1
|
Graham JJ, Subramani SV, Yang X, Russell TM, Zhang F, Keten S. Charting the envelope of mechanical properties of synthetic silk fibers through predictive modeling of the drawing process. SCIENCE ADVANCES 2025; 11:eadr3833. [PMID: 40053589 PMCID: PMC11887809 DOI: 10.1126/sciadv.adr3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
A major challenge in synthesizing strong and tough protein fibers based on spider silk motifs is understanding the coupling between protein sequence and the postspin drawing process. We clarify how drawing-induced elongational force affects ordering, chain extension, interchain contacts, and molecular mobility through mesoscale simulations of silk-based fibers. We show that these emergent features can be used to predict mechanical property enhancements arising from postspin drawing. Simulations recapitulate a purely process-dependent mechanical property envelope in which order enhances fiber strength while preserving toughness. The relationship between chain extension and crystalline domain alignment observed in simulations is validated by Raman spectroscopy of wet-spun fibers. Property enhancements attributed to the progression of anisotropic extension are verified by mechanical tests of drawn silk fibers and justified by theory. These findings elucidate how drawing enhances properties of protein-based fibers and shed light on how to incorporate this effect into predictive models.
Collapse
Affiliation(s)
- Jacob J. Graham
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shri V. Subramani
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xinyan Yang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Timothy M. Russell
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Greco G, Schmuck B, Bäcklund FG, Reiter G, Rising A. Post-spin Stretch Improves Mechanical Properties, Reduces Necking, and Reverts Effects of Aging in Biomimetic Artificial Spider Silk Fibers. ACS APPLIED POLYMER MATERIALS 2024; 6:14342-14350. [PMID: 39697840 PMCID: PMC11650584 DOI: 10.1021/acsapm.4c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Recent biotechnological advancements in protein production and development of biomimetic spinning procedures make artificial spider silk a promising alternative to petroleum-based fibers. To enhance the competitiveness of artificial silk in terms of mechanical properties, refining the spinning techniques is imperative. One potential strategy involves the integration of post-spin stretching, known to improve fiber strength and stiffness while potentially offering additional advantages. Here, we demonstrate that post-spin stretching not only enhances the mechanical properties of artificial silk fibers but also restores a higher and more uniform alignment of the protein chains, leading to a higher fiber toughness. Additionally, fiber properties may be reduced by processes, such as aging, that cause increased network entropy. Post-spin stretching was found to partially restore the initial properties of fibers exposed aging. Finally, we propose to use the degree of necking as a simple measure of fiber quality in the development of spinning procedures for biobased fibers.
Collapse
Affiliation(s)
- Gabriele Greco
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
| | - Benjamin Schmuck
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
- Department
of Medicine Huddinge, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| | - Fredrik G. Bäcklund
- Division
Materials and Production, Department of Polymers, Fibers and Composites, RISE Research Institutes of Sweden, Mölndal 431 53, Sweden
| | - Günter Reiter
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Straße
3, Freiburg 79104, Germany
| | - Anna Rising
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
- Department
of Medicine Huddinge, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| |
Collapse
|
3
|
Peng Z, Hu W, Yang X, Liu Q, Shi X, Tang X, Zhao P, Xia Q. Overexpression of bond-forming active protein for efficient production of silk with structural changes and properties enhanced in silkworm. Int J Biol Macromol 2024; 264:129780. [PMID: 38290638 DOI: 10.1016/j.ijbiomac.2024.129780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Silkworm silk exhibits excellent mechanical properties, biocompatibility, and has potential applications in the biomedical sector. This study focused on enhancing the mechanical properties of Bombyx mori silk by overexpressing three bond-forming active proteins (BFAPs): AFP, HSP, and CRP in the silk glands of silkworms. Rheological tests confirmed increased viscoelasticity in the liquid fibroin stock solution of transgenic silkworms, and dynamic mechanical thermal analysis (DMTA) indicated that all three BFAPs participated in the interactions between fibroin molecular networks in transgenic silk. The mechanical property assay indicated that all three BFAPs improved the mechanical characteristics of transgenic silk, with AFP and HSP having the most significant effects. A synchrotron radiation Fourier transform infrared spectroscopy assay showed that all three BFAPs increased the β-sheet content of transgenic silk. Synchrotron radiation wide-angle X-ray diffraction assay showed that all three BFAPs changed the crystallinity, crystal size, and orientation factor of the silk. AFP and HSP significantly improved the mechanical attributes of transgenic silk through increased crystallinity, refined crystal size, and a slight decrease in orientation. This study opens new possibilities for modifying silk and other fiber materials.
Collapse
Affiliation(s)
- Zhangchuan Peng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, China
| | - Wenbo Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xi Yang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - XiaoTing Shi
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xin Tang
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| |
Collapse
|
4
|
Tolmachev DA, Malkamäki M, Linder MB, Sammalkorpi M. Spidroins under the Influence of Alcohol: Effect of Ethanol on Secondary Structure and Molecular Level Solvation of Silk-Like Proteins. Biomacromolecules 2023; 24:5638-5653. [PMID: 38019577 PMCID: PMC10716855 DOI: 10.1021/acs.biomac.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Future sustainable materials based on designer biomolecules require control of the solution assembly, but also interfacial interactions. Alcohol treatments of protein materials are an accessible means to this, making understanding of the process at the molecular level of seminal importance. We focus here on the influence of ethanol on spidroins, the main proteins of silk. By large-scale atomistically detailed molecular dynamics (MD) simulations and interconnected experiments, we characterize the protein aggregation, secondary structure changes, molecular level origins of them, and solvation environment changes for the proteins, as induced by ethanol as a solvation additive. The MD and circular dichoroism (CD) findings jointly show that ethanol promotes ordered structure in the protein molecules, leading to an increase of helix content and turns but also increased aggregation, as revealed by dynamic light scattering (DLS) and light microscopy. The structural changes correlate at the molecular level with increased intramolecular hydrogen bonding. The simulations reveal that polar amino acids, such as glutamine and serine, are most influenced by ethanol, whereas glycine residues are most prone to be involved in the ethanol-induced secondary structure changes. Furthermore, ethanol engages in interactions with the hydrophobic alanine-rich regions of the spidroin, significantly decreasing the hydrophobic interactions of the protein with itself and its surroundings. The protein solutes also change the microstructure of water/ethanol mixtures, essentially decreasing the level of larger local clustering. Overall, the work presents a systematic characterization of ethanol effects on a widely used, common protein type, spidroins, and generalizes the findings to other intrinsically disordered proteins by pinpointing the general features of the response. The results can aid in designing effective alcohol treatments for proteins, but also enable design and tuning of protein material properties by a relatively controllable solvation handle, the addition of ethanol.
