1
|
Masiuk US, Faletrov YV, Kananovich DG, Mineyeva IV. Stereodivergent Assembly of 2,6- cis- and - trans-Tetrahydropyrans via Base-Mediated Oxa-Michael Cyclization: The Key Role of the TMEDA Additive. J Org Chem 2023; 88:355-370. [PMID: 36495268 DOI: 10.1021/acs.joc.2c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stereodivergent synthesis of cis- and trans-2,6-disubstituted tetrahydropyrans (THPs) via sodium hexamethyldisilazide-promoted oxa-Michael cyclization of (E)-ζ-hydroxy α,β-unsaturated esters is presented. The cyclization affords the kinetically favored trans-THPs with high stereoselectivity (dr up to 93:7) at a low temperature (-78 °C), while the room-temperature reaction does not produce the thermodynamically preferred cis-THPs as major products and occurs with poor stereocontrol. The addition of tetramethylethylenediamine (TMEDA) significantly improves the stereochemical outcome of the room-temperature cyclization and allows attaining high cis-selectivity (dr up to 99:1). The remarkable effect of TMEDA indicates that the sodium cation plays an important role in controlling the stereoselectivity of the thermodynamically driven process, that is, complexation of the cation with the cyclization products results in diminished selectivity. DFT calculations support this conclusion, indicating a greater difference in Gibbs energies of sodium-free cis- and trans-enolates compared to the respective sodium chelate complexes. The synthetic utility of the method has been demonstrated by the formal syntheses of (+)-Neopeltolide and (-)-Diospongin B and the total synthesis of (-)-Diospongin A.
Collapse
Affiliation(s)
- Uladzimir S Masiuk
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Yaroslav V Faletrov
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| | - Dzmitry G Kananovich
- School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Iryna V Mineyeva
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| |
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Ashtekar KD, Gholami H, Moemeni M, Chakraborty A, Kiiskila L, Ding X, Toma E, Rahn C, Borhan B. A Mechanistically Inspired Halenium Ion Initiated Spiroketalization: Entry to Mono- and Dibromospiroketals. Angew Chem Int Ed Engl 2022; 61:e202115173. [PMID: 34881491 PMCID: PMC9254888 DOI: 10.1002/anie.202115173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/09/2022]
Abstract
Employing halenium affinity (HalA) as a guiding tool, the weak nucleophilic character of alkyl ketones was modulated by the templating effect of a tethered 2-tetrahydropyranyl(THP)-protected alcohol towards realizing a bromenium ion initiated spiroketalization cascade. Addition of ethanol aided an early termination of the cascade by scavenging the THP group after the halofunctionalization stage, furnishing monobromospiroketals. Alternatively, exclusion of ethanol from the reaction mixture biased the transient oxocarbenium towards α-deprotonation that precedes a second bromofunctionalization event thus, furnishing dibrominated spiroketals. The regio- and stereoselectivity exploited in the current methodology provides a novel and rapid access to the dibrominated spiroketal motifs exhibited by several natural products.
Collapse
Affiliation(s)
| | | | - Mehdi Moemeni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | - Ankush Chakraborty
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | - Lindsey Kiiskila
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | - Xinliang Ding
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | - Edmond Toma
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | - Christopher Rahn
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 (USA)
| | | |
Collapse
|
4
|
Ashtekar KD, Gholami H, Moemeni M, Chakraborty A, Kiiskila L, Ding X, Toma E, Rahn C, Borhan B. A Mechanistically Inspired Halenium Ion Initiated Spiroketalization: Entry to Mono‐ and Dibromospiroketals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kumar Dilip Ashtekar
- Cancer Biology Institute Yale School of Medicine West Haven Connecticut 06516 USA
| | - Hadi Gholami
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| | - Mehdi Moemeni
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| | - Ankush Chakraborty
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| | - Lindsey Kiiskila
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| | - Xinliang Ding
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| | - Edmond Toma
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| | - Christopher Rahn
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| | - Babak Borhan
- Department of Chemistry Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
5
|
Sato T, Suto T, Nagashima Y, Mukai S, Chida N. Total Synthesis of Skipped Diene Natural Products. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takahiro Suto
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiyuki Nagashima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Shori Mukai
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
6
|
Lam NYS, Stockdale TP, Anketell MJ, Paterson I. Conquering peaks and illuminating depths: developing stereocontrolled organic reactions to unlock nature's macrolide treasure trove. Chem Commun (Camb) 2021; 57:3171-3189. [PMID: 33666631 DOI: 10.1039/d1cc00442e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural complexity and biological importance of macrolide natural products has inspired the development of innovative strategies for their chemical synthesis. With their dense stereochemical content, high level of oxygenation and macrocyclic cores, we viewed the efficient total synthesis of these valuable compounds as an aspirational driver towards developing robust methods and strategies for their construction. Starting out from the initial development of our versatile asymmetric aldol methodology, this personal perspective reflects on an adventurous journey, with all its trials, tribulations and serendipitous discoveries, across the total synthesis, in our group, of a representative selection of six macrolide natural products of marine and terrestrial origin - swinholide A, spongistatin 1, spirastrellolide A, leiodermatolide, chivosazole F and actinoallolide A.
