1
|
Oligo (Poly (Ethylene Glycol) Fumarate)-Based Multicomponent Cryogels for Neural Tissue Replacement. Gels 2023; 9:gels9020105. [PMID: 36826275 PMCID: PMC9957547 DOI: 10.3390/gels9020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Synthetic hydrogels provide a promising platform to produce neural tissue analogs with improved control over structural, physical, and chemical properties. In this study, oligo (poly (ethylene glycol) fumarate) (OPF)-based macroporous cryogels were developed as a potential next-generation alternative to a non-porous OPF hydrogel previously proposed as an advanced biodegradable scaffold for spinal cord repair. A series of OPF cryogel conduits in combination with PEG diacrylate and 2-(methacryloyloxy) ethyl-trimethylammonium chloride (MAETAC) cationic monomers were synthesized and characterized. The contribution of each component to viscoelastic and hydration behaviors and porous structure was identified, and concentration relationships for these properties were revealed. The rheological properties of the materials corresponded to those of neural tissues and scaffolds, according to the reviewed data. A comparative assessment of adhesion, migration, and proliferation of neuronal cells in multicomponent cryogels was carried out to optimize cell-supporting characteristics. The results show that OPF-based cryogels can be used as a tunable synthetic scaffold for neural tissue repair with advantages over their hydrogel counterparts.
Collapse
|
2
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
3
|
Fan C, Zhan SH, Dong ZX, Yang W, Deng WS, Liu X, Wang DA, Sun P. Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110399. [DOI: 10.1016/j.msec.2019.110399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
|
4
|
Fan C, Ling Y, Deng W, Xue J, Sun P, Wang DA. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: a three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation. ACTA ACUST UNITED AC 2019; 14:055006. [PMID: 31269472 DOI: 10.1088/1748-605x/ab2efd] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hydrogel scaffold is a popular cell delivery vehicle in tissue engineering and regenerative medicine due to its capability to encapsulate cells as well as its modifiable properties. However, the inherent submicron- or nano-sized polymer networks of conventional hydrogel will produce spatial constraints on cellular activities of encapsulated cells. In this study, we endeavor to develop an innovative cell encapsulatable cryogel (CECG) platform with interconnected macro-pores, by combining cell cryopreservation technique with cryogel preparation process. The hyaluronan (HA) CECG constructs are fabricated under the freezing conditions via UV photo-crosslinking of the HA methacrylate (HA-MA) that are dissolved in the 'freezing solvent', namely the phosphate buffered saline supplemented with dimethyl sulphoxide and fetal bovine serum. Two model cell types, chondrocytes and human mesenchymal stem cells (hMSCs), can be uniformly three-dimensionally encapsulated into HA CECG constructs with high cell viability, respectively. The macro-porous structures, generated from phase separation under freezing, endow HA CECG constructs with higher permeability and more living space for cell growth. The chondrocytes encapsulated in HA CECG possess enhanced proliferation and extracellular matrix secretion than those in conventional HA hydrogels. In addition, the HA-Gel CECG constructs, fabricated with HA-MA and gelatin methacrylate precursors, provide cell-adhesive interfaces to facilitate hMSCs attachment and proliferation. The results of this work may lay the foundation for us to explore the applications of the CECG-based scaffolds in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Changjiang Fan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, Shandong 266021, People's Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
Fan C, Wang DA. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:451-461. [PMID: 28067115 DOI: 10.1089/ten.teb.2016.0465] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hydrogels have been promising candidate scaffolds for cell delivery and tissue engineering due to their tissue-like physical properties and capability for homogeneous cell loading. However, the encapsulated cells are generally entrapped and constrained in the submicron- or nanosized gel networks, seriously limiting cell growth and tissue formation. Meanwhile, the spatially confined settlement inhibits attachment and spreading of anchorage-dependent cells, leading to their apoptosis. In recent years, macroporous hydrogels have attracted increasing attention in use as cell delivery vehicles and tissue engineering scaffolds. The introduction of macropores within gel scaffolds not only improves their permeability for better nutrient transport but also creates space/interface for cell adhesion, proliferation, and extracellular matrix deposition. Herein, we will first review the development of macroporous gel scaffolds and outline the impact of macropores on cell behaviors. In the first part, the advantages and challenges of hydrogels as three-dimensional (3D) cell culture scaffolds will be described. In the second part, the fabrication of various macroporous hydrogels will be presented. Third, the enhancement of cell activities within macroporous gel scaffolds will be discussed. Finally, several crucial factors that are envisaged to propel the improvement of macroporous gel scaffolds are proposed for 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Changjiang Fan
- 1 Institute for Translational Medicine, College of Medicine, Qingdao University , Qingdao, People's Republic of China
| | - Dong-An Wang
- 2 School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore, Singapore
| |
Collapse
|
6
|
Gu D, O'Connor AJ, G H Qiao G, Ladewig K. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin Drug Deliv 2016; 14:879-895. [PMID: 27705026 DOI: 10.1080/17425247.2017.1245290] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Smart hydrogel systems present opportunities to not only provide hydrophobic molecule encapsulation capability but to also respond to specific delivery routes. Areas covered: An overview of the design principles, preparation methods and applications of hydrogel systems for delivery of hydrophobic drugs is given. It begins with a summary of the advantages of hydrogels as delivery vehicles over other approaches, particularly macromolecular nanocarriers, before proceeding to address the design and preparation strategies and chemistry involved, with a particular focus on the introduction of hydrophobic domains into (naturally) hydrophilic hydrogels. Finally, the applications in different delivery routes are discussed. Expert opinion: Modifications to conventional hydrogels can endow them with the capability to carry hydrophobic drugs but other functions as well, such as the improved mechanical stability, which is important for long-term in vivo residence and/or self-healing properties useful for injectable delivery pathways. These modifications harness hydrophobic-hydrophobic forces, physical interactions and inclusion complexes. The lack of in-depth understanding of these interactions, currently limits more delicate and application-oriented designs. Increased efforts are needed in (i) understanding the interplay of gel formation and simultaneous drug loading; (ii) improving hydrogel systems with respect to their biosafety; and (iii) control over release mechanism and profile.