Collapse
Affiliation(s)
- Dmitry A. Tolmachev
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maaria Malkamäki
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
5
|
Ceccarini M, Chiesa I, Ripanti F, Cardinali MA, Micalizzi S, Scattini G, De Maria C, Paciaroni A, Petrillo C, Comez L, Bertelli M, Sassi P, Pascucci L, Beccari T, Valentini L. Electrospun Nanofibrous UV Filters with Bidirectional Actuation Properties Based on Salmon Sperm DNA/Silk Fibroin for Biomedical Applications. ACS OMEGA 2023; 8:38233-38242. [PMID: 37867705 PMCID: PMC10586176 DOI: 10.1021/acsomega.3c04563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we dissolved Bombyx mori degummed silk [i.e., silk fibroin (SF)] and salmon sperm deoxyribonucleic acid (DNA) in water and used a bioinspired spinning process to obtain an electrospun nanofibrous SF-based patch (ESF). We investigated the bidirectional macroscale actuation behavior of ESF in response to water vapor and its UV-blocking properties as well as those of ESF/DNA films. Fourier transform infrared (FTIR) results suggest that the formation of β-sheet-rich structures promotes the actuation effect. ESF/DNA film with high-ordered and β-sheet-rich structures exhibits higher electrical conductivity and is water-insoluble. Given the intrinsic ability of both SF and DNA to absorb UV radiation, we performed biological experiments on the viability of keratinocyte HaCaT cells after exposure to solar spectrum components. Our findings indicate that the ESF/DNA patch is photoprotective and can increase the cellular viability of keratinocytes after UV exposure. Furthermore, we demonstrated that ESF/DNA patches treated with water vapor can serve as suitable scaffolds for tissue engineering and can improve tissue regeneration when cellularized with HaCaT cells. The 3D shape morphing capability of these patches, along with their potential as UV filters, could offer significant practical advantages in tissue engineering.
Collapse
Affiliation(s)
| | - Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Francesca Ripanti
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Martina Alunni Cardinali
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Simone Micalizzi
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Gabriele Scattini
- Dipartimento
di Medicina Veterinaria, University of Perugia, Via S. Costanzo, 4, Perugia 06126, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Alessandro Paciaroni
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Caterina Petrillo
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Lucia Comez
- Istituto
Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, Perugia 06123, Italy
| | | | - Paola Sassi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Luisa Pascucci
- Dipartimento
di Medicina Veterinaria, University of Perugia, Via S. Costanzo, 4, Perugia 06126, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Science, University of
Perugia, Perugia 06123, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, Terni 05100, Italy
| |
Collapse
|
6
|
Välisalmi T, Bettahar H, Zhou Q, Linder MB. Pulling and analyzing silk fibers from aqueous solution using a robotic device. Int J Biol Macromol 2023; 250:126161. [PMID: 37549763 DOI: 10.1016/j.ijbiomac.2023.126161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Spiders, silkworms, and many other animals can spin silk with exceptional properties. However, artificially spun fibers often fall short of their natural counterparts partly due sub-optimal production methods. A variety of methods, such as wet-, dry-, and biomimetic spinning have been used. The methods are based on extrusion, whereas natural spinning also involves pulling. Another shortcoming is that there is a lack feedback control during extension. Here we demonstrate a robotic fiber pulling device that enables controlled pulling of silk fibers and in situ measurement of extensional forces during the pulling and tensile testing of the pulled fibers. The pulling device was used to study two types of silk-one recombinant spider silk (a structural variant of ADF3) and one regenerated silk fibroin. Also, dextran-a branched polysaccharide-was used as a reference material for the procedure due to its straightforward preparation and storage. No post-treatments were applied. The pulled regenerated silk fibroin fibers achieved high tensile strength in comparison to similar extrusion-based methods. The mechanical properties of the recombinant spider silk fibers seemed to be affected by the liquid-liquid phase separation of the silk proteins.
Collapse
Affiliation(s)
- Teemu Välisalmi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Houari Bettahar
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland.
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
7
|
Peng Z, Hu W, Li X, Zhao P, Xia Q. Bending–Spinning Produces Silkworm and Spider Silk with Enhanced Mechanical Properties. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhangchuan Peng
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Wenbo Hu
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Xinning Li
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology Southwest University, Chongqing400716, China
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology Southwest University, Chongqing400716, China
- Biological Science Research Center Southwest University, Chongqing400716, China
| |
Collapse
|
8
|
Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater 2023; 19:328-347. [PMID: 35892003 PMCID: PMC9301605 DOI: 10.1016/j.bioactmat.2022.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Nano/micro fibers have evoked much attention of scientists and have been researched as cutting edge and hotspot in the area of fiber science in recent years due to the rapid development of various advanced manufacturing technologies, and the appearance of fascinating and special functions and properties, such as the enhanced mechanical strength, high surface area to volume ratio and special functionalities shown in the surface, triggered by the nano or micro-scale dimensions. In addition, these outstanding and special characteristics of the nano/micro fibers impart fiber-based materials with wide applications, such as environmental engineering, electronic and biomedical fields. This review mainly focuses on the recent development in the various nano/micro fibers fabrication strategies and corresponding applications in the biomedical fields, including tissue engineering scaffolds, drug delivery, wound healing, and biosensors. Moreover, the challenges for the fabrications and applications and future perspectives are presented.