Collapse
Affiliation(s)
- Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
7
|
Manda JN, Butler BB, Aponick A. Synthesis and Biological Evaluation of the Southern Hemisphere of Spirastrellolide A and Analogues. J Org Chem 2020; 85:13694-13709. [PMID: 33111529 DOI: 10.1021/acs.joc.0c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and biological evaluation of truncated spirastrellolide A analogues comprised of the southern hemisphere against protein phosphatase 2A are described. A convergent synthesis was designed featuring two gold-catalyzed cyclization reactions, specifically, a dehydrative cyclization of monoallylic diols for the synthesis of the tetrahydropyran (A-ring) and a regioselective spiroketalization for the efficient generation of the [6,6]-spiroketal (B, C-ring system). The synthesis of the southern hemisphere of spirastrellolide A was achieved involving the longest linear sequence of 19 steps. A total of eight spirastrellolide A analogues were synthesized, and preliminary PP2A enzyme assay inhibition studies were performed for the first time on analogues of the southern hemisphere. Several analogues showed inhibition, which is a positive indication and perhaps suggests that the unsaturated spiroketal fragment might be crucial to induce PP2A inhibition.
Collapse
Affiliation(s)
- Jagadeesh Nagendra Manda
- Florida Center for Heterocyclic Compounds and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Barry B Butler
- Florida Center for Heterocyclic Compounds and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Fukuda H, Ikeda H, Muromoto R, Hirashima K, Ishimura K, Fujiwara K, Aoki-Saito H, Hisada T, Watanabe M, Ishihara J, Matsuda T, Shuto S. Synthesis of Resolvin E3, a Proresolving Lipid Mediator, and Its Deoxy Derivatives: Identification of 18-Deoxy-resolvin E3 as a Potent Anti-Inflammatory Agent. J Org Chem 2020; 85:14190-14200. [PMID: 32942849 DOI: 10.1021/acs.joc.0c01701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We synthesized RvE3 and its deoxy derivatives, 17-deoxy-RvE3 and 18-deoxy-RvE3, by a common route via Sonogashira coupling as a key step. The evaluation of their anti-inflammatory activities revealed that 18-deoxy-RvE3 was remarkably more potent than the parent RvE3 and significantly active at a 300 fg dose in mice; additionally, 17-deoxy-RvE3 was significantly less potent than the parent RvE3. For the first time, we found that the 17-hydroxy group of RvE3 is very important for anti-inflammatory activity.
Collapse
Affiliation(s)
- Hayato Fukuda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroyuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ryuta Muromoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Koki Hirashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kohei Ishimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Haruka Aoki-Saito
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi 371-8511, Japan
| | - Takeshi Hisada
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi 371-8511, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Jun Ishihara
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tadashi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
9
|
|
10
|
Henry JL, Wilson MR, Mulligan MP, Quinn TR, Sackett DL, Taylor RE. Synthesis, conformational preferences, and biological activity of conformational analogues of the microtubule-stabilizing agents, (-)-zampanolide and (-)-dactylolide. MEDCHEMCOMM 2019; 10:800-805. [PMID: 31191870 PMCID: PMC6540953 DOI: 10.1039/c9md00164f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023]
Abstract
Zampanolide and dactylolide are microtubule-stabilizing polyketides possessing potent cytotoxicity towards a variety of cancer cell lines. Using our understanding of the conformational preferences of the macrolide core in both natural products, we hypothesized that analogues lacking the C17-methyl group would maintain the necessary conformation for bioactivity while reducing the number of synthetic manipulations necessary for their synthesis. Analogues 3, 4 and 5 were prepared via total synthesis, and their conformational preferences were determined through computational and high-field NMR studies. While no observable activities were present in dactylolide analogues 3 and 4, zampanolide analogue 5 exhibited sub-micromolar cytotoxicity. Herein, we describe these efforts towards understanding the structure- and conformation-activity relationships of dactylolide and zampanolide.
