1
|
Iyaswamy A, Wang X, Zhang H, Vasudevan K, Wankhar D, Lu K, Krishnamoorthi S, Guan XJ, Su CF, Liu J, Kan Y, Jaganathan R, Deng Z, Li HW, Wong MS, Li M. Molecular engineering of a theranostic molecule that detects Aβ plaques, inhibits Iowa and Dutch mutation Aβ self-aggregation and promotes lysosomal biogenesis for Alzheimer's disease. J Mater Chem B 2024; 12:7543-7556. [PMID: 38978513 DOI: 10.1039/d4tb00479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Extracellular clustering of amyloid-β (Aβ) and an impaired autophagy lysosomal pathway (ALP) are the hallmark features in the early stages of incurable Alzheimer's disease (AD). There is a pressing need to find or develop new small molecules for diagnostics and therapeutics for the early stages of AD. Herein, we report a small molecule, namely F-SLCOOH, which can bind and detect Aβ1-42, Iowa mutation Aβ, Dutch mutation Aβ fibrils and oligomers exhibiting enhanced emission with high affinity. Importantly, F-SLCOOH can readily pass through the blood-brain barrier and shows highly selective binding toward the extracellular Aβ aggregates in real-time in live animal imaging of a 5XFAD mice model. In addition, a high concentration of F-SLCOOH in both brain and plasma of wildtype mice after intraperitoneal administration was found. The ex vivo confocal imaging of hippocampal brain slices indicated excellent colocalization of F-SLCOOH with Aβ positive NU1, 4G8, 6E10 A11 antibodies and THS staining dye, affirming its excellent Aβ specificity and targetability. The molecular docking studies have provided insight into the unique and specific binding of F-SLCOOH with various Aβ species. Importantly, F-SLCOOH exhibits remarkable anti-fibrillation properties against toxic Aβ aggregate formation of Aβ1-42, Iowa mutation Aβ, and Dutch mutation Aβ. F-SLCOOH treatment also exerts high neuroprotective functions and promotes autophagy lysosomal biogenesis in neuronal AD cell models. In summary, the present results suggest that F-SLCOOH is a highly promising theranostic agent for diagnosis and therapeutics of AD.
Collapse
Affiliation(s)
- Ashok Iyaswamy
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Xueli Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Hailong Zhang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | | | - Dapkupar Wankhar
- Faculty of Paramedical Sciences, Assam down town University, Guwahati, Assam 781026, India
| | - Kejia Lu
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Xin-Jie Guan
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Cheng-Fu Su
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Jia Liu
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Yuxuan Kan
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Perak, Malaysia
| | - Zhiqiang Deng
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Hung-Wing Li
- Department of Chemistry, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Min Li
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative disorder that is characterized clinically by progressive cognitive decline and pathologically by the β-sheet rich fibril plaque deposition of the amyloid-β (Aβ) peptide in the brain. While plaques are a hallmark of AD, plaque burden is not correlated with cognitive impairment. Instead, Aβ oligomers formed during the aggregation process represent the main agents of neurotoxicity, which occurs 10–20 years before patients begin to show symptoms. These oligomers are dynamic in nature and represented by a heterogeneous distribution of aggregates ranging from low- to high-molecular weight, some of which are toxic while others are not. A major difficulty in determining the pathological mechanism(s) of Aβ, developing reliable diagnostic markers for early-stage detection, as well as effective therapeutics for AD are the differentiation and characterization of oligomers formed throughout disease propagation based on their molecular features, effects on biological function, and relevance to disease propagation and pathology. Thus, it is critical to methodically identify the mechanisms of Aβ aggregation and toxicity, as well as describe the roles of different oligomers and aggregates in disease progression and molecular pathology. Here, we describe a variety of biophysical techniques used to isolate and characterize a range of Aβ oligomer populations, as well as discuss proposed mechanisms of toxicity and therapeutic interventions aimed at specific assemblies formed during the aggregation process. The approaches being used to map the misfolding and aggregation of Aβ are like what was done during the fundamental early studies, mapping protein folding pathways using combinations of biophysical techniques in concert with protein engineering. Such information is critical to the design and molecular engineering of future diagnostics and therapeutics for AD.