Collapse
Affiliation(s)
- Bin Kong
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Rui Liu
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Jiahui Guo
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yuanjin Zhao
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
| |
Collapse
|
9
|
He W, Qian D, Wang Y, Zhang G, Cheng Y, Hu X, Wen K, Wang M, Liu Z, Zhou X, Zhu M. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201843. [PMID: 35509216 DOI: 10.1002/adma.202201843] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Spider dragline silk is draw-spun from soluble, β-sheet-crosslinked spidroin in aqueous solution. This spider silk has an excellent combination of strength and toughness, which originates from the hierarchical structure containing β-sheet crosslinking points, spiral nanoassemblies, a rigid sheath, and a soft core. Inspired by the spidroin structure and spider spinning process, a soluble and crosslinked nanogel is prepared and crosslinked fibers are drew spun with spider-silk-like hierarchical structures containing cross-links, aligned nanoassemblies, and sheath-core structures. Introducing nucleation seeds in the nanogel solution, and applying prestretch and a spiral architecture in the nanogel fiber, further tunes the alignment and assembly of the polymer chains, and enhances the breaking strength (1.27 GPa) and toughness (383 MJ m-3 ) to approach those of the best dragline silk. Theoretical modeling provides understanding for the dependence of the fiber's spinning capacity on the nanogel size. This work provides a new strategy for the direct spinning of tough fiber materials.
Collapse
Affiliation(s)
- Wenqian He
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong Qian
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yang Wang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao Cheng
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Xiaoyu Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Meilin Wang
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider Silk-Inspired Artificial Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103965. [PMID: 34927397 PMCID: PMC8844500 DOI: 10.1002/advs.202103965] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Collapse
Affiliation(s)
- Jiatian Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Sitong Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Jiayi Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Baigang An
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Xiang Zhou
- Department of ScienceChina Pharmaceutical UniversityNanjing211198China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
11
|
Li J, Zhu Y, Yu H, Dai B, Jun YS, Zhang F. Microbially Synthesized Polymeric Amyloid Fiber Promotes β-Nanocrystal Formation and Displays Gigapascal Tensile Strength. ACS NANO 2021; 15:11843-11853. [PMID: 34251182 DOI: 10.1021/acsnano.1c02944] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ability of amyloid proteins to form stable β-sheet nanofibrils has made them potential candidates for material innovation in nanotechnology. However, such a nanoscale feature has rarely translated into attractive macroscopic properties for mechanically demanding applications. Here, we present a strategy by fusing amyloid peptides with flexible linkers from spidroin; the resulting polymeric amyloid proteins can be biosynthesized using engineered microbes and wet-spun into macroscopic fibers. Using this strategy, fibers from three different amyloid groups were fabricated. Structural analyses unveil the presence of β-nanocrystals that resemble the cross-β structure of amyloid nanofibrils. These polymeric amyloid fibers have displayed strong and molecular-weight-dependent mechanical properties. Fibers made of a protein polymer containing 128 repeats of the FGAILSS sequence displayed an average ultimate tensile strength of 0.98 ± 0.08 GPa and an average toughness of 161 ± 26 MJ/m3, surpassing most recombinant protein fibers and even some natural spider silk fibers. The design strategy and the biosynthetic approach can be expanded to create numerous functional materials, and the macroscopic amyloid fibers will enable a wide range of mechanically demanding applications.
Collapse
|
12
|
Prakash NJ, Mane PP, George SM, Kandasubramanian B. Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomater Sci Eng 2021; 7:2015-2042. [PMID: 33861079 DOI: 10.1021/acsbiomaterials.1c00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of flexible, biocompatible, and environment-friendly sensors has attracted a significant amount of scientific interest for the past few decades. Among all the natural materials, silk fibroin (SF), due to its tunable biodegradability, biocompatibility, ease of processing, presence of functional groups, and controllable dimensions, has opened up opportunities for immobilizing multitudinous biomolecules and conformability to the skin, among other attractive opportunities. The silk fibroins also offer good physical properties, such as superior toughness and tensile strength. The sensors made of SF as an immobilization matrix have demonstrated excellent analytical performance, sensing even at low concentrations. The significant advantage of silk fibroins is the presence of functional groups along with a controllable conformation transition that enables immobilization of receptor molecules using silk fibroins as an immobilization matrix enables us to entrap the receptor molecules without using any chemical reagents. This review encompasses a detailed discussion on sensors, the advantages of using silk fibroins as an immobilization matrix for various receptors, their applications, and the future research scope in this state-of-the-art technology based upon the explorable applications for silk fibroin-based sensors.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| | - Prathamesh Parshuram Mane
- Department of Fibers and Textiles Processing Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Suchi Mercy George
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| |
Collapse
|
13
|
Wu R, Kim T. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. LAB ON A CHIP 2021; 21:1217-1240. [PMID: 33710187 DOI: 10.1039/d0lc01208d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape characteristics, which include the physical dimensions (scale), apparent morphology, surface features, and structure, are essential factors of fibrous materials and determine many of their properties. Microfluidic technologies have recently been proposed as an approach for producing one-dimensional (1D) fibers with controllable shape characteristics and particle alignment, which impart specific functionality to the fiber. Moreover, superfine 1D fibers with a high surface area and ordered structure have many potential applications as they can be directly braided or woven into textiles, clothes, and tissues with two- or three-dimensional (2D or 3D) structures. Previous reviews of microfluidic spinning have not focus on the importance of the shape characteristic on fiber performance and their use in intelligent fiber design. Here, the latest achievements in microfluidic approaches for fiber-device fabrication are reviewed considering the underlying preparation principles, shape characteristics, and functionalization of the fibers. Additionally, intelligent fiber devices with shapes tailored by microfluidic approaches are discussed, including 1D sensors and actuators, luminous fibers, and devices for encoding, energy harvesting, water collection, and tissue engineering applications. Finally, recent progress, challenges, and future perspectives of the microfluidic approaches for fiber device fabrication are discussed.
