1
|
Barthwal R, Raje S, Pandav K. Structural basis for stabilization of human telomeric G-quadruplex [d-(TTAGGGT)] 4 by anticancer drug epirubicin. Bioorg Med Chem 2020; 28:115761. [PMID: 32992248 DOI: 10.1016/j.bmc.2020.115761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Anthracycline anticancer drugs show multiple strategies of action on gene functioning by regulation of telomerase enzyme by apoptotic factors, e.g. ceramide level, p53 activity, bcl-2 protein levels, besides inhibiting DNA/RNA synthesis and topoisomerase-II action. We report binding of epirubicin with G-quadruplex (G4) DNA, [d-(TTAGGGT)]4, comprising human telomeric DNA sequence TTAGGG, using 1H and 31P NMR spectroscopy. Diffusion ordered spectroscopy, sequence selective changes in chemical shift (~0.33 ppm) and line broadening in DNA signals suggest formation of a well-defined complex. Presence of sequential nuclear Overhauser enhancements at all base quartet steps and absence of large downfield shifts in 31P resonances preclude intercalative mode of interaction. Restrained molecular dynamics simulations using AMBER force field incorporating intermolecular drug to DNA interproton distances, involving ring D protons of epirubicin depict external binding close to T1-T2-A3 and G6pT7 sites. Binding induced thermal stabilization of G4 DNA (~36 °C), obtained from imino protons and differential scanning calorimetry, is likely to come in the way of telomerase association with telomeres. The findings pave the way for drug-designing with modifications at ring D and daunosamine sugar.
Collapse
Affiliation(s)
- Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kumud Pandav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
2
|
Suseela YV, Satha P, Murugan NA, Govindaraju T. Recognition of G-quadruplex topology through hybrid binding with implications in cancer theranostics. Theranostics 2020; 10:10394-10414. [PMID: 32929356 PMCID: PMC7482797 DOI: 10.7150/thno.48675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
The selective recognition and imaging of oncogene specific G-quadruplex (GQ) structures holds great promise in the development of diagnostic therapy (theranostics) for cancer and has been challenging due to their structural dynamics and diversity. We report selective recognition of GQ by a small molecule through unique hybrid loop stacking and groove binding mode with turn on far-red fluorescence response and anticancer activity demonstrating the potential implications for GQ-targeted cancer theranostics. Methods: Biophysical investigation reveal the turn on far-red emission property of TGP18 for selective recognition of GQ. In cellulo studies including DNA damage and oxidative stress evaluation guided us to perform in vitro (3D spheroid) and in vivo (xenograft mice model) anti-cancer activity, and tumor tissue imaging to assess the theranostic potential of TGP18. Results: Neocuproine-based far-red turn on fluorescence probe TGP18 shows GQ-to-duplex selectivity and specifically recognizes BCL-2 GQ with high affinity through a unique hybrid binding mode involving loop-stacking and groove interactions. Our study reveals that the selective recognition originating from the distinct loop structure of GQ that alters the overall probe interaction and binding affinity. TGP18 binding to anti-apoptotic BCL-2 GQ ablates the pro-survival function and elicit anti-cancer activity by inducing apoptosis in cancer cells. We deciphered that inhibition of BCL-2 transcription synergized with signaling cascade of nucleolar stress, DNA damage and oxidative stress in triggering apoptosis signaling pathway. Conclusion: Intervention of GQ mediated lethality by TGP18 has translated into anti-cancer activity in both in vitro 3D spheroid culture and in vivo xenograft models of lung and breast cancer with superior efficacy for the former. In vivo therapeutic efficacy supplemented with tumor 3D spheroid and tissue imaging potential define the role of TGP18 in GQ-targeted cancer theranostics.