Collapse
|
3
|
Chau E, Kim JR. α-synuclein-assisted oligomerization of β-amyloid (1-42). Arch Biochem Biophys 2022; 717:109120. [PMID: 35041853 PMCID: PMC8818042 DOI: 10.1016/j.abb.2022.109120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders, characterized by aggregation of amyloid polypeptides, β-amyloid (Aβ) and α-synuclein (αS), respectively. Aβ and αS follow similar aggregation pathways, starting from monomers, to soluble toxic oligomeric assemblies, and to insoluble fibrils. Various studies have suggested overlaps in the pathologies of AD and PD, and have shown Aβ-αS interactions. Unfortunately, whether these protein-protein interactions lead to self- and co-assembly of Aβ and αS into oligomers - a potentially toxic synergistic mechanism - is poorly understood. Among the various Aβ isoforms, interactions of Aβ containing 42 amino acids (Aβ (1-42), referred to as Aβ42) with αS are of most direct relevance due to the high aggregation propensity and the strong toxic effect of this Aβ isoform. In this study, we carefully determined molecular consequences of interactions between Aβ42 and αS in their respective monomeric, oligomeric, and fibrillar forms using a comprehensive set of experimental tools. We show that the three αS conformers, namely, monomers, oligomers and fibrils interfered with fibrillization of Aβ42. Specifically, αS monomers and oligomers promoted oligomerization and stabilization of soluble Aβ42, possibly via direct binding or co-assembly, while αS fibrils hindered soluble Aβ42 species from converting into insoluble aggregates by the formation of large oligomers. We also provide evidence that the interactions with αS were mediated by various parts of Aβ42, depending on Aβ42 and αS conformers. Furthermore, we compared similarities and dissimilarities between Aβ42-αS and Aβ40-αS interactions. Overall, the present study provides a comprehensive depiction of the molecular interplay between Aβ42 and αS, providing insight into its synergistic toxic mechanism.
Collapse
Affiliation(s)
- Edward Chau
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
4
|
Sabouri S, Liu M, Zhang S, Yao B, Soleimaninejad H, Baxter AA, Armendariz-Vidales G, Subedi P, Duan C, Lou X, Hogan CF, Heras B, Poon IKH, Hong Y. Construction of a Highly Sensitive Thiol-Reactive AIEgen-Peptide Conjugate for Monitoring Protein Unfolding and Aggregation in Cells. Adv Healthc Mater 2021; 10:e2101300. [PMID: 34655462 DOI: 10.1002/adhm.202101300] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Impairment of the protein quality control network leads to the accumulation of unfolded and aggregated proteins. Direct detection of unfolded protein accumulation in the cells may provide the possibility for early diagnosis of neurodegenerative diseases. Here a new platform based on a peptide-conjugated thiol-reactive aggregation-induced emission fluorogen (AIEgen), named MI-BTD-P (or D1), for labeling and tracking unfolded proteins in cells is reported. In vitro experiments with model proteins show that the non-fluorescent D1 only becomes highly fluorescent when reacted with the thiol group of free cysteine (Cys) residues on unfolded proteins but not glutathione or folded proteins with buried or surface exposed Cys. When the labeled unfolded proteins form aggregates, D1 fluorescence intensity is further increased, and fluorescence lifetime is prolonged. D1 is then used to measure unfolded protein loads in cells by flow cytometry and track the aggregate formation of the D1 labeled unfolded proteins using confocal microscopy. In combination with fluorescence lifetime imaging technique, the proteome at different folding statuses can be better differentiated, demonstrating the versatility of this new platform. The rational design of D1 demonstrates the outlook of incorporation of diverse functional groups to achieve maximal sensitivity and selectivity in biological samples.