Collapse
Affiliation(s)
- Ronghui Wu
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | | |
Collapse
|
14
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
15
|
Li S, Hang Y, Ding Z, Lu Q, Lu G, Chen H, Kaplan DL. Microfluidic Silk Fibers with Aligned Hierarchical Microstructures. ACS Biomater Sci Eng 2020; 6:2847-2854. [PMID: 33463289 DOI: 10.1021/acsbiomaterials.0c00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hierarchical structure of the ECM provides specific niches for tissues to regulate cell behavior, yet the challenge remains to design biomaterial systems for tissue regeneration to recreate such features in vitro. Here, we achieved this goal through the use of aligned hierarchical structures of native silk fibers, generated through the integration of "bottom-up" and "top-down" strategies to generate regenerated silk fibers with aligned nano- to micro-hierarchical structures. To achieve these designs, we assembled and dispersed silk nanofibers (SNF) in formic acid and spun them into fibers using bioinspired microfluidic chips with a geometry mimicking the native silk gland. The fibers generated using this device exhibited aligned hierarchical structure with fiber mechanical properties superior to fibers derived from more traditional spinning approaches with regenerated silk solutions. Besides the improved mechanical properties, Raman spectroscopic results indicated similarly aligned structures to native fibers and active control of cell proliferation, migration, and aggregate orientation. The results indicate the feasibility of developing bioactive silk fiber materials with hierarchical structures to facilitate utility in a range of cell and tissue regeneration scenarios.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjie Hang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Qiang Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.,National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
16
|
Yao Y, Allardyce BJ, Rajkhowa R, Hegh D, Sutti A, Subianto S, Gupta S, Rana S, Greenhill S, Venkatesh S, Wang X, Razal JM. Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm. ACS Biomater Sci Eng 2020; 6:3197-3207. [DOI: 10.1021/acsbiomaterials.0c00156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ya Yao
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, Australia 3216
| | | | - Rangam Rajkhowa
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, Australia 3216
| | - Dylan Hegh
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, Australia 3216
| | - Alessandra Sutti
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, Australia 3216
| | - Surya Subianto
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, Australia 3216
| | - Sunil Gupta
- Deakin University, Applied Artificial Intelligence Institute (A2I2), Geelong, Victoria, Australia 3216
| | - Santu Rana
- Deakin University, Applied Artificial Intelligence Institute (A2I2), Geelong, Victoria, Australia 3216
| | - S. Greenhill
- Deakin University, Applied Artificial Intelligence Institute (A2I2), Geelong, Victoria, Australia 3216
| | - Svetha Venkatesh
- Deakin University, Applied Artificial Intelligence Institute (A2I2), Geelong, Victoria, Australia 3216
| | - Xungai Wang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, Australia 3216
| | - Joselito M. Razal
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, Australia 3216
| |
Collapse
|
17
|
Artificial ligament made from silk protein/Laponite hybrid fibers. Acta Biomater 2020; 106:102-113. [PMID: 32014583 DOI: 10.1016/j.actbio.2020.01.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/05/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
With developments in tissue engineering, artificial ligaments are expected to be future materials for anterior cruciate ligament (ACL) reconstruction. However, poor healing of the intraosseous part after ACL reconstruction significantly hinders their applications in this field. In this study, a bioactive clay Laponite (LAP) was introduced into the regenerated silk fibroin (RSF) spinning dope to produce functional RSF/LAP hybrid fibers by wet-spinning. These RSF/LAP hybrid fibers were then woven into artificial ligament for ACL reconstruction. The structure and mechanical properties of RSF/LAP hybrid fibers were extensively studied by different means. Results confirmed the presence of LAP in RSF fibers and revealed that the addition of LAP slightly deteriorated the comprehensive mechanical properties of RSF fibers. However, they were still much tougher (with higher breaking energy) than those of degummed natural silkworm silk that was earlier used for making artificial ligament. The artificial ligament woven from RSF/LAP hybrid fibers showed better cytocompatibility and osteogenic differentiation with mouse pre-osteoblasts in vitro than those made from degummed natural silkworm silks and pure RSF fibers. Furthermore, in vivo study in a rat ACL reconstruction model demonstrated that the presence of LAP in the artificial ligament could significantly enhance the graft osseointegration process and also improve the corresponding biomechanical properties of the artificial ligament. Based upon these results, the RSF/LAP hybrid fibers, which can be mass produced by wet-spinning process, are believed to have a great potential for use as artificial ligament materials for ACL reconstruction. STATEMENT OF SIGNIFICANCE: In this study, we successfully introduced Laponite (LAP), a kind of clay that has the function of osteogenic induction, into regenerated silk fibroin (RSF) fibers, which was prepared by a mature wet-spinning method developed in our lab. We believe that through artificial spinning, additional functional components can be added into RSF fibers, which one can hardly achieve with natural silks. We showed that the artificial ligament woven from RSF/LAP hybrid fibers had better cytocompatibility and osteogenic differentiation for mouse pre-osteoblasts in vitro, and significantly enhanced the graft osseointegration process and improved the corresponding biomechanical properties in a rat ACL reconstruction model in vivo, compared to those artificial ligaments made from degummed natural silkworm silks and pure RSF fibers.
Collapse
|
18
|
Wang Z, Cang Y, Kremer F, Thomas EL, Fytas G. Determination of the Complete Elasticity of Nephila pilipes Spider Silk. Biomacromolecules 2020; 21:1179-1185. [PMID: 31935074 PMCID: PMC7307882 DOI: 10.1021/acs.biomac.9b01607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Spider silks are
remarkable materials designed by nature to have
extraordinary elasticity. Their elasticity, however, remains poorly
understood, as typical stress–strain experiments only allow
access to the axial Young’s modulus. In this work, micro-Brillouin
light spectroscopy (micro-BLS), a noncontact, nondestructive technique,
is utilized to probe the direction-dependent phonon propagation in
the Nephila pilipes spider silk and
hence solve its full elasticity. To the best of our knowledge, this
is the first demonstration on the determination of the anisotropic
Young’s moduli, shear moduli, and Poisson’s ratios of
a single spider fiber. The axial and lateral Young’s moduli
are found to be 20.9 ± 0.8 and 9.2 ± 0.3 GPa, respectively,
and the anisotropy of the Young’s moduli further increases
upon stretching. In contrast, the shear moduli and Poisson’s
ratios exhibit very weak anisotropy and are robust to stretching.