Collapse
|
3
|
|
4
|
Barthwal R, Raje S, Pandav K. Structural basis for stabilization of human telomeric G-quadruplex [d-(TTAGGGT)] 4 by anticancer drug adriamycin. J Biomol Struct Dyn 2020; 39:795-815. [PMID: 32070245 DOI: 10.1080/07391102.2020.1730969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Besides inhibiting DNA duplication, DNA dependent RNA synthesis and topoisomerase-II enzyme action, anticancer drug adriamycin is found to cause telomere dysfunction and shows multiple strategies of action on gene functioning. We present evidence of binding of adriamycin to parallel stranded intermolecular [d-(TTAGGGT)]4 G-quadruplex DNA comprising human telomeric DNA by proton and phosphorus-31 nuclear magnetic resonance spectroscopy. Diffusion ordered spectroscopy shows formation of complex between the two molecules. Changes in chemical shift and line broadening of DNA and adriamycin protons suggest participation of specific chemical groups/moieties in interaction. Presence of sequential nuclear Overhauser enhancements at all base quartet steps and absence of large downfield shifts in 31P resonances give clear proof of absence of intercalation of adriamycin chromophore between base quartets. Restrained molecular dynamics simulations using observed 15 short intermolecular inter proton distance contacts depict stacking of ring D of adriamycin with terminal G6 quartet by displacing T7 base and external groove binding close to T1-T2-A3 bases. The disappearance of imino protons monitored as a function of temperature and differential scanning calorimetry experiments yield thermal stabilization of 24 °C, which is likely to come in the way of telomerase association with telomeres. The findings pave the way for design of alternate anthracycline based drugs with specific modifications at ring D to enhance induced thermal stabilization and use alternate mechanism of binding to G-quadruplex DNA for interference in functional pathway of telomere maintenance by telomerase enzyme besides their well known action on duplex DNA. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kumud Pandav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
5
|
Raje S, Pandav K, Barthwal R. Binding of anticancer drug adriamycin to parallel G‐quadruplex DNA [d‐(TTAGGGT)]
4
comprising human telomeric DNA leads to thermal stabilization: A multiple spectroscopy study. J Mol Recognit 2019; 33:e2815. [DOI: 10.1002/jmr.2815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Shailja Raje
- Department of BiotechnologyIndian Institute of Technology Roorkee Roorkee India
| | - Kumud Pandav
- Department of BiotechnologyIndian Institute of Technology Roorkee Roorkee India
| | - Ritu Barthwal
- Department of BiotechnologyIndian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
6
|
Raje S, Pandav K, Barthwal R. Dual mode of binding of anti cancer drug epirubicin to G-quadruplex [d-(TTAGGGT)] 4 containing human telomeric DNA sequence induces thermal stabilization. Bioorg Med Chem 2019; 27:115131. [PMID: 31685331 DOI: 10.1016/j.bmc.2019.115131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022]
Abstract
Epirubicin exerts its anti cancer action by blocking DNA/RNA synthesis and inhibition of topoisomerase-II enzyme. Recent reports on its influence on telomere maintenance, suggest interaction with G-quadruplex DNA leading to multiple strategies of action. The binding of epirubicin with parallel stranded inter molecular G-quadruplex DNA [d-(TTAGGGT)]4 comprising human telomeric DNA sequence TTAGGG was investigated by absorption, fluorescence, circular dichroism and nuclear magnetic resonance spectroscopy. The epirubicin binds as monomer to G-quadruplex DNA with affinity, Kb1 = 3.8 × 106 M-1 and Kb2 = 2.7 × 106 M-1, at two independent sites externally. The specific interactions induce thermal stabilization of DNA by 13.2-26.3 °C, which is likely to come in the way of telomere association with telomerase enzyme and contribute to epirubicin-induced apoptosis in cancer cell lines. The findings pave the way for drug designing in view of the possibility of altering substituent groups on anthracyclines to enhance efficacy using alternate mechanism of its interaction with G4 DNA, causing interference in telomere maintenance pathway by inducing telomere dysfunction.