Collapse
Affiliation(s)
- Jeffrey L Henry
- The Warren Family Research Center for Drug Discovery and Development and the Department of Chemistry & Biochemistry , University of Notre Dame , Notre Dame , IN 46556-5670 , USA .
| | - Matthew R Wilson
- Vertex Pharmaceuticals , 50 Northern Ave , Boston , MA 02210 , USA
| | - Michael P Mulligan
- The Warren Family Research Center for Drug Discovery and Development and the Department of Chemistry & Biochemistry , University of Notre Dame , Notre Dame , IN 46556-5670 , USA .
| | - Taylor R Quinn
- The Warren Family Research Center for Drug Discovery and Development and the Department of Chemistry & Biochemistry , University of Notre Dame , Notre Dame , IN 46556-5670 , USA .
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD 20892 , USA
| | - Richard E Taylor
- The Warren Family Research Center for Drug Discovery and Development and the Department of Chemistry & Biochemistry , University of Notre Dame , Notre Dame , IN 46556-5670 , USA .
| |
Collapse
|
11
|
Phillips AW, Anketell MJ, Balan T, Lam NYS, Williams S, Paterson I. Toward the total synthesis of patellazole B: synthesis of an advanced C1-C25 fragment corresponding to the macrocyclic skeleton. Org Biomol Chem 2019; 16:8286-8291. [PMID: 30209471 DOI: 10.1039/c8ob01621f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The patellazoles are a family of complex marine macrolides that exhibit potent cytotoxicity against cancer cell lines. However, despite extensive characterisation efforts, their full stereochemical assignment has remained elusive. We report our approach towards the synthesis-enabled structural elucidation of patellazole B (4), a 24-membered macrolide with 16 stereocentres and a signature thiazole-containing side chain. Our plan hinges upon isolating the unknown stereocentres into a single C20-C25 fragment to facilitate the flexible assembly of various possible diastereomers of an advanced C1-C25 fragment. Towards this end, a highly convergent and modular synthesis of one candidate diastereomer 37, corresponding to the patellazole B macrocyclic skeleton, has been achieved based on the strategic application of stereocontrolled aldol methodology, combined with Suzuki and Heck cross-coupling reactions.
Collapse
Affiliation(s)
- Andrew W Phillips
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Wolling M, Kirschning A. Synthesis of the Aglycon of the Antibiotic Disciformycin. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Wolling
- Institut für Organische Chemie; Gottfried Wilhelm Leibniz Universität Hannover; Schneiderberg 1 B 30167 Hannover Germany
| | - Andreas Kirschning
- Institut für Organische Chemie; Gottfried Wilhelm Leibniz Universität Hannover; Schneiderberg 1 B 30167 Hannover Germany
| |
Collapse
|
13
|
Challenges and discoveries in the total synthesis of complex polyketide natural products. J Antibiot (Tokyo) 2017; 71:215-233. [DOI: 10.1038/ja.2017.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022]
|
14
|
Abstract
The synthesis of the C9-C25 subunit of the marine natural product spirastrellolide B is reported. The key synthetic features included the union of the two key fragments 5 and 6 via a Suzuki-Miyaura coupling reaction and a late-stage, one-pot sequential deprotection/cascade Achmatowicz rearrangement-spiroketalization to install the key spirocyclic intermediate present in the C9-C25 fragment of spirastrellolide B. The synthesis of the C9-C16 fragment 6 was accomplished via a phosphate tether mediated ring-closing metathesis (RCM), a subsequent hydroboration-oxidation protocol, followed by other stereoselective transformations in a facile manner. The spirocyclic intermediate was further functionalized utilizing a Lindlar/NaBH4 reduction protocol to furnish the C9-C25 subunit 3.