Collapse
Affiliation(s)
- Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yu Cang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Friedrich Kremer
- Institute of Experimental Physics I, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Edwin L Thomas
- Department of Materials Science and Nano-Engineering, Rice University, Houston, Texas 77030, United States
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Electronic Structure and Laser, F.O.R.T.H, 70013 Heraklion, Greece
| |
Collapse
|
19
|
Qiu W, Patil A, Hu F, Liu XY. Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903948. [PMID: 31657136 DOI: 10.1002/smll.201903948] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Indexed: 05/21/2023]
Abstract
A comprehensive review on the five levels of hierarchical structures of silk materials and the correlation with macroscopic properties/performance of the silk materials, that is, the toughness, strain-stiffening, etc., is presented. It follows that the crystalline binding force turns out to be very important in the stabilization of silk materials, while the β-crystallite networks or nanofibrils and the interactions among helical nanofibrils are two of the most essential structural elements, which to a large extent determine the macroscopic performance of various forms of silk materials. In this context, the characteristic structural factors such as the orientation, size, and density of β-crystallites are very crucial. It is revealed that the formation of these structural elements is mainly controlled by the intermolecular nucleation of β-crystallites. Consequently, the rational design and reconstruction of silk materials can be implemented by controlling the molecular nucleation via applying sheering force and seeding (i.e., with carbon nanotubes). In general, the knowledge of the correlation between hierarchical structures and performance provides an understanding of the structural reasons behind the fascinating behaviors of silk materials.
Collapse
Affiliation(s)
- Wu Qiu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Aniruddha Patil
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Fan Hu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Xiang Yang Liu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| |
Collapse
|
20
|
Zou S, Wang X, Fan S, Zhang J, Shao H, Zhang Y. Fabrication and characterization of regenerated Antheraea pernyi silk fibroin scaffolds for Schwann cell culturing. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Ng PF, Lee KI, Meng S, Zhang J, Wang Y, Fei B. Wet Spinning of Silk Fibroin-Based Core–Sheath Fibers. ACS Biomater Sci Eng 2019; 5:3119-3130. [DOI: 10.1021/acsbiomaterials.9b00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pui Fai Ng
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Ka I Lee
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Shengfei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Ren Min Street, Changchun 130022, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Ren Min Street, Changchun 130022, China
| | - Yuhong Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| | - Bin Fei
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon, Hong Kong, China
| |
Collapse
|
22
|
Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and Applications of Bioinspired Fiber Systems. ACS NANO 2019; 13:2749-2772. [PMID: 30768903 DOI: 10.1021/acsnano.8b09651] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural fiber systems provide inspirations for artificial fiber spinning and applications. Through a long process of trial and error, great progress has been made in recent years. The natural fiber itself, especially silks, and the formation mechanism are better understood, and some of the essential factors are implemented in artificial spinning methods, benefiting from advanced manufacturing technologies. In addition, fiber-based materials produced via bioinspired spinning methods find an increasingly wide range of biomedical, optoelectronic, and environmental engineering applications. This paper reviews recent developments in the spinning and application of bioinspired fiber systems, introduces natural fiber and spinning processes and artificial spinning methods, and discusses applications of artificial fiber materials. Views on remaining challenges and the perspective on future trends are also proposed.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
23
|
Xu L, Weatherbee-Martin N, Liu XQ, Rainey JK. Recombinant Silk Fiber Properties Correlate to Prefibrillar Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805294. [PMID: 30756524 DOI: 10.1002/smll.201805294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Spider silks are desirable materials with mechanical properties superior to most synthetic materials coupled with biodegradability and biocompatibility. In order to replicate natural silk properties using recombinant spider silk proteins (spidroins) and wet-spinning methods, the focus to date has typically been on modifying protein sequence, protein size, and spinning conditions. Here, an alternative approach is demonstrated. Namely, using the same ≈57 kDa recombinant aciniform silk protein with a consistent wet-spinning protocol, fiber mechanical properties are shown to significantly differ as a function of the solvent used to dissolve the protein at high concentration (the "spinning dope" solution). A fluorinated acid/alcohol/water dope leads to drastic improvement in fibrillar extensibility and, correspondingly, toughness compared to fibers produced using a previously developed fluorinated alcohol/water dope. To understand the underlying cause for these mechanical differences, morphology and structure of the two classes of silk fiber are compared, with features tracing back to dope-state protein structuring and preassembly. Specifically, distinct classes of spidroin nanoparticles appear to form in each dope prior to fiber spinning and these preassembled states are, in turn, linked to fiber morphology, structure, and mechanical properties. Tailoring of dope-state spidroin nanoparticle assembly, thus, appears a promising strategy to modulate fibrillar silk properties.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Nathan Weatherbee-Martin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
24
|
DeFrates KG, Moore R, Borgesi J, Lin G, Mulderig T, Beachley V, Hu X. Protein-Based Fiber Materials in Medicine: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E457. [PMID: 29932123 PMCID: PMC6071022 DOI: 10.3390/nano8070457] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022]
Abstract
Fibrous materials have garnered much interest in the field of biomedical engineering due to their high surface-area-to-volume ratio, porosity, and tunability. Specifically, in the field of tissue engineering, fiber meshes have been used to create biomimetic nanostructures that allow for cell attachment, migration, and proliferation, to promote tissue regeneration and wound healing, as well as controllable drug delivery. In addition to the properties of conventional, synthetic polymer fibers, fibers made from natural polymers, such as proteins, can exhibit enhanced biocompatibility, bioactivity, and biodegradability. Of these proteins, keratin, collagen, silk, elastin, zein, and soy are some the most common used in fiber fabrication. The specific capabilities of these materials have been shown to vary based on their physical properties, as well as their fabrication method. To date, such fabrication methods include electrospinning, wet/dry jet spinning, dry spinning, centrifugal spinning, solution blowing, self-assembly, phase separation, and drawing. This review serves to provide a basic knowledge of these commonly utilized proteins and methods, as well as the fabricated fibers’ applications in biomedical research.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Robert Moore
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Julia Borgesi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Guowei Lin
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Thomas Mulderig
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Vince Beachley
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
25
|
Zhang C, Shao H, Luo J, Hu X, Zhang Y. Structure and interaction of silk fibroin and graphene oxide in concentrated solution under shear. Int J Biol Macromol 2018; 107:2590-2597. [DOI: 10.1016/j.ijbiomac.2017.10.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
26
|
Madurga R, Guinea GV, Elices M, Pérez-Rigueiro J, Gañán-Calvo AM. Straining flow spinning: Simplified model of a bioinspired process to mass produce regenerated silk fibers controllably. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun 2017; 8:1387. [PMID: 29123097 PMCID: PMC5680232 DOI: 10.1038/s41467-017-00613-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
A variety of artificial spinning methods have been applied to produce regenerated silk fibers; however, how to spin regenerated silk fibers that retain the advantages of natural silks in terms of structural hierarchy and mechanical properties remains challenging. Here, we show a bioinspired approach to spin regenerated silk fibers. First, we develop a nematic silk microfibril solution, highly viscous and stable, by partially dissolving silk fibers into microfibrils. This solution maintains the hierarchical structures in natural silks and serves as spinning dope. It is then spun into regenerated silk fibers by direct extrusion in the air, offering a useful route to generate polymorphic and hierarchical regenerated silk fibers with physical properties beyond natural fiber construction. The materials maintain the structural hierarchy and mechanical properties of natural silks, including a modulus of 11 ± 4 GPa, even higher than natural spider silk. It can further be functionalized with a conductive silk/carbon nanotube coating, responsive to changes in humidity and temperature.