Collapse
Affiliation(s)
- Soheila Sabouri
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Mengjie Liu
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Shouxiang Zhang
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Bicheng Yao
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Georgina Armendariz-Vidales
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Chong Duan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 4300078, China
| | - Xiaoding Lou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 4300078, China
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
5
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
6
|
Duan Y, Chen J, Jin Y, Tu Q, Wang S, Xiang J. Antibody-Free Determinations of Low-Mass, Soluble Oligomers of Aβ 42 and Aβ 40 by Planar Bilayer Lipid Membrane-Based Electrochemical Biosensor. Anal Chem 2021; 93:3611-3617. [PMID: 33571410 DOI: 10.1021/acs.analchem.0c05281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly. Abnormal aggregates of both β-amyloid peptide (Aβ) subtypes, Aβ42 and Aβ40, are the typical neuropathology hallmarks of AD. However, because of the lack of specific recognition elements such as an antibody and aptamer, it is difficult to differentiate and determine the oligomers of Aβ42 and Aβ40 in clinic. In this paper, we developed a planar bilayer lipid membrane (BLM)-based electrochemical biosensor. According to the dynamic differences on oligomer-induced BLM damage, both low-mass, soluble oligomers of Aβ42 and Aβ40 (L-Aβ42O and L-Aβ40O) were measured in turn by electrochemical impedance spectroscopy. The BLM was supported by a porous 11-mercaptoundecanoic acid layer on a gold electrode, which amplified the impedance signal corresponding to the membrane damage and improved the detection sensitivity. The weakly charged surface of the BLM ensured the low non-specific adsorption of coexisting proteins in cerebrospinal fluid (CSF). Using the electrochemical biosensor, L-Aβ42O was determined within 20 min, with a linear range from 5 to 500 pM and a detection limit of 3 pM. Meanwhile, L-Aβ40O was determined within 60 min, with a linear range from 60 pM to 6.0 nM and a detection limit of 26 pM. The recoveries in oligomer-spiked artificial CSF and human CSF samples confirmed the accuracy and applicability of this proposed method in clinic. This work provides an antibody-free, highly selective, and sensitive method for simultaneous detections of L-Aβ42O and L-Aβ40O in real CSF samples, which is significant for the early diagnosis and prognosis of AD.
Collapse
Affiliation(s)
- Yuemei Duan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jia Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan Jin
- Operation Center, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qiuyun Tu
- Department of Geriatrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Shuhui Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
7
|
Aziz AA, Siddiqui RA, Amtul Z. Engineering of fluorescent or photoactive Trojan probes for detection and eradication of β-Amyloids. Drug Deliv 2020; 27:917-926. [PMID: 32597244 PMCID: PMC8216438 DOI: 10.1080/10717544.2020.1785048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/04/2022] Open
Abstract
Trojan horse technology institutes a potentially promising strategy to bring together a diagnostic or cell-based drug design and a delivery platform. It provides the opportunity to re-engineer a novel multimodal, neurovascular detection probe, or medicine to fuse with blood-brain barrier (BBB) molecular Trojan horse. In Alzheimer's disease (AD) this could allow the targeted delivery of detection or therapeutic probes across the BBB to the sites of plaques and tangles development to image or decrease amyloid load, enhance perivascular Aβ clearance, and improve cerebral blood flow, owing principally to the significantly improved cerebral permeation. A Trojan horse can also be equipped with photosensitizers, nanoparticles, quantum dots, or fluorescent molecules to function as multiple targeting theranostic compounds that could be activated following changes in disease-specific processes of the diseased tissue such as pH and protease activity, or exogenous stimuli such as, light. This concept review theorizes the use of receptor-mediated transport-based platforms to transform such novel ideas to engineer systemic and smart Trojan detection or therapeutic probes to advance the neurodegenerative field.