Collapse
Affiliation(s)
- Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kumud Pandav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
7
|
Raje S, Barthwal R. Molecular recognition of 3+1 hybrid human telomeric G-quadruplex DNA d-[AGGG(TTAGGG) 3] by anticancer drugs epirubicin and adriamycin leads to thermal stabilization. Int J Biol Macromol 2019; 139:1272-1287. [PMID: 31421170 DOI: 10.1016/j.ijbiomac.2019.08.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
Recent reports suggest influence of anti-cancer anthracyclines on telomere dysfunction and their possible interaction with G-quadruplex (G4) DNA as an alternate pathway to apoptosis. We have investigated interaction of epirubicin and adriamycin with G4 DNA [d-AGGG(TTAGGG)3] comprising human telomeric DNA sequence by surface plasmon resonance, absorption, fluorescence, circular dichroism and thermal denaturation. Epirubicin and adriamycin bind with affinity, Kb, = 2.5×105 and 5.2×105M-1, respectively in monomeric form leading to decrease in absorbance, fluorescence quenching and ellipticity changes without any significant shift in absorption emission maxima with corresponding induced thermal stabilization by 13.0 and 11.6°C in K+ rich solution. Na+ ions did not induce any thermal stabilization. Molecular docking confirmed external binding at grooves and loops of G4 DNA involving 4OCH3 of ring D, 9COCH2OH of ring A, 4'OH/H and 3'NH3+ of daunosamine sugar. Thermal stabilization induced by specific interactions is likely to hamper telomere association with telomerase enzyme and contribute to drug-induced apoptosis in cancer cell lines besides causing damage to duplex DNA. The findings pave the way for drug designing in view of immense possibilities of altering substituent groups on anthracyclines for enhancement of efficacy, reduced cell toxicity as well as specificity towards G-quadruplex DNA.
Collapse
Affiliation(s)
- Shailja Raje
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
8
|
Xie X, Zuffo M, Teulade-Fichou MP, Granzhan A. Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of mono- and distyryl dye libraries. Beilstein J Org Chem 2019; 15:1872-1889. [PMID: 31467609 PMCID: PMC6693400 DOI: 10.3762/bjoc.15.183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
A library of 52 distyryl and 9 mono-styryl cationic dyes was synthesized and investigated with respect to their optical properties, propensity to aggregation in aqueous medium, and capacity to serve as fluorescence “light-up” probes for G-quadruplex (G4) DNA and RNA structures. Among the 61 compounds, 57 dyes showed preferential enhancement of fluorescence intensity in the presence of one or another G4-DNA or RNA structure, while no dye displayed preferential response to double-stranded DNA or single-stranded RNA analytes employed at equivalent nucleotide concentration. Thus, preferential fluorimetric response towards G4 structures appears to be a common feature of mono- and distyryl dyes, including long-known mono-styryl dyes used as mitochondrial probes or protein stains. However, the magnitude of the G4-induced “light-up” effect varies drastically, as a function of both the molecular structure of the dyes and the nature or topology of G4 analytes. Although our results do not allow to formulate comprehensive structure–properties relationships, we identified several structural motifs, such as indole- or pyrrole-substituted distyryl dyes, as well as simple mono-stryryl dyes such as DASPMI [2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide] or its 4-isomer, as optimal fluorescent light-up probes characterized by high fluorimetric response (I/I0 of up to 550-fold), excellent selectivity with respect to double-stranded DNA or single-stranded RNA controls, high quantum yield in the presence of G4 analytes (up to 0.32), large Stokes shift (up to 150 nm) and, in certain cases, structural selectivity with respect to one or another G4 folding topology. These dyes can be considered as promising G4-responsive sensors for in vitro or imaging applications. As a possible application, we implemented a simple two-dye fluorimetric assay allowing rapid topological classification of G4-DNA structures.
