1
|
Dong Z, Wang Y, Xu G, Liu B, Wang Y, Reboud J, Jajesniak P, Yan S, Ma P, Liu F, Zhou Y, Jin Z, Yang K, Huang Z, Zhuo M, Jia B, Fang J, Zhang P, Wu N, Yang M, Cooper JM, Chang L. Genetic and phenotypic profiling of single living circulating tumor cells from patients with microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2315168121. [PMID: 38683997 PMCID: PMC11087790 DOI: 10.1073/pnas.2315168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.
Collapse
Affiliation(s)
- Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Yusen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Gaolian Xu
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai200438, China
| | - Bing Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Julien Reboud
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Pawel Jajesniak
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Shi Yan
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Pingchuan Ma
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Yuhao Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Zhiyuan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Bo Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Nan Wu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Mingzhu Yang
- Beijing Research Institute of Mechanical Equipment, Beijing100143, China
| | - Jonathan M. Cooper
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei230032, China
| |
Collapse
|
2
|
Charmet J, Arosio P, Knowles TP. Microfluidics for Protein Biophysics. J Mol Biol 2018; 430:565-580. [DOI: 10.1016/j.jmb.2017.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
|
3
|
Marasco CC, Enders JR, Seale KT, McLean JA, Wikswo JP. Real-time cellular exometabolome analysis with a microfluidic-mass spectrometry platform. PLoS One 2015; 10:e0117685. [PMID: 25723555 PMCID: PMC4344306 DOI: 10.1371/journal.pone.0117685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/30/2014] [Indexed: 12/27/2022] Open
Abstract
To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry. When compared against the benchmark of "in-culture" experiments combined with ultraperformance liquid chromatography-electrospray ionization-ion mobility-mass spectrometry (UPLC-ESI-IM-MS), our platform alleviates the volume challenge issues caused by dilution of autocrine and paracrine signaling and dramatically reduces sample preparation and data collection time, while reducing undesirable external influence from various manual methods of manipulating cells and media (e.g., cell centrifugation). To validate this system biologically, we focused on cellular responses of Jurkat T cells to microenvironmental stimuli. Application of these stimuli, in conjunction with the cell's metabolic processes, results in changes in consumption of nutrients and secretion of biomolecules (collectively, the exometabolome), which enable communication with other cells or tissues and elimination of waste. Naïve and experienced T-cell metabolism of cocaine is used as an exemplary system to confirm the platform's capability, highlight its potential for metabolite discovery applications, and explore immunological memory of T-cell drug exposure. Our platform proved capable of detecting metabolomic variations between naïve and experienced Jurkat T cells and highlights the dynamics of the exometabolome over time. Upregulation of the cocaine metabolite, benzoylecgonine, was noted in experienced T cells, indicating potential cellular memory of cocaine exposure. These metabolomics distinctions were absent from the analogous, traditional "in-culture" UPLC-ESI-IM-MS experiment, further demonstrating this platform's capabilities.
Collapse
Affiliation(s)
- Christina C. Marasco
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jeffrey R. Enders
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin T. Seale
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - John A. McLean
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - John P. Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Chanasakulniyom M, Glidle A, Cooper JM. Cell proliferation and migration inside single cell arrays. LAB ON A CHIP 2015; 15:208-15. [PMID: 25340681 DOI: 10.1039/c4lc00774c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell proliferation and migration are fundamental processes in determining cell and tissue behaviour. In this study we show the design and fabrication of a new single cell microfluidic structure, called a "vertically integrated array" or "VIA" trap to explore quantitative functional assays including single cell attachment, proliferation and migration studies. The chip can be used in a continuous (flow-through) manner, with a continuous supply of new media, as well as in a quiescent mode. We show the fabrication of the device, together with the flow characteristics inside the network of channels and the single cell traps. The flow patterns inside the device not only facilitate cell trapping, but also protect the cells from mechanical flow-induced stress. MDA-MB-231 human breast cancer cells were used to study attachment and detachment during the cell cycle as well as explore the influences of the chemokine SDF-1 (enabling the quantification of the role of chemokine gradients both on pseudopod formation and directional cell migration).
Collapse
Affiliation(s)
- Mayuree Chanasakulniyom
- The Division of Biomedical Engineering, School of Engineering, The University of Glasgow, G12 8LT Glasgow, UK.
| | | | | |
Collapse
|
5
|
Byrd TF, Hoang LT, Kim EG, Pfister ME, Werner EM, Arndt SE, Chamberlain JW, Hughey JJ, Nguyen BA, Schneibel EJ, Wertz LL, Whitfield JS, Wikswo JP, Seale KT. The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay. Sci Rep 2014; 4:5117. [PMID: 24873950 PMCID: PMC4038811 DOI: 10.1038/srep05117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 05/06/2014] [Indexed: 01/21/2023] Open
Abstract
Cytometric studies utilizing flow cytometry or multi-well culture plate fluorometry are often limited by a deficit in temporal resolution and a lack of single cell consideration. Unfortunately, many cellular processes, including signaling, motility, and molecular transport, occur transiently over relatively short periods of time and at different magnitudes between cells. Here we demonstrate the multitrap nanophysiometer (MTNP), a low-volume microfluidic platform housing an array of cell traps, as an effective tool that can be used to study individual unattached cells over time with precise control over the intercellular microenvironment. We show how the MTNP platform can be used for hematologic cancer cell characterization by measuring single T cell levels of CRAC channel modulation, non-translational motility, and ABC-transporter inhibition via a calcein-AM efflux assay. The transporter data indicate that Jurkat T cells exposed to indomethacin continue to accumulate fluorescent calcein for over 60 minutes after calcein-AM is removed from the extracellular space.
Collapse
Affiliation(s)
- Thomas F Byrd
- 1] Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA [2] University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Loi T Hoang
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Eric G Kim
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Matthew E Pfister
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Erik M Werner
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stephen E Arndt
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jeffrey W Chamberlain
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jacob J Hughey
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Bao A Nguyen
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Erik J Schneibel
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Laura L Wertz
- Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jonathan S Whitfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - John P Wikswo
- 1] Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA [2] Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, 37235, USA [3] Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA [4] Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA [5] Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kevin T Seale
- 1] Searle Systems Biology and Bioengineering Undergraduate Research Experience, Vanderbilt University, Nashville, TN, 37235, USA [2] Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, 37235, USA [3] Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
6
|
Zheng XT, Yu L, Li P, Dong H, Wang Y, Liu Y, Li CM. On-chip investigation of cell-drug interactions. Adv Drug Deliv Rev 2013; 65:1556-74. [PMID: 23428898 DOI: 10.1016/j.addr.2013.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 12/17/2022]
Abstract
Investigation of cell-drug interaction is of great importance in drug discovery but continues to pose significant challenges to develop robust, fast and high-throughput methods for pharmacologically profiling of potential drugs. Recently, cell chips have emerged as a promising technology for drug discovery/delivery, and their miniaturization and flow-through operation significantly reduce sample consumption while dramatically improving the throughput, reliability, resolution and sensitivity. Herein we review various types of miniaturized cell chips used in investigation of cell-drug interactions. The design and fabrication of cell chips including material selection, surface modification, cell trapping/patterning, concentration gradient generation and mimicking of in vivo environment are presented. Recent advances of on-chip investigations of cell-drug interactions, in particular the high-throughput screening, cell sorting, cytotoxicity testing, drug resistance analysis and pharmacological profiling are examined and discussed. It is expected that this survey can provide thoughtful basics and important applications of on-chip investigations of cell-drug interactions, thus greatly promoting research and development interests in this area.
Collapse
|