Collapse
Affiliation(s)
- Shengjie Ling
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
28
|
Koeppel A, Holland C. Progress and Trends in Artificial Silk Spinning: A Systematic Review. ACS Biomater Sci Eng 2017; 3:226-237. [DOI: 10.1021/acsbiomaterials.6b00669] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andreas Koeppel
- Department of Materials
Science
and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Chris Holland
- Department of Materials
Science
and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
29
|
Fang G, Tang Y, Qi Z, Yao J, Shao Z, Chen X. Precise correlation of macroscopic mechanical properties and microscopic structures of animal silks—using Antheraea pernyi silkworm silk as an example. J Mater Chem B 2017; 5:6042-6048. [DOI: 10.1039/c7tb01638g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of wild silkworm silk can be controlled by reeling rate, thus regulating its mechanical performance from close to spider dragline silk to domestic silkworm silk.
Collapse
Affiliation(s)
- Guangqiang Fang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Centre of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Yuzhao Tang
- National Centre for Protein Science Shanghai
- Institute of Biochemistry and Cell Biology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
- Shanghai
| | - Zeming Qi
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Centre of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Centre of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Centre of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| |
Collapse
|
30
|
Zhang C, Zhang Y, Luo J, Shi J, Shao H, Hu X. Microstructural evolution of regenerated silk fibroin/graphene oxide hybrid fibers under tensile deformation. RSC Adv 2017. [DOI: 10.1039/c6ra22544f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The stress–strain curve and proposed model of microstructural change of silk fibroin/GO hybrid fibers during the stretching deformation.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Jie Luo
- School of Material Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Jingru Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Xuechao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| |
Collapse
|
31
|
Peng Q, Zhang Y, Lu L, Shao H, Qin K, Hu X, Xia X. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci Rep 2016; 6:36473. [PMID: 27819339 PMCID: PMC5098227 DOI: 10.1038/srep36473] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022] Open
Abstract
Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artificial spider silks were spun via microfluidic wet-spinning, using a continuous post-spin drawing process (WS-PSD). By mimicking the natural spinning apparatus, shearing and elongational sections were integrated in the microfluidic spinning chip to induce assembly, orientation of spidroins, and fibril structure formation. The additional post-spin drawing process following the wet-spinning section partially mimics the spinning process of natural spider silk and substantially contributes to the compact aggregation of microfibrils. Subsequent post-stretching further improves the hierarchical structure of the fibres, including the crystalline structure, orientation, and fibril melting. The tensile strength and elongation of post-treated fibres reached up to 510 MPa and 15%, respectively.
Collapse
Affiliation(s)
- Qingfa Peng
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Li Lu
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kankan Qin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuechao Hu
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxia Xia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Fang G, Huang Y, Tang Y, Qi Z, Yao J, Shao Z, Chen X. Insights into Silk Formation Process: Correlation of Mechanical Properties and Structural Evolution during Artificial Spinning of Silk Fibers. ACS Biomater Sci Eng 2016; 2:1992-2000. [DOI: 10.1021/acsbiomaterials.6b00392] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Yuzhao Tang
- National
Centre for Protein Science−Shanghai, Institute of Biochemistry
and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Zeming Qi
- National
Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People’s Republic of China
| | | | | | | |
Collapse
|
33
|
Li C, Hotz B, Ling S, Guo J, Haas DS, Marelli B, Omenetto F, Lin SJ, Kaplan DL. Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials 2016; 110:24-33. [PMID: 27697669 DOI: 10.1016/j.biomaterials.2016.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 11/27/2022]
Abstract
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Blake Hotz
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Dylan S Haas
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Benedetto Marelli
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA
| | - Fiorenzo Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA.
| |
Collapse
|
34
|
Weatherbee-Martin N, Xu L, Hupe A, Kreplak L, Fudge DS, Liu XQ, Rainey JK. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk. Biomacromolecules 2016; 17:2737-46. [PMID: 27387592 DOI: 10.1021/acs.biomac.6b00857] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spider silks are outstanding biomaterials with mechanical properties that outperform synthetic materials. Of the six fibrillar spider silks, aciniform (or wrapping) silk is the toughest through a unique combination of strength and extensibility. In this study, a wet-spinning method for recombinant Argiope trifasciata aciniform spidroin (AcSp1) is introduced. Recombinant AcSp1 comprising three 200 amino acid repeat units was solubilized in a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/water mixture, forming a viscous α-helix-enriched spinning dope, and wet-spun into an ethanol/water coagulation bath allowing continuous fiber production. Post-spin stretching of the resulting wet-spun fibers in water significantly improved fiber strength, enriched β-sheet conformation without complete α-helix depletion, and enhanced birefringence. These methods allow reproducible aciniform silk fiber formation, albeit with lower extensibility than native silk, requiring conditions and methods distinct from those previously reported for other silk proteins. This provides an essential starting point for tailoring wet-spinning of aciniform silk to achieve desired properties.