Collapse
Affiliation(s)
- Xiao Xie
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Michela Zuffo
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Sud, Université Paris Saclay, Bât. 110, Centre universitaire Paris Sud, F-91405 Orsay, France
| |
Collapse
|
9
|
Ihmels H, Jiang S, Mahmoud MMA, Schönherr H, Wesner D, Zamrik I. Fluorimetric Detection of G-Quadruplex DNA in Solution and Adsorbed on Surfaces with a Selective Trinuclear Cyanine Dye. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11866-11877. [PMID: 30173518 DOI: 10.1021/acs.langmuir.8b02382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quadruplex DNA, which is a relevant target for anticancer therapies, may alter its conformation because of interactions with interfaces. In pursuit of a versatile methodology to probe adsorption-induced conformational changes, the interaction between a fluorescent [2.2.2]heptamethinecyanine dye and quadruplex DNA (G4-DNA) was studied in solution and on surfaces. In solution, the cyanine dye exhibits a strong light-up effect upon the association with G4-DNA without interference from double-stranded DNA. In addition, a terminal π-stacking as a binding mode between the cyanine dye and G4-DNA is concluded using NMR spectroscopy. To unravel the effects of adsorption on the conformation of quadruplex-DNA, G4-DNA, and double-stranded and single-stranded DNA were adsorbed to positively charged poly(allylamine) hydrochloride (PAH) surfaces, both in planar and in constrained 55 nm diameter aluminum oxide nanopore formats. All DNA forms showed a very strong affinity to the PAH surfaces as shown by surface plasmon resonance and reflectometric interference spectroscopy. The significant increase of the fluorescence emission intensity of the cyanine light-up probe observed exclusively for surface immobilized G4-DNA affords evidence for the adsorption of G4-DNA on PAH with retained quadruplex conformation.
Collapse
Affiliation(s)
- Heiko Ihmels
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Siyu Jiang
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Mohamed M A Mahmoud
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Holger Schönherr
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Daniel Wesner
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Imad Zamrik
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| |
Collapse
|
10
|
Xie X, Reznichenko O, Chaput L, Martin P, Teulade-Fichou MP, Granzhan A. Topology-Selective, Fluorescent “Light-Up” Probes for G-Quadruplex DNA Based on Photoinduced Electron Transfer. Chemistry 2018; 24:12638-12651. [DOI: 10.1002/chem.201801701] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao Xie
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Oksana Reznichenko
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Ludovic Chaput
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
- CNRS UPR2301; Institut de Chimie des Substances Naturelles (ICSN); 91198 Gif-sur-Yvette France
| | - Pascal Martin
- ITODYS, CNRS UMR7086; Université Paris Diderot; 75205 Paris France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196; Institut Curie; PSL Research University; 91405 Orsay France
- CNRS UMR9187, INSERM U1196; Université Paris Sud, Université Paris-Saclay; 91405 Orsay France
| |
Collapse
|
11
|
Abstract
Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves. The rationale behind the design of a very comprehensive set of ligands, with particular focus on the structural features required for binding to G4, is discussed and combined with the corresponding biochemical/biological data to highlight key structure-G4 interaction relationships. Analysis of the data suggests that the shape of the ligand is the major factor behind the G4 stabilizing effect of the ligands. The information here critically reviewed will certainly contribute to the development of new and better G4 ligands with application either as therapeutics or probes.
Collapse
Affiliation(s)
- Ana Rita Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Enrico Cadoni
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Paulo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Suseela YV, Narayanaswamy N, Pratihar S, Govindaraju T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem Soc Rev 2018; 47:1098-1131. [DOI: 10.1039/c7cs00774d] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our review presents the recent progress on far-red fluorescent probes of canonical and non-canonical nucleic acid (NA) structures, critically discusses the design principles, applications, limitations and outline the future prospects of developing newer probes with target-specificity for different NA structures.
Collapse
Affiliation(s)
- Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Sumon Pratihar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
13
|
Ihmels H, Mahmoud MM, Patrick BO. Optical differentiation between quadruplex DNA and duplex DNA with a [2.2.2]heptamethinecyanine dye. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Heiko Ihmels
- Department of Chemistry and Biology; University of Siegen; Siegen Germany
- Center of Micro- and Nanochemistry and Engineering; University of Siegen; Siegen Germany
| | - Mohamed M.A. Mahmoud
- Department of Chemistry and Biology; University of Siegen; Siegen Germany
- Center of Micro- and Nanochemistry and Engineering; University of Siegen; Siegen Germany
| | - Brian O. Patrick
- Department of Chemistry; University of British Columbia; Vancouver Canada
| |
Collapse
|
14
|
Pithan PM, Decker D, Druzhinin SI, Ihmels H, Schönherr H, Voß Y. 8-Styryl-substituted coralyne derivatives as DNA binding fluorescent probes. RSC Adv 2017; 7:10660-10667. [PMID: 28496973 PMCID: PMC5361113 DOI: 10.1039/c6ra27684a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
8-Styryl-substituted coralyne derivatives bind to duplex and quadruplex DNA and may be used for fluorimetric staining of nucleoli in cells.