Collapse
Affiliation(s)
- Dunyin Gu
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Andrea J O'Connor
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Greg G H Qiao
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Katharina Ladewig
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| |
Collapse
|
7
|
A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use. Acta Biomater 2016; 33:51-63. [PMID: 26850148 DOI: 10.1016/j.actbio.2016.02.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/04/2023]
Abstract
It has been a great challenge to develop aldehyde-free tissue adhesives that can function rapidly and controllably on wet internal tissues with fine adhesion strength, sound biocompatibility and degradability. To this end, we have devised a mussel-inspired easy-to-use double-crosslink tissue adhesive (DCTA) comprising a dopamine-conjugated gelatin macromer, a rapid crosslinker (namely, Fe(3+)), and a long-term acting crosslinker (namely, genipin). As a mussel-inspired gluing macromer, dopamine is grafted onto gelatin backbone via an one-step reaction, the catechol groups of which are capable of performing strong wet adhesion on tissue surfaces. By addition of genipin and Fe(3+), the formation of catechol-Fe(3+) complexation and accompanying spontaneous curing of genipin-primed covalent crosslinking of gluing macromers in one pot endows DCTA with the double-crosslink adhesion mechanism. Namely, the reversible catechol-Fe(3+) crosslinking executes an controllable and instant adhesive curing; while genipin-induced stable covalent crosslinking promises it with long-term effectiveness. This novel DCTA exhibits significantly higher wet tissue adhesion capability than the commercially available fibrin glue when applied on wet porcine skin and cartilage. In addition, this DCTA also demonstrates fine elasticity, sound biodegradability, and biocompatibility when contacting in vitro cultured cells and blood. In vivo biocompatibility and biodegradability are checked and confirmed via trials of subcutaneous implantation in nude mice model. This newly developed DCTA may be a highly promising product as a biological glue for internal medical use including internal tissue adhesion, sealing, and hemostasis. STATEMENT OF SIGNIFICANCE There is a great demand for ideal tissue adhesives that can be widely used in gluing wet internal tissues. Here, we have devised a mussel-inspired easy-to-use double-crosslink tissue adhesive (DCTA) that meets the conditions as an ideal tissue adhesive. It is composed of gelatin-dopamine conjugates - a gluing macromer, Fe(3+) - a rapid crosslinker, and genipin - a long-term acting crosslinker. This DCTA is constructed with a novel complexation-covalent double-crosslinking principle in one pot, in which the catechol-Fe(3+) crosslinking executes a controllable and instant adhesive curing, at the same time, genipin-induced covalent crosslinking promises it with long-term effectiveness in physiology conditions. This novel DCTA, with excellent wet tissue adhesion capability, fine elasticity, sound biodegradability, and biocompatibility, is a promising biological glue for internal medical use in surgical operations.
Collapse
|
8
|
Jing Y, Quan C, Liu B, Jiang Q, Zhang C. A Mini Review on the Functional Biomaterials Based on Poly(lactic acid) Stereocomplex. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1111380] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Pan X, Gao H, Fu G, Gao Y, Zhang W. Synthesis, characterization and chondrocyte culture of polyhedral oligomeric silsesquioxane (POSS)-containing hybrid hydrogels. RSC Adv 2016. [DOI: 10.1039/c5ra27989e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polyhedral oligomeric silsesquioxanes (POSS)-based hybrid hydrogels were successfully prepared via a fast azide-alkyne click reaction between octa-azido-functionalized POSS (OAPOSS) and alkyne-functionalized poly(ethylene glycol) (PEG).