Collapse
Affiliation(s)
| | | | - Andre Hupe
- Department of Integrative Biology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | - Douglas S Fudge
- Department of Integrative Biology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
35
|
Fang G, Sapru S, Behera S, Yao J, Shao Z, Kundu SC, Chen X. Exploration of the tight structural-mechanical relationship in mulberry and non-mulberry silkworm silks. J Mater Chem B 2016; 4:4337-4347. [PMID: 32263416 DOI: 10.1039/c6tb01049k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Bombyx mori silkworm is well known as it has been bred by our ancestors with mulberry tree leaves for thousands of years. However, Bombyx mori is not the only silkworm that can produce silk, many other kinds of silkworms can also make silks for commercial use. In this research, we compare the mechanical properties of five different commercial silk fibres including domesticated mulberry Bombyx mori, non-mulberry semi-domesticated eri Samia ricini, and wild tropical tasar Antheraea mylitta and muga Antheraea assamensis. The results demonstrate that the non-mulberry silk fibres have a relatively high extensibility as compared to the mulberry silk fibres. In the meantime, the non-mulberry silk fibres show comparatively unique toughness to the mulberry silk fibres. Synchrotron radiation FTIR microspectroscopy, synchrotron radiation wide angle X-ray diffraction, and Raman dichroism spectroscopy are used to analyze the structural differences among the five species of silk fibres comprehensively. The results clearly show that the mechanical properties of both mulberry and non-mulberry silk fibres are closely related to their structures, such as β-sheet content, crystallinity, and the molecular orientation along the fibre axis. This study aims to understand the differences in the structural and mechanical properties of different mulberry and non-mulberry silk fibres, which are of importance to the related research on understanding and utilizing the non-mulberry silk as a biomaterial. We believe these investigations not only provide insight into the biology of silk fibroins from the non-mulberry silkworms but also offer guidelines for further biomimetic investigations into the design and manufacture of artificial silk protein fibres with novel morphologies and associated material properties for future use in different fields like bioelectronics, biomaterials and biomedical devices.
Collapse
Affiliation(s)
- Guangqiang Fang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Yoshioka T, Tashiro K, Ohta N. Molecular Orientation Enhancement of Silk by the Hot-Stretching-Induced Transition from α-Helix-HFIP Complex to β-Sheet. Biomacromolecules 2016; 17:1437-48. [PMID: 26974170 DOI: 10.1021/acs.biomac.6b00043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enhancing the molecular orientation of the regenerated silk fibroin (RF) up to a level comparable to the native silk is highly challenging. Our novel and promising strategy for the poststretching process is (1) creating at first an α-helix-HFIP complex with a hexagonal packing as an intermediate state and then (2) stretching it at a high temperature to induce the helix-to-sheet structural phase transition. Here we show for the first time the significantly high stretching efficiency of the proposed technique compared with the conventional wet-stretching techniques and the successful achievement of higher crystalline orientation and higher Young's modulus compared even with the native silk. The detailed structural analysis based on the time-resolved simultaneous measurement of stress-strain curve, synchrotron X-ray scatterings, and FTIR has revealed the structural transition mechanism from the hexagonally packed α-helix-HFIP complex to the highly oriented β-sheet crystalline state as well as the critical level of crystal orientation needed for the helix-to-sheet transition.
Collapse
Affiliation(s)
- Taiyo Yoshioka
- Department of Future Industry-oriented Basic Science and Materials, Graduate School of Engineering, Toyota Technological Institute , Tempaku, Nagoya 468-8511, Japan
| | - Kohji Tashiro
- Department of Future Industry-oriented Basic Science and Materials, Graduate School of Engineering, Toyota Technological Institute , Tempaku, Nagoya 468-8511, Japan
| | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute , 1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
37
|
Zhang C, Zhang Y, Shao H, Hu X. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3349-3358. [PMID: 26784289 DOI: 10.1021/acsami.5b11245] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory for Modication of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, PR China
| | - Yaopeng Zhang
- State Key Laboratory for Modication of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, PR China
| | - Huili Shao
- State Key Laboratory for Modication of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, PR China
| | - Xuechao Hu
- State Key Laboratory for Modication of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, PR China
| |
Collapse
|
38
|
Fang G, Zheng Z, Yao J, Chen M, Tang Y, Zhong J, Qi Z, Li Z, Shao Z, Chen X. Tough protein-carbon nanotube hybrid fibers comparable to natural spider silks. J Mater Chem B 2015; 3:3940-3947. [PMID: 32262616 DOI: 10.1039/c5tb00448a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Animal silks, especially spider dragline silks, have an excellent portfolio of mechanical properties, but it is still a challenge to obtain artificial silk fibers with similar properties to the natural ones. In this paper, we show how to extrude tough regenerated silk fibers by adding a small amount of commercially available functionalized multiwalled carbon nanotubes (less than 1%) through an environmentally friendly wet-spinning process reported by this laboratory previously. Most of the resulting regenerated silk fibers exhibited a breaking energy beyond 130 MJ m-3, which is comparable to spider dragline silks (∼160 MJ m-3). The best of these fibers in terms of performance show a breaking stress of 0.42 GPa, breaking strain of 59%, and breaking energy of 186 MJ m-3. In addition, we used several advanced characterization techniques, such as synchrotron radiation FTIR microspectroscopy and synchrotron radiation X-ray diffraction, to reveal the toughening mechanism in such a protein-inorganic hybrid system. We believe our attempt to produce such tough protein-based hybrid fibers by using cheap, abundant and sustainable regenerated silkworm protein and commercially available functionalized carbon nanotubes, with simplified industrial wet-spinning apparatus, may open up a practical way for the industrial production of super-tough fiber materials.