Collapse
Affiliation(s)
- Amal A. Aziz
- Sir Wilfrid Laurier Secondary School, Thames Valley District School Board, London, Canada
| | - Rafat A. Siddiqui
- Nutrition Science and Food Chemistry Laboratory, Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| | - Zareen Amtul
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
8
|
Mora AK, Murudkar S, Shivran N, Mula S, Chattopadhyay S, Nath S. Monitoring the formation of insulin oligomers using a NIR emitting glucose-conjugated BODIPY dye. Int J Biol Macromol 2020; 166:1121-1130. [PMID: 33159943 DOI: 10.1016/j.ijbiomac.2020.10.267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/17/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Protein oligomers, which are formed due to the aggregation of protein molecules under physiological stress, are neurotoxic and responsible for several neurological diseases. Early detection of protein oligomers is essential for the timely intervention in the associated diseases. Although several probes have been developed for the detection of insoluble matured protein fibrils, fluorescent probes with emission in the near infrared (NIR) region for probing protein oligomers are very rare. In the present study we have designed and synthesized a glucose-conjugated BODIPY dye with emission in the NIR spectral range. Our detailed studies show that the new probe is not only capable of detecting matured fibrils but can also probe the formation of oligomers from the native protein. The new probe shows a large increase in its emission intensity upon association with oligomers and matured fibrils. Hence, the present probe has a great potential for the in vivo imaging of protein oligomers and matured fibrils. Detailed spectroscopic properties of the new probes in molecular solvents have been performed to understand its oligomers- and fibril- sensing mechanism.
Collapse
Affiliation(s)
- Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sushant Murudkar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Neelam Shivran
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | | | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
9
|
A KLVFFAE-Derived Peptide Probe for Detection of Alpha-Synuclein Fibrils. Appl Biochem Biotechnol 2019; 190:1411-1424. [PMID: 31776941 DOI: 10.1007/s12010-019-03197-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
Abstract
Aggregation of an amyloid protein, α-synuclein (αS), is a critical step in the neurodegenerative pathway of Parkinson's diseases (PD). Specific detection of amyloid conformers (i.e., monomers, oligomers, and fibrils) produced during αS aggregation is critical in better understanding a molecular basis of PD and developing a diagnostic tool. While various molecular probes are available for detection of αS fibrils, which may serve as a reservoir of toxic αS aggregate forms, these probes suffer from limited conformer-specificity and operational flexibility. In the present study, we explored the potential of non-self-aggregating peptides derived from the highly aggregation-prone KLVFFAE region of an amyloid protein, β-amyloid, as molecular probes for αS aggregates. We show that of the four peptides tested (KLVFWAK, ELVFWAE, and their C-terminal capping variants, all of which were attached with fluorescein isothiocyanate at their respective N-termini), KLVFWAK with C-terminal capping was selectively bound to αS fibrils over monomers and oligomers and readily used for monitoring αS fibrilization. Our analyses suggest that binding of the peptide to αS fibrils is mediated by both electrostatic and hydrophobic interactions. We anticipate that our peptide can readily be optimized for conformer-specificity and operational flexibility. Overall, this study presents the creation of a KLVFFAE-based molecular probe for αS fibrils and demonstrates fine-tuning of its conformer-specificity by terminal mutations and capping.
Collapse
|
10
|
Aliyan A, Cook NP, Martí AA. Interrogating Amyloid Aggregates using Fluorescent Probes. Chem Rev 2019; 119:11819-11856. [DOI: 10.1021/acs.chemrev.9b00404] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amir Aliyan
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran 1991633361
- Khatam University, Tehran, Iran 1991633356
| | - Nathan P. Cook
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | | |
Collapse
|
11
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
12
|
Zhou Y, Liu L, Hao Y, Xu M. Detection of Aβ Monomers and Oligomers: Early Diagnosis of Alzheimer's Disease. Chem Asian J 2016; 11:805-17. [DOI: 10.1002/asia.201501355] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Lantao Liu
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| | - Yuanqiang Hao
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
| | - Maotian Xu
- Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry; College of Chemistry and Chemical Engineering; Shangqiu Normal University; Shangqiu 476000 P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P. R. China
| |
Collapse
|
13
|
Teoh CL, Su D, Sahu S, Yun SW, Drummond E, Prelli F, Lim S, Cho S, Ham S, Wisniewski T, Chang YT. Chemical Fluorescent Probe for Detection of Aβ Oligomers. J Am Chem Soc 2015; 137:13503-9. [PMID: 26218347 PMCID: PMC4756585 DOI: 10.1021/jacs.5b06190] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aggregation of amyloid β-peptide (Aβ) is implicated in the pathology of Alzheimer's disease (AD), with the soluble, Aβ oligomeric species thought to be the critical pathological species. Identification and characterization of intermediate species formed during the aggregation process is crucial to the understanding of the mechanisms by which oligomeric species mediate neuronal toxicity and following disease progression. Probing these species proved to be extremely challenging, as evident by the lack of reliable sensors, due to their heterogeneous and transient nature. We describe here an oligomer-specific fluorescent chemical probe, BoDipy-Oligomer (BD-Oligo), developed through the use of the diversity-oriented fluorescent library approach (DOFLA) and high-content, imaging-based screening. This probe enables dynamic oligomer monitoring during fibrillogenesis in vitro and shows in vivo Aβ oligomers staining possibility in the AD mice model.