Collapse
Affiliation(s)
- Soma Maitra
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Mahipal Bodugam
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Salim Javed
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| | - Paul R Hanson
- Department of Chemistry, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045-7582, United States
| |
Collapse
|
15
|
Chung WJ, Vanderwal CD. Stereoselective Halogenation in Natural Product Synthesis. Angew Chem Int Ed Engl 2016; 55:4396-434. [PMID: 26833878 PMCID: PMC6028003 DOI: 10.1002/anie.201506388] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/27/2015] [Indexed: 01/23/2023]
Abstract
At last count, nearly 5000 halogenated natural products have been discovered. In approximately half of these compounds, the carbon atom to which the halogen is bound is sp(3) -hybridized; therefore, there are an enormous number of natural products for which stereocontrolled halogenation must be a critical component of any synthesis strategy. In this Review, we critically discuss the methods and strategies used for stereoselective introduction of halogen atoms in the context of natural product synthesis. Using the successes of the past, we also attempt to identify gaps in our synthesis technology that would aid the synthesis of halogenated natural products, as well as existing methods that have not yet seen application in complex molecule synthesis. The chemistry described herein demonstrates yet again how natural products continue to provide the inspiration for critical advances in chemical synthesis.
Collapse
Affiliation(s)
- Won-jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | | |
Collapse
|
16
|
Chung WJ, Vanderwal CD. Stereoselektive Halogenierungen in der Naturstoffsynthese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201506388] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Won-jin Chung
- Department of Chemistry; Gwangju Institute of Science and Technology; Gwangju Südkorea
| | | |
Collapse
|
17
|
MacGregor CI, Han BY, Goodman JM, Paterson I. Toward the stereochemical assignment and synthesis of hemicalide: DP4f GIAO-NMR analysis and synthesis of a reassigned C16–C28 subunit. Chem Commun (Camb) 2016; 52:4632-5. [DOI: 10.1039/c6cc01074a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational DP4f GIAO-NMR analysis resulted in a stereochemical reassignment of hemicalide, supported by improved NMR correlations with a C13–C25 fragment.
Collapse
|
18
|
Takamura H, Fujiwara T, Kawakubo Y, Kadota I, Uemura D. Stereoselective Synthesis of the Proposed C79-C104 Fragment of Symbiodinolide. Chemistry 2015; 22:1979-1983. [DOI: 10.1002/chem.201503880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka Kita-ku Okayama 700-8530 Japan
| | - Takayuki Fujiwara
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka Kita-ku Okayama 700-8530 Japan
| | - Yohei Kawakubo
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka Kita-ku Okayama 700-8530 Japan
| | - Isao Kadota
- Department of Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka Kita-ku Okayama 700-8530 Japan
| | - Daisuke Uemura
- Department of Chemistry; Faculty of Science; Kanagawa University; 2946 Tsuchiya Hiratsuka 259-1293 Japan
| |
Collapse
|
19
|
Sokolsky A, Wang X, Smith AB. Spirastrellolide E: Synthesis of an advanced C(1)-C(24) southern hemisphere. Tetrahedron Lett 2015; 56:3160-3164. [PMID: 26097261 DOI: 10.1016/j.tetlet.2014.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis of a C(1)-C(24) advanced southern hemisphere fragment towards the total synthesis of spirastrellolide E has been achieved. Highlights of the route include a highly convergent Type I Anion Relay Chemistry (ARC) tactic for fragment assembly, in conjunction with a directed, regioselective gold-catalyzed alkyne functionalization to generate the central unsaturated [6,6]-spiroketal.
Collapse
Affiliation(s)
- Alexander Sokolsky
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Xiaozhao Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
20
|
Sokolsky A, Cattoen M, Smith AB. Synthesis of a C(1)-C(23) fragment for spirastrellolide E: development of a mechanistic rationale for spiroketalization. Org Lett 2015; 17:1898-901. [PMID: 25844543 PMCID: PMC4450744 DOI: 10.1021/acs.orglett.5b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Synthetic
analysis of spirastrellolide E envisioned to entail a
cross-metathesis union of the northern and southern hemispheres followed
by a Sharpless epoxidation/methylation sequence to achieve the C(22,23)
stereogenicity leads to the design of a C(1)–C(23) advanced
southern hemisphere exploiting a gold-catalyzed directed spiroketalization
as a key step. Stereochemical analysis of this strategic transformation
provides insight on the impact of the directing group carbinol stereogenicity
on the reaction efficiency and, in turn, permits the conversion of
the minor isomer of the spiroketal precursor to the requisite congener
for successful spiroketalization.