Collapse
Affiliation(s)
- Guangqiang Fang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang F, You X, Dou H, Liu Z, Zuo B, Zhang X. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3352-61. [PMID: 25603225 DOI: 10.1021/am508319h] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, we report for the first time a novel silk fibroin (SF) nanofibrous films with robust mechanical properties that was fabricated by directly dissolving silk in CaCl2-formic acid solution. CaCl2-FA dissolved silk rapidly at room temperature, and more importantly, it disintegrated silk into nanofibrils instead of separate molecules. The morphology of nanofibrils crucially depended on CaCl2 concentrations, which resulted in different aggregation nanostructure in SF films. The SF film after drawing had maximum elastic modulus, ultimate tensile strength, and strain at break reaching 4 GPa, 106 MPa, and 29%, respectively, in dry state and 206 MPa, 28 MPa, and 188%, respectively, in wet state. Moreover, multiple yielding phenomena and substantially strain-hardening behavior was also observed in the stretched films, indicating the important role played by preparation method in regulating the mechanical properties of SF films. These exceptional and unique mechanical properties were suggested to be caused by preserving silk nanofibril during dissolution and stretching to align these nanofibrils. Furthermore, the SF films exhibit excellent biocompatibility, supporting marrow stromal cells adhesion and proliferation. The film preparation was facile, and the resulting SF films manifested enhanced mechanical properties, unique nanofibrous structures, and good biocompability.
Collapse
Affiliation(s)
- Feng Zhang
- Medical College of Soochow University, Jiangsu Province Key Laboratory of Stem Cell Research, Soochow University , Suzhou 215123, China
| | | | | | | | | | | |
Collapse
|
40
|
Zhang F, Lu Q, Yue X, Zuo B, Qin M, Li F, Kaplan DL, Zhang X. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent. Acta Biomater 2015; 12:139-145. [PMID: 25281787 DOI: 10.1016/j.actbio.2014.09.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/14/2014] [Accepted: 09/25/2014] [Indexed: 02/02/2023]
Abstract
Silks spun by silkworms and spiders feature outstanding mechanical properties despite being spun under benign conditions. The superior physical properties of silk are closely related to its complicated hierarchical structures constructed from nanoscale building blocks, such as nanocrystals and nanofibrils. Here, we report a novel silk dissolution behavior, which preserved nanofibrils in CaCl2-formic acid solution, that enables spinning of high-quality fibers with a hierarchical structure. This process is characterized by simplicity, high efficiency, low cost, environmental compatibility and large-scale industrialization potential, as well as having utility and potential for the recycling of silk waste and the production of silk-based functional materials.
Collapse
|
41
|
Jin Y, Hang YC, Zhang YP, Shao HL, Hu XC. Role of Ca2+on structures and properties of regenerated silk fibroin aqueous solutions and fibres. ACTA ACUST UNITED AC 2014. [DOI: 10.1179/1432891714z.000000000397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Y. Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Y. C. Hang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Y. P. Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - H. L. Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - X. C. Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
42
|
Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int J Biol Macromol 2014; 66:319-24. [DOI: 10.1016/j.ijbiomac.2014.02.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/30/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022]
|
43
|
Kim HJ, Um IC. Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk. Int J Biol Macromol 2014; 67:387-93. [PMID: 24709013 DOI: 10.1016/j.ijbiomac.2014.03.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Abstract
Regenerated silk fiber has attracted considerable attention because of its good blood compatibility and cytocompatibility, and the advantages of regenerated fiber, such as control of structure and properties. In this study, wet spun regenerated silk fibers were fabricated by controlling degumming ratio and silk concentration. Rheometry, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to examine wet spinning and post drawing performance of silk. Dope solution viscosity was found to be a key factor determining the continuous fiber formation of silk and 0.07Pa·s was essential for continuous fiber formation. Maximum draw ratio of the as-spun silk fiber was strongly affected by two factors: (1) crystallinity index from FTIR spectroscopy and (2) degumming ratio of silk. XRD of the wet spun silk fibers was not changed by the degumming ratio, silk concentration, and draw ratio. However, the crystallinity indices from FTIR were changed by these factors. Drawing-induced short-range crystallites of the silk were proposed based on FTIR and XRD. These results also show that XRD and FTIR can be used to characterize the micro-structure of silk complementarily because of their different detection characteristics: XRD and FTIR spectroscopy are sensitive to the detection of long- and short-range ordered crystallites of silk, respectively.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Bio-fibers and Materials Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - In Chul Um
- Department of Bio-fibers and Materials Science, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
44
|
Ming J, Liu Z, Bie S, Zhang F, Zuo B. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:48-53. [DOI: 10.1016/j.msec.2013.12.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
|
45
|
Liu L, Yang X, Yu H, Ma C, Yao J. Biomimicking the structure of silk fibers via cellulose nanocrystal as β-sheet crystallite. RSC Adv 2014. [DOI: 10.1039/c4ra01284d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Biomimic silk fibers with refined crystalline structure were produced via incorporating cellulose nanocrystals into silk fibroin matrix to mimic the β-sheet crystallites in natural silk. The fibers exhibit excellent thermal and mechanical properties, attributed to the strong hydrogen bonding interactions between cellulose nanocrystals and silk fibroin as well as cellulose nanocrystal-induced ordered structure.
Collapse
Affiliation(s)
- Lin Liu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
- National Engineering Lab of Textile Fiber Materials & Processing Technology
| | - Xiaogang Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
| | - Houyong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
- National Engineering Lab of Textile Fiber Materials & Processing Technology
| | - Chao Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018, China
- National Engineering Lab of Textile Fiber Materials & Processing Technology
| |
Collapse
|
46
|
Pan H, Zhang Y, Shao H, Hu X, Li X, Tian F, Wang J. Nanoconfined crystallites toughen artificial silk. J Mater Chem B 2014; 2:1408-1414. [DOI: 10.1039/c3tb21148g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|