Six new 8-styryl-substituted coralyne derivatives 4a–f were synthesized from coralyne (2) by a base catalysed Knoevenagel type reaction. It was shown by photometric and fluorimetric titrations of double stranded and quadruplex DNA to 4b–d as well as by fluorimetric DNA denaturation experiments that these ligands bind to DNA with different binding modes at varying ligand-DNA ratios (LDR). Specifically, the addition of DNA caused initially a hypochromic effect in absorbance and, at a particular LDR, the development of a new red shifted absorption band with a hyperchromic effect. Furthermore, 4b–d induced a significant and selective stabilization of quadruplex DNA towards unfolding (ΔTm = 31.6–32.9 °C at LDR = 5), which is even more pronounced as compared to the parent compound coralyne (2). Most notably, the addition of DNA to the dimethylamino-substituted derivative 4b leads to a new, strongly red-shifted emission band at 695 nm. Hence, this derivative is a fluorescent probe that changes its fluorescence colour from green to red in the presence of DNA and even allows the fluorimetric analysis of living cells by staining of the nucleoli.
Collapse
Affiliation(s)
- P M Pithan
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - D Decker
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - S I Druzhinin
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - H Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - H Schönherr
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Y Voß
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
15
|
Lin D, Fei X, Gu Y, Wang C, Tang Y, Li R, Zhou J. A benzindole substituted carbazole cyanine dye: a novel targeting fluorescent probe for parallel c-myc G-quadruplexes. Analyst 2016; 140:5772-80. [PMID: 26176020 DOI: 10.1039/c5an00866b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many organic ligands were synthesized to recognize G-quadruplexes. However, different kinds of G-quadruplexes (G4s) possess different structures and functions. Therefore, selective recognition of certain types of G4s is important for the study of G4s. In this paper, a novel cyanine dye, 3-(2-(4-vinylpyridine))-6-(2-((1-(4-sulfobutyl))-3,3-dimethyl-2-vinylbenz[e]indole)-9-ethyl-carbazole (9E PBIC), composed of benzindole and carbazole was designed and synthesised. The studies on UV-vis and fluorescence properties of the dye with different DNA forms showed that the dye exhibits almost no fluorescence under aqueous buffer conditions, but it increased over 100 fold in the presence of c-myc G4 and 10-30 fold in the presence of other G4s, while little in the presence of single/double-stranded DNA, indicating that it has excellent selectivity to c-myc 2345 G4. For the binding studies the dye is interacted with the c-myc 2345 G-quadruplex by using the end-stack binding model. It can be said that the dye is an excellent targeting fluorescent probe for c-myc G-quadruplexes.
Collapse
Affiliation(s)
- Dayong Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Chilka P, Patlolla PR, Datta B. Selective recognition of G-quadruplexes by a dimeric carbocyanine dye. RSC Adv 2016. [DOI: 10.1039/c6ra05474a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel dimeric carbocyanine dye is found to recognise G-quadruplex structures selectively compared to mixed sequence or double-stranded DNA molecules.
Collapse
Affiliation(s)
- P. Chilka
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Ahmedabad 382424
- India
| | - P. R. Patlolla
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Ahmedabad 382424
- India
| | - B. Datta
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Ahmedabad 382424
- India
- Department of Chemistry
| |
Collapse
|
17
|
Wu JB, Shi C, Chu GCY, Xu Q, Zhang Y, Li Q, Yu JS, Zhau HE, Chung LWK. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor. Biomaterials 2015. [PMID: 26197410 DOI: 10.1016/j.biomaterials.2015.07.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.
Collapse
Affiliation(s)
- Jason Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changhong Shi
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Laboratory Animal Center, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gina Chia-Yi Chu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qijin Xu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qinlong Li
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
18
|
Chilka P, Patlolla PR, Datta B. 127 Selective G-quadruplex recognition by a novel cyanine dye. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1032760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Ang DL, Jones NC, Stootman F, Ghadirian B, Aldrich-Wright JR. Improved DNA equilibrium binding affinity determinations of platinum(ii) complexes using synchrotron radiation circular dichroism. Analyst 2015; 140:4162-9. [DOI: 10.1039/c5an00066a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DNA binding affinity of a range of Pt(ii) complexes was reinvestigated using SRCD and a new method was implemented for determining the binding constant, saving time and minimising data collection.