Collapse
Affiliation(s)
- Chai Lean Teoh
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 02-02 Helios, Biopolis, Singapore 138667, Singapore
| | - Dongdong Su
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 02-02 Helios, Biopolis, Singapore 138667, Singapore
| | - Srikanta Sahu
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 02-02 Helios, Biopolis, Singapore 138667, Singapore
| | - Seong-Wook Yun
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 02-02 Helios, Biopolis, Singapore 138667, Singapore
| | - Eleanor Drummond
- Department of Neurology and the Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, Room 802, 450 East 29th Street, New York, New York 10016, United States
| | - Frances Prelli
- Department of Neurology and the Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, Room 802, 450 East 29th Street, New York, New York 10016, United States
| | - Sulgi Lim
- Department of Chemistry and the Center for Fluctuating Thermodynamics, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 140-742, Korea
| | - Sunhee Cho
- Department of Chemistry and the Center for Fluctuating Thermodynamics, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 140-742, Korea
| | - Sihyun Ham
- Department of Chemistry and the Center for Fluctuating Thermodynamics, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 140-742, Korea
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry and the Center for Cognitive Neurology, New York University School of Medicine, Alexandria ERSP, Room 802, 450 East 29th Street, New York, New York 10016, United States
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, 02-02 Helios, Biopolis, Singapore 138667, Singapore
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
14
|
Aoraha E, Candreva J, Kim JR. Engineering of a peptide probe for β-amyloid aggregates. MOLECULAR BIOSYSTEMS 2015; 11:2281-9. [DOI: 10.1039/c5mb00280j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A non-self-aggregating peptide ligand for β-amyloid aggregates created by simple point mutation of an β-amyloid-derived segment.
Collapse
Affiliation(s)
- Edwin Aoraha
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | - Jason Candreva
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| |
Collapse
|
15
|
Eckroat TJ, Mayhoub AS, Garneau-Tsodikova S. Amyloid-β probes: Review of structure-activity and brain-kinetics relationships. Beilstein J Org Chem 2013; 9:1012-44. [PMID: 23766818 PMCID: PMC3678428 DOI: 10.3762/bjoc.9.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022] Open
Abstract
The number of people suffering from Alzheimer's disease (AD) is expected to increase dramatically in the coming years, placing a huge burden on society. Current treatments for AD leave much to be desired, and numerous research efforts around the globe are focused on developing improved therapeutics. In addition, current diagnostic tools for AD rely largely on subjective cognitive assessment rather than on identification of pathophysiological changes associated with disease onset and progression. These facts have led to numerous efforts to develop chemical probes to detect pathophysiological hallmarks of AD, such as amyloid-β plaques, for diagnosis and monitoring of therapeutic efficacy. This review provides a survey of chemical probes developed to date for AD with emphasis on synthetic methodologies and structure-activity relationships with regards to affinity for target and brain kinetics. Several probes discussed herein show particularly promising results and will be of immense value moving forward in the fight against AD.
Collapse
Affiliation(s)
- Todd J Eckroat
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, United States
- Life Sciences Institute and Department of Medicinal Chemistry, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI, 48109-2216, United States
| | - Abdelrahman S Mayhoub
- Life Sciences Institute and Department of Medicinal Chemistry, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI, 48109-2216, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, United States
| |
Collapse
|