Collapse
Affiliation(s)
- Alexander Sokolsky
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Martin Cattoen
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amos B Smith
- Department of Chemistry, Laboratory for Research on the Structure of Matter and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
Paterson I, Housden MP, Cordier CJ, Burton PM, Mühlthau FA, Loiseleur O. Synthetic studies toward the brasilinolides: controlled assembly of a protected C1–C38 polyol based on fragment union by complex aldol reactions. Org Biomol Chem 2015; 13:5716-33. [DOI: 10.1039/c5ob00498e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular strategy for the synthesis of the immunosuppressant macrolide brasilinolide A was adopted based on coupling suitable northern and southern fragments.
Collapse
|
22
|
Liu H, Li X. Synthesis of cyclogentiotriose by macrocyclization via a ring-closing glycosylation. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wu YB, Tang Y, Luo GY, Chen Y, Hsung RP. An Approach toward Constructing the Trioxadispiroketal Core in the DEF-Ring of (+)-Spirastrellolide A. Org Lett 2014; 16:4550-3. [DOI: 10.1021/ol502103b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yi-Biao Wu
- School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
| | - Yu Tang
- School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
| | - Guo-Ying Luo
- School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
| | - Yang Chen
- School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
| | - Richard P. Hsung
- Division of Pharmaceutical Sciences, School of Pharmacy, and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705 United States
| |
Collapse
|
24
|
|
25
|
Takamura H, Fujiwara T, Kadota I, Uemura D. Stereoselective synthesis of the C79-C97 fragment of symbiodinolide. Beilstein J Org Chem 2013; 9:1931-5. [PMID: 24204403 PMCID: PMC3817580 DOI: 10.3762/bjoc.9.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022] Open
Abstract
Symbiodinolide is a polyol marine natural product with a molecular weight of 2860. Herein, a streamlined synthesis of the C79–C97 fragment of symbiodinolide is described. In the synthetic route, a spiroacetalization, a Julia–Kocienski olefination, and a Sharpless asymmetric dihydroxylation were utilized as the key transformations.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
26
|
Wang CC, Tang Y, Yang K, Li XY, Wu YB, Hsung RP. A carbohydrate based chiron approach to the lactone intermediate employed in the synthesis of BC-ring fragment of (+)-spirastrellolide A. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Kobayashi S, Endo T, Yoshino T, Schneider U, Ueno M. Allylation reactions of aldehydes with allylboronates in aqueous media: unique reactivity and selectivity that are only observed in the presence of water. Chem Asian J 2013; 8:2033-45. [PMID: 23775867 DOI: 10.1002/asia.201300440] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 11/07/2022]
Abstract
Zn(OH)2-catalyzed allylation reactions of aldehydes with allylboronates in aqueous media have been developed. In contrast to conventional allylboration reactions of aldehydes in organic solvents, the α-addition products were obtained exclusively. A catalytic cycle in which the allylzinc species was generated through a B-to-Zn exchange process is proposed and kinetic studies were performed. The key intermediate, an allylzinc species, was detected by HRMS (ESI) analysis and by online continuous MS (ESI) analysis. This analysis revealed that, in aqueous media, the allylzinc species competitively reacted with the aldehydes and water. An investigation of the reactivity and selectivity of the allylzinc species by using several typical allylboronates (6a-6d) clarified several important roles of water in this allylation reaction. The allylation reactions of aldehydes with allylboronic acid 2,2-dimethyl-1,3-propanediol esters proceeded smoothly in the presence of catalytic amounts of Zn(OH)2 and achiral ligand 4d in aqueous media to afford the corresponding syn-adducts in high yields with high diastereoselectivities. In all cases, the α-addition products were obtained and a wide substrate scope was tolerated. Furthermore, this reaction was applied to asymmetric catalysis by using chiral ligand 9. Based on the X-ray structure of the Zn-9 complex, several nonsymmetrical chiral ligands were also found to be effective. This reaction was further applied to catalytic asymmetric alkylallylation, chloroallylation, and alkoxyallylation processes and the synthetic utility of these reactions has been demonstrated.