Collapse
Affiliation(s)
- Dale L. Ang
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Penrith
- Australia
| | - Nykola C. Jones
- ISA
- Department of Physics and Astronomy
- Aarhus University
- DK 8000 Aarhus C
- Denmark
| | - Frank Stootman
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Penrith
- Australia
| | - Bahman Ghadirian
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Penrith
- Australia
| | - Janice R. Aldrich-Wright
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Penrith
- Australia
| |
Collapse
|
20
|
Dzubiel D, Ihmels H, Mahmoud MMA, Thomas L. A comparative study of the interactions of cationic hetarenes with quadruplex-DNA forming oligonucleotide sequences of the insulin-linked polymorphic region (ILPR). Beilstein J Org Chem 2014; 10:2963-74. [PMID: 25550763 PMCID: PMC4273293 DOI: 10.3762/bjoc.10.314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/26/2014] [Indexed: 11/23/2022] Open
Abstract
The interactions of the ILPR sequence (ILPR = "insulin-linked polymorphic region") a2 [d(ACAG4TGTG4ACAG4TGTG4)] with [2.2.2]heptamethinecyanine derivatives 1a–e and with the already established quadruplex ligands coralyne (2), 3,3′-[2,6-pyridinediylbis(carbonylimino)]bis[1-methylquinolinium] (3), 4,4′,4′′,4′′′-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis[1-methylpyridinium] (4), naphtho[2,1-b:3,4-b′:6,5-b′′:7,8-b′′′]tetraquinolizinium (5) and thiazole orange (6) were studied. It is demonstrated with absorption, fluorescence and CD spectroscopy that all investigated ligands bind with relatively high affinity to the ILPR-quadruplex DNA a2 (0.2–5.5 × 106 M−1) and that in most cases the binding parameters of ligand-ILPR complexes are different from the ones observed with other native quadruplex-forming DNA sequences.
Collapse
Affiliation(s)
- Darinka Dzubiel
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Mohamed M A Mahmoud
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Laura Thomas
- Department Chemie-Biologie, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
21
|
Wu JB, Shao C, Li X, Shi C, Li Q, Hu P, Chen YT, Dou X, Sahu D, Li W, Harada H, Zhang Y, Wang R, Zhau HE, Chung LWK. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis. Biomaterials 2014; 35:8175-85. [PMID: 24957295 DOI: 10.1016/j.biomaterials.2014.05.073] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/24/2014] [Indexed: 11/26/2022]
Abstract
Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy.
Collapse
Affiliation(s)
- Jason Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chen Shao
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiangyan Li
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changhong Shi
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qinlong Li
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peizhen Hu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi-Ting Chen
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaoliang Dou
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Divya Sahu
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Li
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Hiroshi Harada
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yi Zhang
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ruoxiang Wang
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
22
|
Naud-Martin D, Martin-Benlloch X, Poyer F, Mahuteau-Betzer F, Teulade-Fichou MP. Acri-2,7-Py, a bright red-emitting DNA probe identified through screening of a distyryl dye library. Biotechnol J 2014; 9:301-10. [DOI: 10.1002/biot.201300197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/17/2013] [Accepted: 12/09/2013] [Indexed: 12/23/2022]
|
23
|
Maji B, Bhattacharya S. Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem Commun (Camb) 2014; 50:6422-38. [DOI: 10.1039/c4cc00611a] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telomerase is an attractive drug target to develop new generation drugs against cancer.
Collapse
Affiliation(s)
- Basudeb Maji
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012, India
- Chemical Biology Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
| |
Collapse
|
24
|
Chen Y, Yan S, Yuan L, Zhou Y, Song Y, Xiao H, Weng X, Zhou X. Nonlinear optical dye TSQ1 as an efficiently selective fluorescent probe for G-quadruplex DNA. Org Chem Front 2014. [DOI: 10.1039/c3qo00048f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|