Collapse
Affiliation(s)
- Xiuwei Pan
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Hao Gao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
10
|
Fan C, Wang DA. A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.02.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Cui N, Qian J, Xu W, Xu M, Zhao N, Liu T, Wang H. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels. Carbohydr Polym 2015; 136:1017-26. [PMID: 26572442 DOI: 10.1016/j.carbpol.2015.09.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 02/04/2023]
Abstract
In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ning Cui
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Minghui Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Na Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ting Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Cao Z, Yang Q, Fan C, Liu L, Liao L. Biocompatible, ionic-strength-sensitive, double-network hydrogel based on chitosan and an oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock copolymer. J Appl Polym Sci 2015. [DOI: 10.1002/app.42459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng Cao
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
| | - Quanzhu Yang
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
| | - Changjiang Fan
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
| | - Lijian Liu
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
| | - Liqiong Liao
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
- Suzhou Institute, Wuhan University; Suzhou 215123 People's Republic of China
| |
Collapse
|
13
|
Fan C, Wang DA. Effects of permeability and living space on cell fate and neo-tissue development in hydrogel-based scaffolds: a study with cartilaginous model. Macromol Biosci 2015; 15:535-45. [PMID: 25557976 DOI: 10.1002/mabi.201400453] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/27/2014] [Indexed: 01/20/2023]
Abstract
One bottleneck in tissue regeneration with hydrogel scaffolds is the limited understanding of the crucial factors for controlling hydrogel's physical microenvironments to regulate cell fate. Here, the effects of permeability and living space of hydrogels on encapsulated cells' behavior were evaluated, respectively. Three model hydrogel-based constructs are fabricated by using photo-crosslinkable hyaluronic acid as precursor and chondrocytes as model cell type. The better permeable hydrogels facilitate better cell viability and rapid proliferation, which lead to increased production of extracellular matrix (ECM), e.g. collagen, glycosaminoglycan. By prolonged culture, nano-sized hydrogel networks inhibit neo-tissue development, and the presence of macro-porous living spaces significantly enhance ECM deposition via forming larger cell clusters and eventually induce formation of scaffold-free neo-tissue islets. The results of this work demonstrate that the manipulation and optimization of hydrogel microenvironments, namely permeability and living space, are crucial to direct cell fate and neo-tissue formation.
Collapse
Affiliation(s)
- Changjiang Fan
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | | |
Collapse
|
14
|
Fan C, Zhang C, Liao L, Li S, Gan W, Zhou J, Wang DA, Liu L. Preparation and characterization of double macromolecular network (DMMN) hydrogels based on hyaluronan and high molecular weight poly(ethylene glycol). J Mater Chem B 2015; 3:6618-6625. [DOI: 10.1039/c5tb00867k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultra-strong and resilient double macromolecular network (DMMN) hydrogels with a more evenly distributed polymer network and a double-network structure have been developed.
Collapse
Affiliation(s)
- Changjiang Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
- School of Chemical and Biomedical Engineering
| | - Chao Zhang
- School of Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liqiong Liao
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Sheng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Weiping Gan
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Jinping Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Dong-An Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Lijian Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
15
|
Preparation and characterization of Poly(γ-glutamic acid) hydrogels as potential tissue engineering scaffolds. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1536-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Xu J, Feng E, Song J. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications. J Appl Polym Sci 2014; 131:10.1002/app.39822. [PMID: 24994939 PMCID: PMC4076343 DOI: 10.1002/app.39822] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aliphatic polycarbonates were discovered a long time ago, with their conventional applications mostly limited to low molecular weight oligomeric intermediates for copolymerization with other polymers. Recent developments in polymerization techniques have overcome the difficulty in preparing high molecular weight aliphatic polycarbonates. These in turn, along with new functional monomers, have enabled the preparation of a wide range of aliphatic polycarbonates with diverse chemical compositions and structures. This review summarizes the latest polymerization techniques for preparing well-defined functional aliphatic polycarbonates, as well as the new applications of those aliphatic polycarbonates, esecially in the biomedical field.
Collapse
Affiliation(s)
- Jianwen Xu
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Ellva Feng
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
- Department of Cell and Developmental Biology, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
17
|
Zhou L, Tan G, Tan Y, Wang H, Liao J, Ning C. Biomimetic mineralization of anionic gelatin hydrogels: effect of degree of methacrylation. RSC Adv 2014. [DOI: 10.1039/c4ra02271h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The crosslinker contents of the hydrogel have a significant effect on the mineralization outcome, including crystallinity, content, and morphology of the mineral growth within the 3d gelatin methacrylate scaffold.
Collapse
Affiliation(s)
- Lei Zhou
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou, China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou, China
| | - Ying Tan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou, China
| | - Hang Wang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou, China
| | - Jingwen Liao
- College of Materials Science and Technology
- South China University of Technology
- Guangzhou, China
| | - Chengyun Ning
- College of Materials Science and Technology
- South China University of Technology
- Guangzhou, China
| |
Collapse
|
18
|
Fan C, Liao L, Zhang C, Liu L. A tough double network hydrogel for cartilage tissue engineering. J Mater Chem B 2013; 1:4251-4258. [DOI: 10.1039/c3tb20600a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|