Collapse
Affiliation(s)
- Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
28
|
Paterson I, Maltas P, Anderson EA. Total synthesis of (+)-spirastrellolide A methyl ester: Challenges and discoveries. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-13-01-01] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review focuses on recent synthetic efforts by our group towards spirastrellolide A methyl ester, a complex marine macrolide containing two spiroacetal ring systems that shows promising anticancer properties. The evolution of a flexible, modular strategy leading to the first total synthesis of (+)-spirastrellolide A methyl ester, and the associated challenges overcome, are highlighted, particularly in dealing with the initial structural ambiguities. This work enabled the development of an improved second-generation synthesis, which revealed a critical dependence of the key macrolactonization step on the nature of the protecting groups in the linker region between the spiroacetal motifs.
Collapse
Affiliation(s)
- Ian Paterson
- 1University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | - Philip Maltas
- 1University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
29
|
Arlt A, Benson S, Schulthoff S, Gabor B, Fürstner A. A total synthesis of spirastrellolide A methyl ester. Chemistry 2013; 19:3596-608. [PMID: 23420709 DOI: 10.1002/chem.201203965] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Indexed: 01/30/2023]
Abstract
A concise total synthesis of spirastrellolide A methyl ester (1 a, R(1) =Me) as the parent compound of a series of highly cytotoxic marine macrolides is disclosed, which exploits and expands the flexibility of a synthesis plan previously developed by our group en route to the sister compound spirastrellolide F methyl ester (6 a, R(1) =Me). Key to success was the masking of the signature Δ(15,16) -bond of 1 a as a C16-carbonyl group until after the stereogenic center at C24 had been properly set by a highly selective hydrogenation of the C24 exo-methylene precursor 66. Conformational control over the macrocyclic frame allowed the proper stereochemical course to be dialed into this reduction process. The elaboration of the C16 ketone to the C15-C16 double bond was accomplished by a chemoselective alkenyl triflate formation followed by a palladium-catalyzed hydride delivery. The role of the ketone at C16 as a strategic design element is also evident up-stream of the key intermediate 66, the assembly of which hinged upon the addition of the polyfunctionalized dithiane 37 to the similarly elaborate aldehyde fragment 46. Other crucial steps of the total synthesis were an alkyl-Suzuki coupling and a Yamaguchi lactonization that allowed the Northern and the Southern sector of the target to be stitched together and the macrocyclic perimeter to be forged. The lateral chain comprising the remote C46 stereocenter was finally attached to the core region by a modified Julia-Kocienski olefination. The preparation of the individual building blocks led to some methodological spin-offs, amongst which the improved procedure for the N-O-bond cleavage of isoxazolines by zero-valent molybdenum and the ozonolysis of a double bond in the presence of other oxidation-prone functionality are most noteworthy. Preliminary biological data suggest that the entire carbon framework, that is the macrocyclic core plus the lateral chain, might be necessary for high cytotoxicity.
Collapse
Affiliation(s)
- Alexander Arlt
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | | | | | | | | |
Collapse
|
30
|
Sabitha G, Rao AS, Yadav JS. Synthesis of the C1–C25 southern domain of spirastrellolides B and F. Org Biomol Chem 2013; 11:7218-31. [DOI: 10.1039/c3ob41345d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Wang X, Paxton TJ, Li N, Smith AB. Spirastrellolide B: construction of the C(26)-C(40) northern hemisphere and a related [5,5,7]-bis-spiroketal analogue. Org Lett 2012; 14:3998-4001. [PMID: 22827604 DOI: 10.1021/ol301795a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differential synthetic access to an advanced C26-C40 northern hemisphere fragment of spirastrellolide B and to a related [5,5,7]-bis-spiroketal analogue from a common intermediate has been achieved. Central to this venture is the regiocontrolled functionalization of a C(31-32) alkyne, exploiting different transition metal catalysts (cf. Pt(II) and Au(I)).
Collapse
Affiliation(s)
- Xiaozhao Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
32
|
Paterson I, Anderson EA, Dalby SM, Lim JH, Maltas P. The stereocontrolled total synthesis of spirastrellolide A methyl ester. Fragment coupling studies and completion of the synthesis. Org Biomol Chem 2012; 10:5873-86. [DOI: 10.1039/c2ob25101a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|