, Hoseini SJ, Khozestan HG. A nanohybrid of organoplatinum(II) complex and graphene oxide as catalyst for reduction of p-nitrophenol. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Adhikari AD, Oraon R, Tiwari SK, Jena NK, Lee JH, Kim NH, Nayak GC. Polyaniline-Stabilized Intertwined Network-like Ferrocene/Graphene Nanoarchitecture for Supercapacitor Application. Chem Asian J 2017; 12:900-909. [PMID: 28225566 DOI: 10.1002/asia.201700124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/21/2017] [Indexed: 11/06/2022]
Abstract
The present work highlights the effective H-π interaction between metallocenes (ferrocene; Fc) and graphene and their stabilization in the presence of polyaniline (PANI) through π-π interactions. The PANI-stabilized Fc@graphene nanocomposite (FcGA) resembled an intertwined network-like morphology with high surface area and porosity, which could make it a potential candidate for energy-storage applications. The relative interactions between the components were assessed through theoretical (DFT) calculations. The specific capacitance calculated from galvanostatic charging/discharging indicated that the PANI-stabilized ternary nanocomposite exhibited a maximum specific capacitance of 960 F g- at an energy density of 85 Wh Kg-1 and a current density of 1 A g- . Furthermore, electrochemical impedance spectroscopy (EIS) analysis confirmed the low internal resistance of the as-prepared nanocomposites, which showed improved charge-transfer properties of graphene after incorporation of Fc and stabilization with PANI. Additionally, all electrodes were found to be stable up to 5000 cycles with a specific capacitance retention of 86 %, thus demonstrating the good reversibility and durability of the electrode material.
Collapse
Affiliation(s)
- Amrita De Adhikari
- Department of Applied Chemistry, IIT(ISM) Dhanbad, 826004, Jharkhand, India
| | - Ramesh Oraon
- Department of Applied Chemistry, IIT(ISM) Dhanbad, 826004, Jharkhand, India
| | | | - Naresh K Jena
- Condensed Matter Theory, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden
| | - Joong Hee Lee
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, 571-756, Republic of Korea.,Department of Polymer & Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk, 571-756, Republic of Korea
| | - Nam Hoon Kim
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, 571-756, Republic of Korea.,Department of Polymer & Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk, 571-756, Republic of Korea
| | | |
Collapse
|
15
|
Hashemi Fath R, Hoseini SJ. Covalently cyclopalladium(II) complex/reduced-graphene oxide as the effective catalyst for the Suzuki–Miyaura reaction at room temperature. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Bottari G, Herranz MÁ, Wibmer L, Volland M, Rodríguez-Pérez L, Guldi DM, Hirsch A, Martín N, D'Souza F, Torres T. Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev 2017; 46:4464-4500. [DOI: 10.1039/c7cs00229g] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review offers an overview on the chemical functionalization, characterization and applications of graphene-based materials.
Collapse
Affiliation(s)
- Giovanni Bottari
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences
| | - Ma Ángeles Herranz
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Leonie Wibmer
- Department of Chemistry and Pharmacy
- Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Michel Volland
- Department of Chemistry and Pharmacy
- Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Laura Rodríguez-Pérez
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy
- Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy
- University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Nazario Martín
- IMDEA-Nanociencia
- Campus de Cantoblanco
- 28049 Madrid
- Spain
- Departamento de Química Orgánica I
| | | | - Tomás Torres
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences
| |
Collapse
|
17
|
Rabti A, Mayorga-Martinez CC, Baptista-Pires L, Raouafi N, Merkoçi A. Ferrocene-functionalized graphene electrode for biosensing applications. Anal Chim Acta 2016; 926:28-35. [DOI: 10.1016/j.aca.2016.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 11/26/2022]
|
18
|
Stergiou A, Pagona G, Tagmatarchis N. Donor-acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1580-9. [PMID: 25247140 PMCID: PMC4168901 DOI: 10.3762/bjnano.5.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/22/2014] [Indexed: 05/28/2023]
Abstract
Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor-acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor-acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor-acceptor graphene-based hybrids, will be discussed.
Collapse
Affiliation(s)
- Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Georgia Pagona
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
19
|
Chang GX, Ren KF, Zhao YX, Sun YX, Ji J. Modulation of cell behaviors by electrochemically active polyelectrolyte multilayers. E-POLYMERS 2014. [DOI: 10.1515/epoly-2014-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractIn addition to the topographical features and chemical properties of substrates, the mechanical properties are known as a vital regulator of cellular processes such as adhesion, proliferation, and migration, and have received considerable attention in recent years. In this work, electrochemical redox multilayers made of ferrocene-modified poly(ethylenimine) (PEI-Fc) and deoxyribonucleic acid (DNA) with controlled stiffness were used to investigate the effects of the mechanical properties of multilayers on fibroblast cell (NIH/3T3) behaviors. Redox PEI-Fc plays an essential role in inducing swelling in multilayers under an electrochemical stimulus, resulting in distinct changes in the stiffness of the multilayers. The Young’s modulus varied from 2.05 to 1.07 MPa for the (PEI-Fc/DNA) multilayers by changing the oxidation time of the electrochemical treatment. We demonstrated that the adhesion, proliferation, and migration of fibroblast cells depended on the multilayers’ stiffness. These results indicate that cell behaviors can be precisely controlled by electrochemical treatment, which provides a new way to prepare thin films with tunable mechanical properties with potential biomedical applications.
Collapse
Affiliation(s)
- Guo-xun Chang
- 1MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Ke-feng Ren
- 1MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yi-xiu Zhao
- 1MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yi-xin Sun
- 1MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- 1MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Mitra K, Basu U, Khan I, Maity B, Kondaiah P, Chakravarty AR. Remarkable anticancer activity of ferrocenyl-terpyridine platinum(ii) complexes in visible light with low dark toxicity. Dalton Trans 2014; 43:751-63. [DOI: 10.1039/c3dt51922h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Rastgar S, Deng H, Cortés-Salazar F, Scanlon MD, Pribil M, Amstutz V, Karyakin AA, Shahrokhian S, Girault HH. Oxygen Reduction at Soft Interfaces Catalyzed by In Situ-Generated Reduced Graphene Oxide. ChemElectroChem 2013. [DOI: 10.1002/celc.201300140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Khilari S, Pandit S, Ghangrekar MM, Das D, Pradhan D. Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Adv 2013; 3:7902. [DOI: 10.1039/c3ra22569k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|